Search results for: chemical fingerprint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4621

Search results for: chemical fingerprint

4591 Adsorption of Methylene Blue by Pectin from Durian (Durio zibethinus) Seeds

Authors: Siti Nurkhalimah, Devita Wijiyanti, Kuntari

Abstract:

Methylene blue is a popular water-soluble dye that is used for dyeing a variety of substrates such as bacteria, wool, and silk. Methylene blue discharged into the aquatic environment will cause health problems for living things. Treatment method for industrial wastewater may be divided into three main categories: physical, chemical, and biological. Among them, adsorption technology is generally considered to be an effective method for quickly lowering the concentration of dissolved dyes in a wastewater. This has attracted considerable research into low-cost alternative adsorbents for adsorbing or removing coloring matter. In this research, pectin from durian seeds was utilized here to assess their ability for the removal of methylene blue. Adsorption parameters are contact time and dye concentration were examined in the batch adsorption processes. Pectin characterization was performed by FTIR spectrometry. Methylene blue concentration was determined by using UV-Vis spectrophotometer. FTIR results show that the samples showed the typical fingerprint in IR spectrogram. The adsorption result on 10 mL of 5 mg/L methylene blue solution achieved 95.12% when contact time 10 minutes and pectin 0.2 g.

Keywords: pectin, methylene blue, adsorption, durian seed

Procedia PDF Downloads 191
4590 Modeling Aggregation of Insoluble Phase in Reactors

Authors: A. Brener, B. Ismailov, G. Berdalieva

Abstract:

In the paper we submit the modification of kinetic Smoluchowski equation for binary aggregation applying to systems with chemical reactions of first and second orders in which the main product is insoluble. The goal of this work is to create theoretical foundation and engineering procedures for calculating the chemical apparatuses in the conditions of joint course of chemical reactions and processes of aggregation of insoluble dispersed phases which are formed in working zones of the reactor.

Keywords: binary aggregation, clusters, chemical reactions, insoluble phases

Procedia PDF Downloads 312
4589 Neuroimaging Markers for Screening Former NFL Players at Risk for Developing Alzheimer's Disease / Dementia Later in Life

Authors: Vijaykumar M. Baragi, Ramtilak Gattu, Gabriela Trifan, John L. Woodard, K. Meyers, Tim S. Halstead, Eric Hipple, Ewart Mark Haacke, Randall R. Benson

Abstract:

NFL players, by virtue of their exposure to repetitive head injury, are at least twice as likely to develop Alzheimer's disease (AD) and dementia as the general population. Early recognition and intervention prior to onset of clinical symptoms could potentially avert/delay the long-term consequences of these diseases. Since AD is thought to have a long preclinical incubation period, the aim of the current research was to determine whether former NFL players, referred to a depression center, showed evidence of incipient dementia in their structural imaging prior to diagnosis of dementia. Thus, to identify neuroimaging markers of AD, against which former NFL players would be compared, we conducted a comprehensive volumetric analysis using a cohort of early stage AD patients (ADNI) to produce a set of brain regions demonstrating sensitivity to early AD pathology (i.e., the “AD fingerprint”). A cohort of 46 former NFL players’ brain MRIs were then interrogated using the AD fingerprint. Brain scans were done using a T1-weighted MPRAGE sequence. The Free Surfer image analysis suite (version 6.0) was used to obtain the volumetric and cortical thickness data. A total of 55 brain regions demonstrated significant atrophy or ex vacuo dilatation bilaterally in AD patients vs. healthy controls. Of the 46 former NFL players, 19 (41%) demonstrated a greater than expected number of atrophied/dilated AD regions when compared with age-matched controls, presumably reflecting AD pathology.

Keywords: alzheimers, neuroimaging biomarkers, traumatic brain injury, free surfer, ADNI

Procedia PDF Downloads 161
4588 Damage in Cementitious Materials Exposed to Sodium Chloride Solution and Thermal Cycling: The Effect of Using Supplementary Cementitious Materials

Authors: Fadi Althoey, Yaghoob Farnam

Abstract:

Sodium chloride (NaCl) can interact with the tricalcium aluminate (C3A) and its hydrates in concrete matrix. This interaction can result in formation of a harmful chemical phase as the temperature changes. It is thought that this chemical phase is embroiled in the premature concrete deterioration in the cold regions. This work examines the potential formation of the harmful chemical phase in various pastes prepared by using different types of ordinary portland cement (OPC) and supplementary cementitious materials (SCMs). The quantification of the chemical phase was done by using a low temperature differential scanning calorimetry. The results showed that the chemical phase formation can be reduced by using Type V cement (low content of C3A). The use of SCMs showed different behaviors on the formation of the chemical phase. Slag and Class F fly ash can reduce the chemical phase by the dilution of cement whereas silica fume can reduce the amount of the chemical phase by dilution and pozzolanic activates. Interestingly, the use of Class C fly ash has a negative effect on concrete exposed to NaCl through increasing the formation of the chemical phase.

Keywords: concrete, damage, chemcial phase, NaCl, SCMs

Procedia PDF Downloads 146
4587 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 100
4586 Computational Chemical-Composition of Carbohydrates in the Context of Healthcare Informatics

Authors: S. Chandrasekaran, S. Nandita, M. Shivathmika, Srikrishnan Shivakumar

Abstract:

The objective of the research work is to analyze the computational chemical-composition of carbohydrates in the context of healthcare informatics. The computation involves the representation of complex chemical molecular structure of carbohydrate using graph theory and in a deployable Chemical Markup Language (CML). The parallel molecular structure of the chemical molecules with or without other adulterants for the sake of business profit can be analyzed in terms of robustness and derivatization measures. The rural healthcare program should create awareness in malnutrition to reduce ill-effect of decomposition and help the consumers to know the level of such energy storage mixtures in a quantitative way. The earlier works were based on the empirical and wet data which can vary from time to time but cannot be made to reuse the results of mining. The work is carried out on the quantitative computational chemistry on carbohydrates to provide a safe and secure right to food act and its regulations.

Keywords: carbohydrates, chemical-composition, chemical markup, robustness, food safety

Procedia PDF Downloads 378
4585 Farmers’ Awareness and Behavior of Chemical Pesticide Uses in Suan Luang Sub-District Municipality, Ampawa, Samut Songkram, Thailand

Authors: Paiboon Jeamponk, Tikamporn Thipsaeng

Abstract:

This paper is aimed to investigate farmers’ level of awareness and behavior of chemical pesticide uses, by using a case study of Suan Luang Sub- District Municipality, Ampawa, Samut Songkram Province. Questionnaire was employed in this study with the farmers from 46 households to explore their level of awareness in chemical pesticide uses, while interview and observation were adopted in exploring their behavior of chemical pesticide uses. The findings reflected the farmers’ high level of awareness in chemical pesticide uses in the hazardous effects of the chemical to human and environmental health, while their behavior of chemical pesticide uses explained their awareness paid to the right way of using pesticides, for instance reading the direction on the label, keeping children and animals away from the area of pesticide mixing, covering body with clothes and wearing hat and mask, no smoking, eating or drinking during pesticide spray or standing in windward direction.

Keywords: awareness, behavior, pesticide, farmers

Procedia PDF Downloads 433
4584 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks

Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni

Abstract:

Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.

Keywords: chemical reaction networks, ratio computation, stability, robustness

Procedia PDF Downloads 175
4583 Chemical Analysis of Available Portland Cement in Libyan Market Using X-Ray Fluorescence

Authors: M. A. Elbagermia, A. I. Alajtala, M. Alkerzab

Abstract:

This study compares the quality of different brands of Portland Cement (PC) available in Libyan market. The amounts of chemical constituents like SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, and Lime Saturation Factor (LSF) were determined in accordance with Libyan (L.S.S) and Amrican (A.S.S) Standard Specifications. All the cement studies were found to be good for concrete work especially where no special property is required. The chemical and mineralogical analyses for studied clinker samples show that the dominant phases composition are C3S and C2S while the C3A and C4AF are less abundant.

Keywords: Portland cement, chemical composition, Libyan market, X-Ray fluorescence

Procedia PDF Downloads 363
4582 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces

Authors: Aditya Kumar

Abstract:

One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 298
4581 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah

Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Keywords: coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites

Procedia PDF Downloads 464
4580 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 140
4579 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 64
4578 Infrared Spectroscopy Fingerprinting of Herbal Products- Application of the Hypericum perforatum L. Supplements

Authors: Elena Iacob, Marie-Louise Ionescu, Elena Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca

Abstract:

Infrared spectroscopy (FT-IR) is an advanced technique frequently used to authenticate both raw materials and final products using their specific fingerprints and to determine plant extracts biomarkers based on their functional groups. In recent years the market for Hypericum has grown rapidly and also has grown the cases of adultery/replacement, especially for Hypericum perforatum L.specie. Presence/absence of same biomarkers provides preliminary identification of Hypericum species in safe use in the manufacture of food supplements. The main objective of the work was to characterize the main biomarkers of Hypericum perforatum L. (St. John's wort) and identify this species in herbal food supplements after specific FT-IR fingerprint. An experimental program has been designed in order to test: (1) raw material (St. John's wort); (2)intermediate raw materials (St. John's wort dry extract ); (3) the finished products: tablets based on powders, on extracts, on powder and extract, hydroalcoholic solution from herbal mixture based on St. John's wort. The analyze using FTIR infrared spectroscopy were obtained raw materials, intermediates and finished products spectra, respectively absorption bands corresponding and similar with aliphatic and aromatic structures; examination was done individually and through comparison between Hypericum perforatum L. plant species and finished product The tests were done in correlation with phytochemical markers for authenticating the specie Hypericum perforatum L.: hyperoside, rutin, quercetin, isoquercetin, luteolin, apigenin, hypericin, hyperforin, chlorogenic acid. Samples were analyzed using a Shimatzu FTIR spectrometer and the infrared spectrum of each sample was recorded in the MIR region, from 4000 to 1000 cm-1 and then the fingerprint region was selected for data analysis. The following functional groups were identified -stretching vibrations suggests existing groups in the compounds of interest (flavones–rutin, hyperoside, polyphenolcarboxilic acids - chlorogenic acid, naphtodianthrones- hypericin): oxidril groups (OH) free alcohol type: rutin, hyperoside, chlorogenic acid; C = O bond from structures with free carbonyl groups of aldehyde, ketone, carboxylic, ester: hypericin; C = O structure with the free carbonyl of the aldehyde groups, ketone, carboxylic acid, esteric/C = O free bonds present in chlorogenic acid; C = C bonds of the aromatic ring (condensed aromatic hydrocarbons, heterocyclic compounds) present in all compounds of interest; OH phenolic groups: present in all compounds of interest, C-O-C groups from glycoside structures: rutin, hyperoside, chlorogenic acid. The experimental results show that: (I)The six fingerprint region analysis indicated the presence of specific functional groups: (1) 1000 - 1130 cm-1 (C-O–C of glycoside structures); (2) 1200-1380 cm-1 (carbonyl C-O or O-H phenolic); (3) 1400-1450 cm-1 (C=C aromatic); (4) 1600- 1730 cm-1 (C=O carbonyl); (5) 2850 - 2930 cm-1 (–CH3, -CH2-, =CH-); (6) 338-3920 cm-1 (OH free alcohol type); (II)Comparative FT-IR spectral analysis indicate the authenticity of the finished products ( tablets) in terms of Hypericum perforatum L. content; (III)The infrared spectroscopy is an adequate technique for identification and authentication of the medicinal herbs , intermediate raw material and in the food supplements less in the form of solutions where the results are not conclusive.

Keywords: Authentication, FT-IR fingerprint, Herbal supplements, Hypericum perforatum L.

Procedia PDF Downloads 379
4577 Adoption of Big Data by Global Chemical Industries

Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta

Abstract:

The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.

Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science

Procedia PDF Downloads 89
4576 Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors

Authors: Vivek Kumar, Alexander M. Zaitsev

Abstract:

A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films.

Keywords: chemical sensor, carbon nanofilm, graphitization of diamond, plasma etching, Raman spectroscopy, atomic force microscopy

Procedia PDF Downloads 449
4575 Optimizing Detection Methods for THz Bio-imaging Applications

Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu

Abstract:

A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.

Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer

Procedia PDF Downloads 349
4574 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 76
4573 Genetic Analysis of the Endangered Mangrove Species Avicennia Marina in Qatar Detected by Inter-Simple Sequence Repeat DNA Markers

Authors: Talaat Ahmed, Amna Babssail

Abstract:

Mangroves are evergreen trees and grow along the coastal areas of Qatar. The largest and oldest area of mangroves can be found around Al-Thakhira and Al-Khor. Other mangrove areas originate from fairly recent plantings by the government, although unfortunately the picturesque mangrove lake in Al-Wakra has now been uprooted. Avicinnia marina is the predominant mangrove species found in the region. Mangroves protect and stabilize low lying coastal land, and provide protection and food sources for estuarine and coastal fishery food chains. They also serve as feeding, breeding and nursery grounds for a variety of fish, crustaceans, reptiles, birds and other wildlife. A total of 21 individuals of A. marina, representing seven diverse Natural and artificial populations, were sampled throughout its range in Qatar. Leaves from 2-3 randomly selected trees at each location were collected. The locations are as follows: Al-Rawis, Ras-Madpak, Fuwairt, Summaseima, Al-khour, AL-Mafjar and Zekreet. Total genomic DNA was extracted using commercial DNeasy Plant System (Qiagen, Inc., Valencia, CA) kit to be used for genetic diversity analysis. Total of 12 (Inter-Simple Sequence Repeat) ISSR primers were used to amplify DNA fragments using genomic DNA. The 12 ISSR primers amplified polymorphic bands among mangrove samples in different areas as well as within each area indicating the existing of variation within each area and among the different areas of mangrove in Qatar. The results could characterize Avicinnia marina populations exist in different areas of Qatar and establish DNA fingerprint documentations for mangrove population to be used in further studies. Moreover, existing of genetic variation within and among Avicinnia marina populations is a strong indication for the ability of such populations to adapt different environmental conditions in Qatar. This study could be a warning to save mangrove in Qatar and save the environment as well.

Keywords: DNA fingerprint, Avicinnia marina, genetic analysis, Qatar

Procedia PDF Downloads 411
4572 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 80
4571 Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown

Authors: Dalila Chouder, Djaafer Benachour

Abstract:

This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity.

Keywords: polymerization, electrochemical, conductivity, complexing metal ions

Procedia PDF Downloads 270
4570 Evaluating the Prominence of Chemical Phenomena in Chemistry Courses

Authors: Vanessa R. Ralph, Leah J. Scharlott, Megan Y. Deshaye, Ryan L. Stowe

Abstract:

Given the traditions of chemistry teaching, one may not question whether chemical phenomena play a prominent role. Yet, the role of chemical phenomena in an introductory chemistry course may define the extent to which the course is introductory, chemistry, and equitable. Picture, for example, the classic Ideal Gas Law problem. If one envisions a prompt wherein students are tasked with calculating a missing variable, then one envisions a prompt that relies on chemical phenomena as a context rather than as a model to understand the natural world. Consider a prompt wherein students are tasked with applying molecular models of gases to explain why the vapor pressure of a gaseous solution of water differs from that of carbon dioxide. Here, the chemical phenomenon is not only the context but also the subject of the prompt. Deliveries of general and organic chemistry were identified as ranging wildly in the integration of chemical phenomena. The more incorporated the phenomena, the more equitable the assessment task was for students of varying access to pre-college math and science preparation. How chemical phenomena are integrated may very well define whether courses are chemistry, are introductory, and are equitable. Educators of chemistry are invited colleagues to discuss the role of chemical phenomena in their courses and consider the long-lasting impacts of replicating tradition for tradition’s sake.

Keywords: equitable educational practices, chemistry curriculum, content organization, assessment design

Procedia PDF Downloads 201
4569 The Effectiveness of Pretreatment Methods on COD and Ammonia Removal from Landfill Leachate

Authors: M. Poveda, S. Lozecznik, J. Oleszkiewicz, Q. Yuan

Abstract:

The goal of this experiment is to evaluate the effectiveness of different leachate pre-treatment options in terms of COD and ammonia removal. This research focused on the evaluation of physical-chemical methods for pre-treatment of leachate that would be effective and rapid in order to satisfy the requirements of the sewer discharge by-laws. The four pre-treatment options evaluated were: air stripping, chemical coagulation, electro-coagulation and advanced oxidation with sodium ferrate. Chemical coagulation reported the best COD removal rate at 43%, compared to 18 % for both air stripping and electro-coagulation, and 20 % for oxidation with sodium ferrate. On the other hand, air stripping was far superior to the other treatment options in terms of ammonia removal with 86 %. Oxidation with sodium ferrate reached only 16 %, while chemical coagulation and electro-coagulation removed less than 10 %. When combined, air stripping and chemical coagulation removed up to 50 % COD and 85 % ammonia.

Keywords: leachate pretreatment, air stripping, chemical coagulation, electro-coagulation, oxidation

Procedia PDF Downloads 848
4568 Cryptography Based Authentication Methods

Authors: Mohammad A. Alia, Abdelfatah Aref Tamimi, Omaima N. A. Al-Allaf

Abstract:

This paper reviews a comparison study on the most common used authentication methods. Some of these methods are actually based on cryptography. In this study, we show the main cryptographic services. Also, this study presents a specific discussion about authentication service, since the authentication service is classified into several categorizes according to their methods. However, this study gives more about the real life example for each of the authentication methods. It talks about the simplest authentication methods as well about the available biometric authentication methods such as voice, iris, fingerprint, and face authentication.

Keywords: information security, cryptography, system access control, authentication, network security

Procedia PDF Downloads 473
4567 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.

Keywords: heavy metal, orchard, pollution and monitoring, sediment

Procedia PDF Downloads 388
4566 Surface Functionalization of Chemical Vapor Deposition Grown Graphene Film

Authors: Prashanta Dhoj Adhikari

Abstract:

We report the introduction of the active surface functionalization group on chemical vapor deposition (CVD) grown graphene film by wet deposition method. The activity of surface functionalized group was tested with surface modified carbon nanotubes (CNTs) and found that both materials were amalgamated by chemical bonding. The introduction of functional group on the graphene film surface and its vigorous role to bind CNTs with the present technique could provide an efficient, novel route to device fabrication.

Keywords: chemical vapor deposition, graphene film, surface functionalization

Procedia PDF Downloads 466
4565 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine

Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin

Abstract:

TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).

Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties

Procedia PDF Downloads 504
4564 Elaboration and Characterization of CdxZn1-XS Thin Films Deposed by Chemical Bath Deposition

Authors: Zellagui Rahima, Chaumont Denis, Boughelout Abderrahman, Adnane Mohamed

Abstract:

Thin films of CdxZn1-xS were deposed by chemical bath deposition on glass substrates for photovoltaic applications. The thin films CdZnS were synthesized by chemical bath (CBD) with different deposition protocols for optimized the parameter of deposition as the temperature, time of deposition, concentrations of ion and pH. Surface morphology, optical and chemical composition properties of thin film CdZnS were investigated by SEM, EDAX, spectrophotometer. The transmittance is 80% in visible region 300 nm – 1000 nm; it has been observed in that films the grain size is between 50nm and 100nm measured by SEM image and we also note that the shape of particle is changing with the change in concentration. This result favors of application these films in solar cells; the chemical analysis with EDAX gives information about the presence of Cd, Zn and S elements and investigates the stoichiometry.

Keywords: thin film, solar cells, transmition, cdzns

Procedia PDF Downloads 266
4563 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin

Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh

Abstract:

Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.

Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon

Procedia PDF Downloads 163
4562 The Effect of Biological Fertilizers on Yield and Yield Components of Maize with Different Levels of Chemical Fertilizers in Normal and Difficit Irrigation Conditions

Authors: Felora Rafiei, Shahram Shoaei

Abstract:

The aim of this studies was to evaluate effect of nitroxin, super nitro plus and biophosphorus on yield and yield components of maize (Zea mays) under different levels of chemical fertilizers in the condition of normal and difficiet irrigation. Experiment laid out as split plot factorial based on randomized complete block design with three replications. Main plots includes two irrigation treatments of 70 (I1), 120(I2) mm evaporation from class A pan. Sub plots were biological fertilizer and chemical fertilizer as factorial biological fertilizer consisting of nitroxin: Azospirillium lipoferum, Azospirillium brasilens, Azotobacter chroococcum Azotobacter agilis (108 CFU ml-1) (B1), super nitro plus (Azospirillium spp, + Pseudomonas fluorescence + Bacillus subtilis (108 CFU ml-1) + biological fungicide) (B2), biophosphorus (Pseudomonas spp + Bacillus spp (107 CFU ml-1) (B3), and chemical fertilizer consisting of NPK (C1), N5oP5oK5o (C2) and NoPoKo (C3).The results showed that usage of biological fertilizer have positive effects on chemical fertilizers use efficiency and tolerance to drought stress in maize. Also with use of biological fertilizer can decrease usage of chemical fertilizers.

Keywords: biological fertilizer, chemical fertilizer, yield component, yield, corn

Procedia PDF Downloads 371