Search results for: text and data mining
26262 Cloud Computing in Data Mining: A Technical Survey
Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham
Abstract:
Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.Keywords: cloud computing, data mining, computing models, cloud services
Procedia PDF Downloads 47926261 Extraction of Text Subtitles in Multimedia Systems
Authors: Amarjit Singh
Abstract:
In this paper, a method for extraction of text subtitles in large video is proposed. The video data needs to be annotated for many multimedia applications. Text is incorporated in digital video for the motive of providing useful information about that video. So need arises to detect text present in video to understanding and video indexing. This is achieved in two steps. First step is text localization and the second step is text verification. The method of text detection can be extended to text recognition which finds applications in automatic video indexing; video annotation and content based video retrieval. The method has been tested on various types of videos.Keywords: video, subtitles, extraction, annotation, frames
Procedia PDF Downloads 59926260 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications
Authors: K. P. Sandesh, M. H. Suman
Abstract:
Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms
Procedia PDF Downloads 51726259 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills
Authors: Kyle De Freitas, Margaret Bernard
Abstract:
Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.Keywords: educational data mining, learning management system, learning analytics, EDM framework
Procedia PDF Downloads 32426258 Association Rules Mining Task Using Metaheuristics: Review
Authors: Abir Derouiche, Abdesslem Layeb
Abstract:
Association Rule Mining (ARM) is one of the most popular data mining tasks and it is widely used in various areas. The search for association rules is an NP-complete problem that is why metaheuristics have been widely used to solve it. The present paper presents the ARM as an optimization problem and surveys the proposed approaches in the literature based on metaheuristics.Keywords: Optimization, Metaheuristics, Data Mining, Association rules Mining
Procedia PDF Downloads 15626257 Urdu Text Extraction Method from Images
Authors: Samabia Tehsin, Sumaira Kausar
Abstract:
Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.Keywords: caption text, content-based image retrieval, document analysis, text extraction
Procedia PDF Downloads 51326256 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text
Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni
Abstract:
The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance
Procedia PDF Downloads 14926255 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL
Procedia PDF Downloads 15826254 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 48126253 Using Textual Pre-Processing and Text Mining to Create Semantic Links
Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo
Abstract:
This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.Keywords: semantic links, data mining, linked data, SKOS
Procedia PDF Downloads 17826252 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 34926251 A Review on Existing Challenges of Data Mining and Future Research Perspectives
Authors: Hema Bhardwaj, D. Srinivasa Rao
Abstract:
Technology for analysing, processing, and extracting meaningful data from enormous and complicated datasets can be termed as "big data." The technique of big data mining and big data analysis is extremely helpful for business movements such as making decisions, building organisational plans, researching the market efficiently, improving sales, etc., because typical management tools cannot handle such complicated datasets. Special computational and statistical issues, such as measurement errors, noise accumulation, spurious correlation, and storage and scalability limitations, are brought on by big data. These unique problems call for new computational and statistical paradigms. This research paper offers an overview of the literature on big data mining, its process, along with problems and difficulties, with a focus on the unique characteristics of big data. Organizations have several difficulties when undertaking data mining, which has an impact on their decision-making. Every day, terabytes of data are produced, yet only around 1% of that data is really analyzed. The idea of the mining and analysis of data and knowledge discovery techniques that have recently been created with practical application systems is presented in this study. This article's conclusion also includes a list of issues and difficulties for further research in the area. The report discusses the management's main big data and data mining challenges.Keywords: big data, data mining, data analysis, knowledge discovery techniques, data mining challenges
Procedia PDF Downloads 10826250 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media
Procedia PDF Downloads 10426249 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 30126248 Text Data Preprocessing Library: Bilingual Approach
Authors: Kabil Boukhari
Abstract:
In the context of information retrieval, the selection of the most relevant words is a very important step. In fact, the text cleaning allows keeping only the most representative words for a better use. In this paper, we propose a library for the purpose text preprocessing within an implemented application to facilitate this task. This study has two purposes. The first, is to present the related work of the various steps involved in text preprocessing, presenting the segmentation, stemming and lemmatization algorithms that could be efficient in the rest of study. The second, is to implement a developed tool for text preprocessing in French and English. This library accepts unstructured text as input and provides the preprocessed text as output, based on a set of rules and on a base of stop words for both languages. The proposed library has been made on different corpora and gave an interesting result.Keywords: text preprocessing, segmentation, knowledge extraction, normalization, text generation, information retrieval
Procedia PDF Downloads 9226247 Data Mining As A Tool For Knowledge Management: A Review
Authors: Maram Saleh
Abstract:
Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.
Procedia PDF Downloads 20626246 Small Text Extraction from Documents and Chart Images
Authors: Rominkumar Busa, Shahira K. C., Lijiya A.
Abstract:
Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.Keywords: small text extraction, OCR, scene text recognition, CRNN
Procedia PDF Downloads 12226245 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 53426244 Data Mining Techniques for Anti-Money Laundering
Authors: M. Sai Veerendra
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.Keywords: data mining, clustering, money laundering, anti-money laundering solutions
Procedia PDF Downloads 53526243 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining
Procedia PDF Downloads 43526242 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 85126241 Text Mining Past Medical History in Electrophysiological Studies
Authors: Roni Ramon-Gonen, Amir Dori, Shahar Shelly
Abstract:
Background and objectives: Healthcare professionals produce abundant textual information in their daily clinical practice. The extraction of insights from all the gathered information, mainly unstructured and lacking in normalization, is one of the major challenges in computational medicine. In this respect, text mining assembles different techniques to derive valuable insights from unstructured textual data, so it has led to being especially relevant in Medicine. Neurological patient’s history allows the clinician to define the patient’s symptoms and along with the result of the nerve conduction study (NCS) and electromyography (EMG) test, assists in formulating a differential diagnosis. Past medical history (PMH) helps to direct the latter. In this study, we aimed to identify relevant PMH, understand which PMHs are common among patients in the referral cohort and documented by the medical staff, and examine the differences by sex and age in a large cohort based on textual format notes. Methods: We retrospectively identified all patients with abnormal NCS between May 2016 to February 2022. Age, gender, and all NCS attributes reports were recorded, including the summary text. All patients’ histories were extracted from the text report by a query. Basic text cleansing and data preparation were performed, as well as lemmatization. Very popular words (like ‘left’ and ‘right’) were deleted. Several words were replaced with their abbreviations. A bag of words approach was used to perform the analyses. Different visualizations which are common in text analysis, were created to easily grasp the results. Results: We identified 5282 unique patients. Three thousand and five (57%) patients had documented PMH. Of which 60.4% (n=1817) were males. The total median age was 62 years (range 0.12 – 97.2 years), and the majority of patients (83%) presented after the age of forty years. The top two documented medical histories were diabetes mellitus (DM) and surgery. DM was observed in 16.3% of the patients, and surgery at 15.4%. Other frequent patient histories (among the top 20) were fracture, cancer (ca), motor vehicle accident (MVA), leg, lumbar, discopathy, back and carpal tunnel release (CTR). When separating the data by sex, we can see that DM and MVA are more frequent among males, while cancer and CTR are less frequent. On the other hand, the top medical history in females was surgery and, after that, DM. Other frequent histories among females are breast cancer, fractures, and CTR. In the younger population (ages 18 to 26), the frequent PMH were surgery, fractures, trauma, and MVA. Discussion: By applying text mining approaches to unstructured data, we were able to better understand which medical histories are more relevant in these circumstances and, in addition, gain additional insights regarding sex and age differences. These insights might help to collect epidemiological demographical data as well as raise new hypotheses. One limitation of this work is that each clinician might use different words or abbreviations to describe the same condition, and therefore using a coding system can be beneficial.Keywords: abnormal studies, healthcare analytics, medical history, nerve conduction studies, text mining, textual analysis
Procedia PDF Downloads 9426240 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 24526239 Searching Linguistic Synonyms through Parts of Speech Tagging
Authors: Faiza Hussain, Usman Qamar
Abstract:
Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics
Procedia PDF Downloads 30626238 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 42226237 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: data mining, textile production, decision trees, classification
Procedia PDF Downloads 34926236 Identifying Concerned Citizen Communication Style During the State Parliamentary Elections in Bavaria
Authors: Volker Mittendorf, Andre Schmale
Abstract:
In this case study, we want to explore the Twitter-use of candidates during the state parliamentary elections-year 2018 in Bavaria, Germany. This paper focusses on the seven parties that probably entered the parliament. Against this background, the paper classifies the use of language as populism which itself is considered as a political communication style. First, we determine the election campaigns which started in the years 2017 on Twitter, after that we categorize the posting times of the different direct candidates in order to derive ideal types from our empirical data. Second, we have done the exploration based on the dictionary of concerned citizens which contains German political language of the right and the far right. According to that, we are analyzing the corpus with methods of text mining and social network analysis, and afterwards we display the results in a network of words of concerned citizen communication style (CCCS).Keywords: populism, communication style, election, text mining, social media
Procedia PDF Downloads 14826235 Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis
Authors: Myungsu Lim, William Xiu Shun Wong, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Namgyu Kim
Abstract:
The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena.Keywords: Data Mining, Issue Tracking, Text Mining, topic Analysis, topic Detection, Trend Detection
Procedia PDF Downloads 40626234 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 33926233 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 43