Search results for: equation error
3750 High Capacity Reversible Watermarking through Interpolated Error Shifting
Authors: Hae-Yeoun Lee
Abstract:
Reversible watermarking that not only protects the copyright but also preserve the original quality of the digital content have been intensively studied. In particular, the demand for reversible watermarking has increased. In this paper, we propose a reversible watermarking scheme based on interpolation-error shifting and error precompensation. The intensity of a pixel is interpolated from the intensities of neighbouring pixels, and the difference histogram between the interpolated and the original intensities is obtained and modified to embed the watermark message. By restoring the difference histogram, the embedded watermark is extracted and the original image is recovered by compensating for the interpolation error. The overflow and underflow are prevented by error precompensation. To show the performance of the method, the proposed algorithm is compared with other methods using various test images.Keywords: reversible watermarking, high capacity, high quality, interpolated error shifting, error precompensation
Procedia PDF Downloads 3213749 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles
Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada
Abstract:
When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure
Procedia PDF Downloads 5243748 Study of Cahn-Hilliard Equation to Simulate Phase Separation
Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa
Abstract:
An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.Keywords: Cahn-Hilliard equation, miscibility gap, phase separation, dimensional domains
Procedia PDF Downloads 5173747 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation
Authors: Kamel Al-Khaled
Abstract:
A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point
Procedia PDF Downloads 4713746 Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells
Authors: Hesamoddin Abdollahpour, Roghayeh Abdollahpour, Elham Rahgozar
Abstract:
This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task.Keywords: large amplitude, free vibrations, analytical solution, Danell Equation, diagram of phase plane
Procedia PDF Downloads 3203745 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm
Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad
Abstract:
Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.Keywords: equation of state, modification, ammonia, genetic algorithm
Procedia PDF Downloads 3823744 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method
Procedia PDF Downloads 3653743 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity
Authors: Muna Alghabshi, Edmana Krishnan
Abstract:
A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method
Procedia PDF Downloads 3143742 Divergence Regularization Method for Solving Ill-Posed Cauchy Problem for the Helmholtz Equation
Authors: Benedict Barnes, Anthony Y. Aidoo
Abstract:
A Divergence Regularization Method (DRM) is used to regularize the ill-posed Helmholtz equation where the boundary deflection is inhomogeneous in a Hilbert space H. The DRM incorporates a positive integer scaler which homogenizes the inhomogeneous boundary deflection in Cauchy problem of the Helmholtz equation. This ensures the existence, as well as, uniqueness of solution for the equation. The DRM restores all the three conditions of well-posedness in the sense of Hadamard.Keywords: divergence regularization method, Helmholtz equation, ill-posed inhomogeneous Cauchy boundary conditions
Procedia PDF Downloads 1893741 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 3893740 Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature
Authors: Chin-Yun Chen
Abstract:
Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature.Keywords: numerical quadrature, error estimation, derivative free method, interval computation
Procedia PDF Downloads 4633739 Medical Error: Concept and Description According to Brazilian Physicians
Authors: Vitor S. Mendonca, Maria Luisa S. Schmidt
Abstract:
The Brazilian medical profession is viewed as being error-free, so healthcare professionals who commit an error are condemned there. Medical errors occur frequently in the Brazilian healthcare system, so identifying better options for handling this issue has become of interest primarily for physicians. The purpose of this study is to better understand the tensions involved in the fear of making an error due to the harm and risk this would represent for those involved. A qualitative study was performed by means of the narratives of the lived experiences of ten acting physicians in the State of Sao Paulo. The concept and characterization of errors were discussed, together with the fear of making an error, the near misses or error in itself, how to deal with errors and what to do to avoid them. The analysis indicates an excessive pressure in the medical profession for error-free practices, with a well-established physician-patient relationship to facilitate the management of medical errors. The error occurs, but a lack of information and discussion often leads to its concealment due to fear or possible judgment by society or peers. The establishment of programs that encourage appropriate medical conduct in the event of an error requires coherent answers for humanization in Brazilian medical science. It is necessary to improve the discussion about medical errors and disseminate models of communication and notification of errors in Brazil.Keywords: medical error, narrative, physician-patient relationship, qualitative research
Procedia PDF Downloads 1783738 Modification of Underwood's Equation to Calculate Minimum Reflux Ratio for Column with One Side Stream Upper Than Feed
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Distillation is one of the most important and utilized separation methods in the industrial practice. There are different ways to design of distillation column. One of these ways is short cut method. In short cut method, material balance and equilibrium are employed to calculate number of tray in distillation column. There are different methods that are classified in short cut method. One of these methods is Fenske-Underwood-Gilliland method. In this method, minimum reflux ratio should be calculated by underwood equation. Underwood proposed an equation that is useful for simple distillation column with one feed and one top and bottom product. In this study, underwood method is developed to predict minimum reflux ratio for column with one side stream upper than feed. The result of this model compared with McCabe-Thiele method. The result shows that proposed method able to calculate minimum reflux ratio with very small error.Keywords: minimum reflux ratio, side stream, distillation, Underwood’s method
Procedia PDF Downloads 4063737 Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach
Authors: F. U. Rahman, R. Q. Zhang
Abstract:
This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future.Keywords: Green’s function, hydrogen atom, Lippmann Schwinger equation, radial wave
Procedia PDF Downloads 3943736 A Study of Non Linear Partial Differential Equation with Random Initial Condition
Authors: Ayaz Ahmad
Abstract:
In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.Keywords: drift term, finite time blow up, inverse problem, soliton solution
Procedia PDF Downloads 2153735 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation
Authors: Praveen Kumar, R. Uma, R. P. Sharma
Abstract:
This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation
Procedia PDF Downloads 723734 Exact Soliton Solutions of the Integrable (2+1)-Dimensional Fokas-Lenells Equation
Authors: Meruyert Zhassybayeva, Kuralay Yesmukhanova, Ratbay Myrzakulov
Abstract:
Integrable nonlinear differential equations are an important class of nonlinear wave equations that admit exact soliton solutions. All these equations have an amazing property which is that their soliton waves collide elastically. One of such equations is the (1+1)-dimensional Fokas-Lenells equation. In this paper, we have constructed an integrable (2+1)-dimensional Fokas-Lenells equation. The integrability of this equation is ensured by the existence of a Lax representation for it. We obtained its bilinear form from the Hirota method. Using the Hirota method, exact one-soliton and two-soliton solutions of the (2 +1)-dimensional Fokas-Lenells equation were found.Keywords: Fokas-Lenells equation, integrability, soliton, the Hirota bilinear method
Procedia PDF Downloads 2243733 Chern-Simons Equation in Financial Theory and Time-Series Analysis
Authors: Ognjen Vukovic
Abstract:
Chern-Simons equation represents the cornerstone of quantum physics. The question that is often asked is if the aforementioned equation can be successfully applied to the interaction in international financial markets. By analysing the time series in financial theory, it is proved that Chern-Simons equation can be successfully applied to financial time-series. The aforementioned statement is based on one important premise and that is that the financial time series follow the fractional Brownian motion. All variants of Chern-Simons equation and theory are applied and analysed. Financial theory time series movement is, firstly, topologically analysed. The main idea is that exchange rate represents two-dimensional projections of three-dimensional Brownian motion movement. Main principles of knot theory and topology are applied to financial time series and setting is created so the Chern-Simons equation can be applied. As Chern-Simons equation is based on small particles, it is multiplied by the magnifying factor to mimic the real world movement. Afterwards, the following equation is optimised using Solver. The equation is applied to n financial time series in order to see if it can capture the interaction between financial time series and consequently explain it. The aforementioned equation represents a novel approach to financial time series analysis and hopefully it will direct further research.Keywords: Brownian motion, Chern-Simons theory, financial time series, econophysics
Procedia PDF Downloads 4733732 Variation of Refractive Errors among Right and Left Eyes in Jos, Plateau State, Nigeria
Authors: F. B. Masok, S. S Songdeg, R. R. Dawam
Abstract:
Vision is an important process for learning and communication as man depends greatly on vision to sense his environment. Prevalence and variation of refractive errors conducted between December 2010 and May 2011 in Jos, revealed that 735 (77.50%) out 950 subjects examined for refractive error had various refractive errors. Myopia was observed in 373 (49.79%) of the subjects, the error in the right eyes was 263 (55.60%) while the error in the left was 210(44.39%). The mean myopic error was found to be -1.54± 3.32. Hyperopia was observed in 385 (40.53%) of the sampled population comprising 203(52.73%) of the right eyes and 182(47.27%). The mean hyperopic error was found to be +1.74± 3.13. Astigmatism accounted for 359 (38.84%) of the subjects, out of which 193(53.76%) were in the right eyes while 168(46.79%) were in the left eyes. Presbyopia was found in 404(42.53%) of the subjects, of this figure, 164(40.59%) were in the right eyes while 240(59.41%) were in left eyes. The number of right eyes and left eyes with refractive errors was observed in some age groups to increase with age and later had its peak within 60 – 69 age groups. This pattern of refractive errors could be attributed to exposure to various forms of light particularly the ultraviolet rays (e.g rays from television and computer screen). There was no remarkable differences between the mean Myopic error and mean Hyperopic error in the right eyes and in the left eyes which suggest the right eye and the left eye are similar.Keywords: left eye, refractive errors, right eye, variation
Procedia PDF Downloads 4333731 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model
Authors: Phornpat Chewasoonthorn, Surat Kwanmuang
Abstract:
Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter
Procedia PDF Downloads 1603730 Fixed Point Iteration of a Damped and Unforced Duffing's Equation
Authors: Paschal A. Ochang, Emmanuel C. Oji
Abstract:
The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis
Procedia PDF Downloads 2923729 Generalization of Tau Approximant and Error Estimate of Integral Form of Tau Methods for Some Class of Ordinary Differential Equations
Authors: A. I. Ma’ali, R. B. Adeniyi, A. Y. Badeggi, U. Mohammed
Abstract:
An error estimation of the integrated formulation of the Lanczos tau method for some class of ordinary differential equations was reported. This paper is concern with the generalization of tau approximants and their corresponding error estimates for some class of ordinary differential equations (ODEs) characterized by m + s =3 (i.e for m =1, s=2; m=2, s=1; and m=3, s=0) where m and s are the order of differential equations and number of overdetermination, respectively. The general result obtained were validated with some numerical examples.Keywords: approximant, error estimate, tau method, overdetermination
Procedia PDF Downloads 6063728 A Study on the Influence of Planet Pin Parallelism Error to Load Sharing Factor
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Yong Yang, Gang Shen
Abstract:
In this paper, planet pin parallelism error, which is one of manufacturing error of planet carrier, is employed as a main variable to influence planet load sharing factor. This error is categorize two group: (i) pin parallelism error with rotation on the axis perpendicular to the tangent of base circle of gear(x axis rotation in this paper) (ii) pin parallelism error with rotation on the tangent axis of base circle of gear(y axis rotation in this paper). For this study, the planetary gear system in 1.5MW wind turbine is applied and pure torsional rigid body model of this planetary gear is built using Solidworks and MSC.ADAMS. Based on quantified parallelism error and simulation model, dynamics simulation of planetary gear is carried out to obtain dynamic mesh load results with each type of error and load sharing factor is calculated with mesh load results. Load sharing factor formula and the suggestion for planetary reliability design is proposed with the conclusion of this study.Keywords: planetary gears, planet load sharing, MSC. ADAMS, parallelism error
Procedia PDF Downloads 3993727 A Novel Method for Solving Nonlinear Whitham–Broer–Kaup Equation System
Authors: Ayda Nikkar, Roghayye Ahmadiasl
Abstract:
In this letter, a new analytical method called homotopy perturbation method, which does not need small parameter in the equation is implemented for solving the nonlinear Whitham–Broer–Kaup (WBK) partial differential equation. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of exact solution has led us to significant consequences. The results reveal that the HPM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering.Keywords: homotopy perturbation method, Whitham–Broer–Kaup (WBK) equation, Modified Boussinesq, Approximate Long Wave
Procedia PDF Downloads 3113726 Unequal Error Protection of VQ Image Transmission System
Authors: Khelifi Mustapha, A. Moulay lakhdar, I. Elawady
Abstract:
We will study the unequal error protection for VQ image. We have used the Reed Solomon (RS) Codes as Channel coding because they offer better performance in terms of channel error correction over a binary output channel. One such channel (binary input and output) should be considered if it is the case of the application layer, because it includes all the features of the layers located below and on the what it is usually not feasible to make changes.Keywords: vector quantization, channel error correction, Reed-Solomon channel coding, application
Procedia PDF Downloads 3653725 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation
Authors: Sachin Kumar
Abstract:
Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method
Procedia PDF Downloads 2013724 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation
Procedia PDF Downloads 1873723 Relativistic Energy Analysis for Some q Deformed Shape Invariant Potentials in D Dimensions Using SUSYQM Approach
Authors: A. Suparmi, C. Cari, M. Yunianto, B. N. Pratiwi
Abstract:
D-dimensional Dirac equations of q-deformed shape invariant potentials were solved using supersymmetric quantum mechanics (SUSY QM) in the case of exact spin symmetry. The D dimensional radial Dirac equation for shape invariant potential reduces to one-dimensional Schrodinger type equation by an appropriate variable and parameter change. The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial D dimensional Dirac equation that have reduced to one dimensional Schrodinger type equation. The SUSY operator was used to generate the D dimensional relativistic radial wave functions, the relativistic energy equation reduced to the non-relativistic energy in the non-relativistic limit.Keywords: D-dimensional dirac equation, non-central potential, SUSY QM, radial wave function
Procedia PDF Downloads 3443722 A Mathematical Equation to Calculate Stock Price of Different Growth Model
Authors: Weiping Liu
Abstract:
This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.Keywords: stock price, multistage model, different growth model, discounted cash flow method
Procedia PDF Downloads 4063721 Energy Conservation and H-Theorem for the Enskog-Vlasov Equation
Authors: Eugene Benilov, Mikhail Benilov
Abstract:
The Enskog-Vlasov (EV) equation is a widely used semi-phenomenological model of gas/liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H-theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.Keywords: Enskog collision integral, hard spheres, kinetic equation, phase transition
Procedia PDF Downloads 153