Search results for: force sensitive resistor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3993

Search results for: force sensitive resistor

3963 Teaching the Temperature Dependence of Electrical Resistance of Materials through Arduino Investigation

Authors: Vinit Srivastava, Abhay Singh Thakur, Shivam Dubey, Rahul Vaish, Bharat Singh Rajpurohit

Abstract:

This study examines the problem of students' poor comprehension of the thermal dependence of resistance by investigating this idea using an evidence-based inquiry approach. It suggests a practical exercise to improve secondary school students' comprehension of how materials' resistance to temperature changes. The suggested exercise uses an Arduino and Peltier device to test the resistance of aluminum and graphite at various temperatures. The study attempts to close the knowledge gap between the theoretical and practical facets of the subject, which students frequently find difficult to grasp. With the help of a variety of resistors made of various materials and pencils of varying grades, the Arduino experiment investigates the resistance of a metallic conductor (aluminum) and a semiconductor (graphite) at various temperatures. The purpose of the research is to clarify for students the relationship between temperature and resistance and to emphasize the importance of resistor material choice and measurement methods in obtaining precise and stable resistance values over dynamic temperature variations. The findings show that while the resistance of graphite decreases with temperature, the resistance of metallic conductors rises with temperature. The results also show that as softer lead pencils or pencils of a lower quality are used, the resistance values of the resistors drop. In addition, resistors showed greater stability at lower temperatures when their temperature coefficients of resistance (TCR) were smaller. Overall, the results of this article show that the suggested experiment is a useful and practical method for teaching students about resistance's relationship to temperature. It emphasizes how crucial it is to take into account the resistor material selection and the resistance measurement technique when designing and picking out resistors for various uses. The results of the study are anticipated to guide the creation of more efficient teaching methods to close the gap between science education's theoretical and practical components.

Keywords: electrical resistance, temperature dependence, science education, inquiry-based activity, resistor stability

Procedia PDF Downloads 76
3962 Transient Analysis and Mitigation of Capacitor Bank Switching on a Standalone Wind Farm

Authors: Ajibola O. Akinrinde, Andrew Swanson, Remy Tiako

Abstract:

There exist significant losses on transmission lines due to distance, as power generating stations could be located far from some isolated settlements. Standalone wind farms could be a good choice of alternative power generation for such settlements that are far from the grid due to factors of long distance or socio-economic problems. However, uncompensated wind farms consume reactive power since wind turbines are induction generators. Therefore, capacitor banks are used to compensate reactive power, which in turn improves the voltage profile of the network. Although capacitor banks help improving voltage profile, they also undergo switching actions due to its compensating response to the variation of various types of load at the consumer’s end. These switching activities could cause transient overvoltage on the network, jeopardizing the end-life of other equipment on the system. In this paper, the overvoltage caused by these switching activities is investigated using the IEEE bus 14-network to represent a standalone wind farm, and the simulation is done using ATP/EMTP software. Scenarios involving the use of pre-insertion resistor and pre-insertion inductor, as well as controlled switching was also carried out in order to decide the best mitigation option to reduce the overvoltage.

Keywords: capacitor banks, IEEE bus 14-network, pre-insertion resistor, standalone wind farm

Procedia PDF Downloads 441
3961 An Experimental Study of Automotive Drum Brake Vibrations

Authors: Nouby Ghazaly

Abstract:

The present paper investigates experimentally the effect coefficient of friction at different operation conditions on the variation of the brake temperature, brake force, and brake vibration with the braking time. All the experimental tests were carried out using brake dynamometer which designed and constructed in Vehicle Dynamic Laboratory. The results indicate that the brake temperature increases with the increase of the normal force and sliding speed especially with the increase of the braking time. The normal force has the effect on increasing the brake force. On the contrary, the vehicle speed has the effect on decreasing the brake force. Both the normal force and sliding speed affect the brake vibration according to the friction behavior.

Keywords: brake dynamometer, coefficient of friction, drum brake vibrations, friction behavior

Procedia PDF Downloads 311
3960 Force Feedback Enabled Syringe for Aspiration and Biopsy

Authors: Pelin Su Firat, Sohyung Cho

Abstract:

Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests.

Keywords: biopsy, syringe, force sensors, haptic feedback

Procedia PDF Downloads 66
3959 Electrospun Zinc Oxide Nanowires as Highly Sensitive Piezoelectric Transduction Elements for Nano-Scale Devices

Authors: K. Brince Paul, Nagendra Pratap Singh, Shiv Govind Singh, Siva Rama Krishna Vanjari

Abstract:

In this paper, we report optimized procedure for synthesizing highly oriented, horizontally aligned, Zinc oxide (ZnO) nanowires targeted towards developing highly sensitive piezoelectric transduction elements. The synthesis was carried out using Electrospinning technique, a facile, robust, low cost technique for producing nanowires. The as-synthesized ZnO nanowires were characterized by X-ray powder diffraction (XRD), Field Emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX).The Piezoelectric behavior of these nanowires was characterized using Peizoelectric Force microscopy (PFM). A very high d33 coefficient of 23.1 pm/V obtained through the PFM measurements is an indicative of its potential application towards developing miniaturized piezoelectric transduction elements for nanoscale devices.

Keywords: electrospinning, piezoelectric, technique, zinc oxide

Procedia PDF Downloads 405
3958 Slope Stability of an Earthen Levee Strengthened by HPTRM under Turbulent Overtopping Conditions

Authors: Fashad Amini, Lin Li

Abstract:

High performance turf reinforcement mat (HPTRM) is one of the most advanced flexible armoring technologies for severe erosion challenges. The effect of turbulence on the slope stability of an earthen levee strengthened by high performance turf reinforcement mat (HPTRM) is investigated in this study for combined storm surge and wave overtopping conditions. The results show that turbulence has strong influence on the slope stability during the combined storm surge and wave overtopping conditions. Among the surge height, peak wave force and turbulent force. The turbulent force has the ability to stabilize the earthen levee at the large wave force the turbulent force has strongest effect on the FS. The surge storm acts as an independent force on the slope stability of the earthen levee. It just adds to the effects of the turbulent force and wave force on the slope stability of HPTRM strengthened levee.

Keywords: slope stability, strength reduction method, HPTRM, levee, overtopping

Procedia PDF Downloads 364
3957 A Study on Inverse Determination of Impact Force on a Honeycomb Composite Panel

Authors: Hamed Kalhori, Lin Ye

Abstract:

In this study, an inverse method was developed to reconstruct the magnitude and duration of impact forces exerted to a rectangular carbon fibre-epoxy composite honeycomb sandwich panel. The dynamic signals captured by Piezoelectric (PZT) sensors installed on the panel remotely from the impact locations were utilized to reconstruct the impact force generated by an instrumented hammer through an extended deconvolution approach. Two discretized forms of convolution integral are considered; the traditional one with an explicit transfer function and the modified one without an explicit transfer function. Deconvolution, usually applied to reconstruct the time history (e.g. magnitude) of a stochastic force at a defined location, is extended to identify both the location and magnitude of the impact force among a number of potential impact locations. It is assumed that a number of impact forces are simultaneously exerted to all potential locations, but the magnitude of all forces except one is zero, implicating that the impact occurs only at one location. The extended deconvolution is then applied to determine the magnitude as well as location (among the potential ones), incorporating the linear superposition of responses resulted from impact at each potential location. The problem can be categorized into under-determined (the number of sensors is less than that of impact locations), even-determined (the number of sensors equals that of impact locations), or over-determined (the number of sensors is greater than that of impact locations) cases. For an under-determined case, it comprises three potential impact locations and one PZT sensor for the rectangular carbon fibre-epoxy composite honeycomb sandwich panel. Assessments are conducted to evaluate the factors affecting the precision of the reconstructed force. Truncated Singular Value Decomposition (TSVD) and the Tikhonov regularization are independently chosen to regularize the problem to find the most suitable method for this system. The selection of optimal value of the regularization parameter is investigated through L-curve and Generalized Cross Validation (GCV) methods. In addition, the effect of different width of signal windows on the reconstructed force is examined. It is observed that the impact force generated by the instrumented impact hammer is sensitive to the impact locations of the structure, having a shape from a simple half-sine to a complicated one. The accuracy of the reconstructed impact force is evaluated using the correlation co-efficient between the reconstructed force and the actual one. Based on this criterion, it is concluded that the forces reconstructed by using the extended deconvolution without an explicit transfer function together with Tikhonov regularization match well with the actual forces in terms of magnitude and duration.

Keywords: honeycomb composite panel, deconvolution, impact localization, force reconstruction

Procedia PDF Downloads 535
3956 Research on Sensitivity of Geological Disasters in Road Area Based on Analytic Hierarchy Process

Authors: Li Yongyi

Abstract:

In order to explore the distribution of geological disasters within the expressway area of Shaanxi Province, the Analytic Hierarchy Process theory is applied based on the geographic information system technology platform, and the ground elevation, rainfall, vegetation coverage and other indicators are selected for analysis, and the expressway area is sensitive Sexual evaluation. The results show that the highway area disasters in Shaanxi Province are mainly distributed in the southern mountainous areas and are dominated by landslides; the disaster area ratio basically increases with the increase in ground elevation, surface slope, surface undulation, rainfall, and vegetation coverage. The increase in the distance from the river shows a decreasing trend; after grading the disaster sensitivity within 5km of the expressway, the extremely sensitive area, the highly sensitive area, the medium sensitive area, the low sensitive area, and the extremely low sensitive area respectively account for 8.17%、15.80%、22.99%、26.22%、26.82%. Highly sensitive road areas are mainly distributed in southern Shaanxi.

Keywords: highway engineering, sensitivity, analytic hierarchy process, geological hazard, road area

Procedia PDF Downloads 101
3955 Evaluation of Joint Contact Forces and Muscle Forces in the Subjects with Non-Specific Low Back Pain

Authors: Mohammad Taghi Karimi, Maryam Hasan Zahraee

Abstract:

Background: Low back pain (LBP) is a common health and socioeconomic problem, especially the chronic one. The joint contact force is an important parameter during walking which increases the incidence of injury and degenerative joint disease. To our best knowledge, there are not enough evidences in literature on the muscular forces and joint contact forces in subjects with low back pain. Purpose: The main hypothesis associated with this research was that joint contact force of L4/L5 of non-specific chronic low back pain subjects was the same as that of normal. Therefore, the aim of this study was to determine the joint contact force difference between non-specific chronic low back pain and normal subjects. Method: This was an experimental-comparative study. 20 normal subjects and 20 non-specific chronic low back pain patients were recruited in this study. Qualysis motion analysis system and a Kistler force plate were used to collect the motions and the force applied on the leg, respectively. OpenSimm software used to determine joint contact force and muscle forces in this study. Some parameters such as force applied on the legs (pelvis), kinematic of hip and pelvic, peaks of muscles, force of trunk musculature and joint contact force of L5/S1 were used for further analysis. Differences between mean values of all data were measured using two-sample t-test among the subjects. Results: The force produced by Semitendinosus, Biceps Femoris, and Adductor muscles were significantly different between low back pain and normal subjects. Moreover, the mean value of breaking component of the force of the knee joint increased significantly in low back pain subjects, besides a significant decrease in mean value of the vertical component of joint reaction force compared to the normal ones. Conclusions: The forces produced by the trunk and pelvic muscles, and joint contact forces differ significantly between low back pain and normal subjects. It seems that those with non-specific chronic low back pain use trunk muscles more than normal subjects to stabilize the pelvic during walking.

Keywords: low back pain, joint contact force, kinetic, muscle force

Procedia PDF Downloads 238
3954 Introduction of the Fluid-Structure Coupling into the Force Analysis Technique

Authors: Océane Grosset, Charles Pézerat, Jean-Hugh Thomas, Frédéric Ablitzer

Abstract:

This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented.

Keywords: aeroacoustics, fluid-structure coupling, inverse methods, naval, turbulent flow

Procedia PDF Downloads 518
3953 Non-Linear Control in Positioning of PMLSM by Estimates of the Load Force by MRAS Method

Authors: Maamar Yahiaoui, Abdelrrahmene Kechich, Ismail Elkhallile Bousserhene

Abstract:

This article presents a study in simulation by means of MATLAB/Simulink software of the nonlinear control in positioning of a linear synchronous machine with the esteemed force of load, to have effective control in the estimator in all tests the wished trajectory follows and the disturbance of load start. The results of simulation prove clearly that the control proposed can detect the reference of positioning the value estimates of load force equal to the actual value.

Keywords: mathematical model, Matlab, PMLSM, control, linearization, estimator, force, load, current

Procedia PDF Downloads 607
3952 Identification of Force Vector on an Elastic Solid Using an Embeded PVDF Senor Array

Authors: Andrew Youssef, David Matthews, Jie Pan

Abstract:

Identifying the magnitude and direction of a force on an elastic solid is highly desirable, as this allows for investigation and continual monitoring of the dynamic loading. This was traditionally conducted by connecting the solid to the supporting structure by multi-axial force transducer, providing that the transducer will not change the mounting conditions. Polyvinylidene fluoride (PVDF) film is a versatile force transducer that can be easily embedded in structures. Here a PVDF sensor array is embedded inside a simple structure in an effort to determine the force vector applied to the structure is an inverse problem. In this paper, forces of different magnitudes and directions where applied to the structure with an impact hammer, and the output of the PVDF was captured and processed to gain an estimate of the forces applied by the hammer. The outcome extends the scope of application of PVDF sensors for measuring the external or contact force vectors.

Keywords: embedded sensor, monitoring, PVDF, vibration

Procedia PDF Downloads 338
3951 Spontaneous Generation of Wrinkled Patterns on pH-Sensitive Smart-Hydrogel Films

Authors: Carmen M. Gonzalez-Henriquez, Mauricio A. Sarabia-Vallejos, Juan Rodriguez-Hernandez

Abstract:

DMAEMA, as a monomer, has been widely studied and used in several application fields due to their pH-sensitive capacity (tertiary amine protonation), being relevant in the biomedical area as a potential carrier for drugs focused on the treatment of genetic or acquired diseases (efficient gene transfection), among others. Additionally, the inhibition of bacterial growth and, therefore, their antimicrobial activity, can be used as dual-functional antifogging/antimicrobial polymer coatings. According to their interesting physicochemical characteristics and biocompatible properties, DMAEMA was used as a monomer to synthesize a smart pH-sensitive hydrogel, namely poly(HEMA-co-PEGDA575-co-DMAEMA). Thus, different mole ratios (ranging from 5:1:0 to 0:1:5, according to the mole ratio between HEMA, PEGDA, and DEAEMA, respectively) were used in this research. The surface patterns formed via a two-step polymerization (redox- and photo-polymerization) were first chemically studied via 1H-NMR and elemental analysis. Secondly, the samples were morphologically analyzed by using Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) techniques. Then, a particular relation between HEMA, PEGDA, and DEAEMA (0:1:5) was also characterized at three different pH (5.4, 7.4 and 8.3). The hydrodynamic radius and zeta potential of the micro-hydrogel particles (emulsion) were carried out as a possible control for morphology, exploring the effect that produces hydrogel micelle dimensions in the wavelength, height, and roughness of the wrinkled patterns. Finally, contact angle and cross-hatch adhesion test was carried out for the hydrogels supported on glass using TSM-silanized surfaces in order to measure their mechanical properties.

Keywords: wrinkled patterns, smart pH-sensitive hydrogels, hydrogel micelle diameter, adhesion tests

Procedia PDF Downloads 206
3950 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field

Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar

Abstract:

A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.

Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain

Procedia PDF Downloads 397
3949 A Problem in Microstretch Thermoelastic Diffusive Medium

Authors: Devinder Singh, Arvind Kumar, Rajneesh Kumar

Abstract:

The general solution of the equations for a homogeneous isotropic microstretch thermo elastic medium with mass diffusion for two dimensional problems is obtained due to normal and tangential forces. The integral transform technique is used to obtain the components of displacements, microrotation, stress and mass concentration, temperature change and mass concentration. A particular case of interest is deduced from the present investigation.

Keywords: normal force, tangential force, microstretch, thermoelastic, the integral transform technique, deforming force, microstress force, boundary value problem

Procedia PDF Downloads 616
3948 A Calibration Device for Force-Torque Sensors

Authors: Nicolay Zarutskiy, Roman Bulkin

Abstract:

The paper deals with the existing methods of force-torque sensor calibration with a number of components from one to six, analyzed their advantages and disadvantages, the necessity of introduction of a calibration method. Calibration method and its constructive realization are also described here. A calibration method allows performing automated force-torque sensor calibration both with selected components of the main vector of forces and moments and with complex loading. Thus, two main advantages of the proposed calibration method are achieved: the automation of the calibration process and universality.

Keywords: automation, calibration, calibration device, calibration method, force-torque sensors

Procedia PDF Downloads 646
3947 On Adaptive and Auto-Configurable Apps

Authors: Prisa Damrongsiri, Kittinan Pongpianskul, Mario Kubek, Herwig Unger

Abstract:

Apps are today the most important possibility to adapt mobile phones and computers to fulfill the special needs of their users. Location- and context-sensitive programs are hereby the key to support the interaction of the user with his/her environment and also to avoid an overload with a plenty of dispensable information. The contribution shows, how a trusted, secure and really bi-directional communication and interaction among users and their environment can be established and used, e.g. in the field of home automation.

Keywords: apps, context-sensitive, location-sensitive, self-configuration, mobile computing, smart home

Procedia PDF Downloads 396
3946 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing

Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao

Abstract:

The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.

Keywords: bearing, force measurement, IoT, strain gauge

Procedia PDF Downloads 142
3945 Soret-Driven Convection in a Binary Fluid with Coriolis Force

Authors: N. H. Z. Abidin, N. F. M. Mokhtar, S. S. A. Gani

Abstract:

The influence of diffusion of the thermal or known as Soret effect in a heated Binary fluid model with Coriolis force is investigated theoretically. The linear stability analysis is used, and the eigenvalue is obtained using the Galerkin method. The impact of the Soret and Coriolis force on the onset of stationary convection in a system is analysed with respect to various Binary fluid parameters and presented graphically. It is found that an increase of the Soret values, destabilize the Binary fluid layer system. However, elevating the values of the Coriolis force helps to lag the onset of convection in a system.

Keywords: Benard convection, binary fluid, Coriolis, Soret

Procedia PDF Downloads 386
3944 An Experimental Investigation on the Amount of Drag Force of Sand on a Cone Moving at Low Uniform Speed

Authors: M. Jahanandish, Gh. Sadeghian, M. H. Daneshvar, M. H. Jahanandish

Abstract:

The amount of resistance of a particular medium like soil to the moving objects is the interest of many areas in science. These include soil mechanics, geotechnical engineering, powder mechanics etc. Knowledge of drag force is also used for estimating the amount of momentum of fired objects like bullets. This paper focuses on measurement of drag force of sand on a cone when it moves at a low constant speed. A 30-degree apex angle cone has been used for this purpose. The study consisted of both loose and dense conditions of the soil. The applied speed has been in the range of 0.1 to 10 mm/min. The results indicate that the required force is basically independent of the cone speed; but, it is very dependent on the material densification and confining stress.

Keywords: drag force, sand, moving speed, friction angle, densification, confining stress

Procedia PDF Downloads 367
3943 The Determinants of Female Participation to the Labour Force in Turkey

Authors: Zeynep Karacor, Rahime Hulya Ozturk

Abstract:

Located in developing countries but with the successful performance in recent years have shown in emerging economies , the labor factor has undoubtedly an important place in Turkish economy. The theorists have emphasized the importance of labor and human capital factors for many years. The importance of human capital is emerging in the process of determining the labor force participation rate. It is relatively easy to employ qualified labor force but employment of unskilled labor is particularly difficult. Another factor affecting the gender differences are employment opportunities in the labor force. In our country, the employment conditions of men and women differ. Factors causing these differentials are inherent job requirements, the social structure of society, women's point of view, working hours, working conditions. Crisis in our country in recent years have significantly affect the labor force participation rates. In particular, women's labor force participation rates have shown a decrease in crisis.In crisis female laborforce leave their job and go their home. It is the sole provider of social perception of men so in crisis period it is considered that woman lost their job. In the first part of this study the current situation in the world of female participation in the labor force in Turkey will examine. In the second part of the study literature will be examined. In the third and last part of the study factors of determinants of female labor force participation rate analysis will done by Granger Causality Analysis.

Keywords: female labour force, employment, labor force, Turkey

Procedia PDF Downloads 288
3942 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.

Keywords: MEMS/NEMS devices, paired wire actuators and sensors, dynamical response, fatigue and fracture characterization, Ampere’s force law

Procedia PDF Downloads 398
3941 Linearization of Y-Force Equation of Rigid Body Equation of Motion and Behavior of Fighter Aircraft under Imbalance Weight on Wings during Combat

Authors: Jawad Zakir, Syed Irtiza Ali Shah, Rana Shaharyar, Sidra Mahmood

Abstract:

Y-force equation comprises aerodynamic forces, drag and side force with side slip angle β and weight component along with the coupled roll (φ) and pitch angles (θ). This research deals with the linearization of Y-force equation using Small Disturbance theory assuming equilibrium flight conditions for different state variables of aircraft. By using assumptions of Small Disturbance theory in non-linear Y-force equation, finally reached at linearized lateral rigid body equation of motion; which says that in linearized Y-force equation, the lateral acceleration is dependent on the other different aerodynamic and propulsive forces like vertical tail, change in roll rate (Δp) from equilibrium, change in yaw rate (Δr) from equilibrium, change in lateral velocity due to side force, drag and side force components due to side slip, and the lateral equation from coupled rotating frame to decoupled rotating frame. This paper describes implementation of this lateral linearized equation for aircraft control systems. Another significant parameter considered on which y-force equation depends is ‘c’ which shows that any change bought in the weight of aircrafts wing will cause Δφ and cause lateral force i.e. Y_c. This simplification also leads to lateral static and dynamic stability. The linearization of equations is required because much of mathematics control system design for aircraft is based on linear equations. This technique is simple and eases the linearization of the rigid body equations of motion without using any high-speed computers.

Keywords: Y-force linearization, small disturbance theory, side slip, aerodynamic force drag, lateral rigid body equation of motion

Procedia PDF Downloads 494
3940 Impact Characteristics of Fragile Cover Based on Numerical Simulation and Experimental Verification

Authors: Dejin Chen, Bin Lin, Xiaohui LI, Haobin Tian

Abstract:

In order to acquire stable impact performance of cover, the factors influencing the impact force of the cover were analyzed and researched. The influence of impact factors such as impact velocity, impact weight and fillet radius of warhead was studied by Orthogonal experiment. Through the range analysis and numerical simulation, the results show that the impact velocity has significant influences on impact force of cover. The impact force decreases with the increase of impact velocity and impact weight. The test results are similar to the numerical simulation. The cover broke up into four parts along the groove.

Keywords: fragile cover, numerical simulation, impact force, epoxy foam

Procedia PDF Downloads 263
3939 Probing Neuron Mechanics with a Micropipette Force Sensor

Authors: Madeleine Anthonisen, M. Hussain Sangji, G. Monserratt Lopez-Ayon, Margaret Magdesian, Peter Grutter

Abstract:

Advances in micromanipulation techniques and real-time particle tracking with nanometer resolution have enabled biological force measurements at scales relevant to neuron mechanics. An approach to precisely control and maneuver neurite-tethered polystyrene beads is presented. Analogous to an Atomic Force Microscope (AFM), this multi-purpose platform is a force sensor with imaging acquisition and manipulation capabilities. A mechanical probe composed of a micropipette with its tip fixed to a functionalized bead is used to incite the formation of a neurite in a sample of rat hippocampal neurons while simultaneously measuring the tension in said neurite as the sample is pulled away from the beaded tip. With optical imaging methods, a force resolution of 12 pN is achieved. Moreover, the advantages of this technique over alternatives such as AFM, namely ease of manipulation which ultimately allows higher throughput investigation of the mechanical properties of neurons, is demonstrated.

Keywords: axonal growth, axonal guidance, force probe, pipette micromanipulation, neurite tension, neuron mechanics

Procedia PDF Downloads 367
3938 Improved Estimation Strategies of Sensitive Characteristics Using Scrambled Response Techniques in Successive Sampling

Authors: S. Suman, G. N. Singh

Abstract:

This research work is an effort to analyse the consequences of scrambled response technique to estimate the current population mean in two-occasion successive sampling when the characteristic of interest is sensitive in nature. The generalized estimation procedures have been proposed using sensitive auxiliary variables under additive and multiplicative scramble models. The properties of resultant estimators have been deeply examined. Simulation, as well as empirical studies, are carried out to evaluate the performances of the proposed estimators with respect to other competent estimators. The results of our studies suggest that the proposed estimation procedures are highly effective under the presence of non-response situation. The result of this study also suggests that additive scrambled response model is a better choice in the perspective of cost of the survey and privacy of the respondents.

Keywords: scrambled response, sensitive characteristic, successive sampling, optimum replacement strategy

Procedia PDF Downloads 177
3937 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel

Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma

Abstract:

The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.

Keywords: atomic force microscopy (AFM), nanochannel, specific down force energy (SDFE), Y shape, burr, silicon

Procedia PDF Downloads 405
3936 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow to estimate the main technological spreads and determine the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level

Procedia PDF Downloads 464
3935 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: Masahiro Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration

Procedia PDF Downloads 434
3934 A Platform to Screen Targeting Molecules of Ligand-EGFR Interactions

Authors: Wei-Ting Kuo, Feng-Huei Lin

Abstract:

Epidermal growth factor receptor (EGFR) is often constitutively stimulated in cancer owing to the binding of ligands such as epidermal growth factor (EGF), so it is necessary to investigate the interaction between EGFR and its targeting biomolecules which were over ligands binding. This study would focus on the binding affinity and adhesion force of two targeting products anti-EGFR monoclonal antibody (mAb) and peptide A to EGFR comparing with EGF. Surface plasmon resonance (SPR) was used to obtain the equilibrium dissociation constant to evaluate the binding affinity. Atomic force microscopy (AFM) was performed to detect adhesion force. The result showed that binding affinity of mAb to EGFR was higher than that of EGF to EGFR, and peptide A to EGFR was lowest. The adhesion force between EGFR and mAb that was higher than EGF and peptide A to EGFR was lowest. From the studies, we could conclude that mAb had better adhesion force and binding affinity to EGFR than that of EGF and peptide A. SPR and AFM could confirm the interaction between receptor and targeting ligand easily and carefully. It provide a platform to screen ligands for receptor targeting and drug delivery.

Keywords: adhesion force, binding affinity, epidermal growth factor receptor, target molecule

Procedia PDF Downloads 433