Search results for: bone sludge
1117 Total Dissolved Solids and Total Iron in High Rate Activated Sludge System
Authors: M. Y. Saleh, G. M. ELanany, M. H. Elzahar, M. Z. Elshikhipy
Abstract:
Industrial wastewater discharge, which carries high concentrations of dissolved solids and iron, could be treated by high rate activated sludge stage of the multiple-stage sludge treatment plant, a system which is characterized by high treatment efficiency, optimal prices, and small areas compared with conventional activated sludge treatment plants. A pilot plant with an influent industrial discharge flow of 135 L/h was designed following the activated sludge system to simulate between the biological and chemical treatment with the addition of dosages 100, 150, 200 and 250 mg/L alum salt to the aeration tank. The concentrations of total dissolved solids (TDS) and iron (Fe) in industrial discharge flow had an average range of 140000 TDS and 4.5 mg/L iron. The optimization of the chemical-biological process using a dosage of 200 mg/L alum succeeded to improve the removal efficiency of TDS and total iron to 48.15% and 68.11% respectively.Keywords: wastewater, activated sludge, TDS, total iron
Procedia PDF Downloads 2961116 Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study
Authors: R. Fernandez-Saavedra, M. B. Gomez-Mancebo, D. Gomez-Briceno
Abstract:
The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively.Keywords: consolidation, hard sludge, secondary circuit, steam generator
Procedia PDF Downloads 1911115 Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant
Authors: Azad Khalid, Ime Akanyeti
Abstract:
About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3.Keywords: aeration, sewage sludge, food waste, sawdust, composting
Procedia PDF Downloads 891114 Reduction of Content of Lead and Zinc from Wastewater by Using of Metallurgical Waste
Authors: L. Rozumová, J. Seidlerová
Abstract:
The aim of this paper was to study the sorption properties of a blast furnace sludge used as the sorbent. The sorbent was utilized for reduction of content of lead and zinc ions. Sorbent utilized in this work was obtained from metallurgical industry from process of wet gas treatment in iron production. The blast furnace sludge was characterized by X-Ray diffraction, scanning electron microscopy, and XRFS spectroscopy. Sorption experiments were conducted in batch mode. The sorption of metal ions in the sludge was determined by correlation of adsorption isotherm models. The adsorption of lead and zinc ions was best fitted with Langmuir adsorption isotherms. The adsorption capacity of lead and zinc ions was 53.8 mg.g-1 and 10.7 mg.g-1, respectively. The results indicated that blast furnace sludge could be effectively used as secondary material and could be also employed as a low-cost alternative for the removal of heavy metals ions from wastewater.Keywords: blast furnace sludge, lead, zinc, sorption
Procedia PDF Downloads 3021113 Design Improvement of Dental Implant-Based on Bone Remodelling
Authors: Solehuddin Shuib, Koay Boon Aik, Zainul Ahmad Rajion
Abstract:
There are many types of mechanical failure on the dental implant. In this project, the failure that needs to take into consideration is the bone resorption on the dental implant. Human bone has its ability to remodel after the implantation. As the dental implant is installed into the bone, the bone will detect and change the bone structure to achieve new biomechanical environment. This phenomenon is known as bone remodeling. The objective of the project is to improve the performance of dental implant by using different types of design. These designs are used to analyze and predict the failure of the dental implant by using finite element analysis (FEA) namely ANSYS. The bone is assumed to be fully attached to the implant or cement. Hence, results are then compared with other researchers. The results were presented in the form of Von Mises stress, normal stress, shear stress analysis, and displacement. The selected design will be analyzed further based on a theoretical calculation of bone remodeling on the dental implant. The results have shown that the design constructed passed the failure analysis. Therefore, the selected design is proven to have a stable performance at the recovery stage.Keywords: dental implant, FEA, bone remodeling, design
Procedia PDF Downloads 5011112 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area
Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi
Abstract:
As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning
Procedia PDF Downloads 1161111 Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model
Authors: Maryam Tajadod
Abstract:
The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located.Keywords: bone metastases, lutetium-177, radium-223, actinium-225, absorbed dose
Procedia PDF Downloads 1121110 Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment
Authors: Huyuan Zhang, Yi Chen
Abstract:
Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective.Keywords: acid buffering capacity, barrier, heavy metals, remobilization, sewage sludge
Procedia PDF Downloads 3201109 Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems
Authors: Marco Correa, Flavio Araujo, Paulo Scalize, Antonio Albuquerque
Abstract:
The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials.Keywords: re-use, residue, sustainable, water treatment plants, sludge
Procedia PDF Downloads 4901108 Anaerobic Co-Digestion of Duckweed (Lemna gibba) and Waste Activated Sludge in Batch Mode
Authors: Rubia Gaur, Surindra Suthar
Abstract:
The present study investigates the anaerobic co-digestion of duckweed (Lemna gibba) and waste activated sludge (WAS) of different proportions with acclimatized anaerobic granular sludge (AAGS) as inoculum in mesophilic conditions. Batch experiments were performed in 500 mL capacity reagent bottles at 300C temperature. Varied combinations of pre-treated duckweed biomass with constant volume of anaerobic inoculum (AAGS - 100 mL) and waste activated sludge (WAS - 22.5 mL) were devised into five batch tests. The highest methane generation was observed with batch study, T4. The Gompertz model fits well on the experimental data of the batch study, T4. The values of correlation coefficient were achieved relatively higher (R2 ≥ 0.99). The co-digestion without pre-treatment of both duckweed and WAS shows poor generation of methane gas.Keywords: aquatic weed, biogas, biomass, Gompertz equation, waste activated sludge
Procedia PDF Downloads 2841107 The Study on Energy Saving in Clarification Process for Water Treatment Plant
Authors: Wiwat Onnakklum
Abstract:
Clarification is the turbidity removal process of water treatment plant. This paper was to study the factors affecting on energy consumption in order to control energy saving strategy. The factors studied were raw water turbidity in the range of 26-40 NTU and production rate in the range of 3.76-5.20 m³/sec. Clarifiers were sludge blanket and sludge recirculation clarifier. Experimental results found that the raw water turbidity was not affected significantly by energy consumption, while the production rate was affected significantly by energy consumption. Sludge blanket clarifier provided lower energy consumption than sludge recirculation clarifier about 32-37%. Subsequently, the operating pattern in production rate can be arranged to decreased energy consumption. The results showed that it can be reduced about 5.09 % of energy saving of clarification process about 754,655 Baht per year.Keywords: sludge blanket clarifier, sludge recirculation clarifier, water treatment plant, energy
Procedia PDF Downloads 3261106 Industrial Wastewater Sludge Treatment in Chongqing, China
Authors: Victor Emery David Jr., Jiang Wenchao, Yasinta John, Md. Sahadat Hossain
Abstract:
Sludge originates from the process of treatment of wastewater. It is the byproduct of wastewater treatment containing concentrated heavy metals and poorly biodegradable trace organic compounds, as well as potentially pathogenic organisms (viruses, bacteria, etc.) which are usually difficult to treat or dispose of. China, like other countries, is no stranger to the challenges posed by an increase of wastewater. Treatment and disposal of sludge have been a problem for most cities in China. However, this problem has been exacerbated by other issues such as lack of technology, funding, and other factors. Suitable methods for such climatic conditions are still unavailable for modern cities in China. Against this background, this paper seeks to describe the methods used for treatment and disposal of sludge from industries and suggest a suitable method for treatment and disposal in Chongqing/China. From the research conducted, it was discovered that the highest treatment rate of sludge in Chongqing was 10.08%. The industrial waste piping system is not separated from the domestic system. Considering the proliferation of industry and urbanization, there is a likelihood that the production of sludge in Chongqing will increase. If the sludge produced is not properly managed, this may lead to adverse health and environmental effects. Disposal costs and methods for Chongqing were also included in this paper’s analysis. Research showed that incineration is the most expensive method of sludge disposal in China/Chongqing. Subsequent research, therefore, considered optional alternatives such as composting. Composting represents a relatively cheap waste disposal method considering the vast population, current technology and economic conditions of Chongqing, as well as China at large.Keywords: Chongqing/China, disposal, industrial, sludge, treatment
Procedia PDF Downloads 3211105 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed
Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando
Abstract:
The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.Keywords: bubbling fluidized bed, pyrolysis, reaction rate, segregation effects, sewage sludge
Procedia PDF Downloads 3571104 Identification of the Orthotropic Parameters of Cortical Bone under Nanoindentation
Authors: D. Remache, M. Semaan, C. Baron, M. Pithioux, P. Chabrand, J. M. Rossi, J. L. Milan
Abstract:
A good understanding of the mechanical properties of the bone implies a better understanding of its various diseases, such as osteoporosis. Berkovich nanoindentation tests were performed on the human cortical bone to extract its orthotropic parameters. The nanoindentation experiments were then simulated by the finite element method. Different configurations of interactions between the tip indenter and the bone were simulated. The orthotropic parameters of the material were identified by the inverse method for each configuration. The friction effect on the bone mechanical properties was then discussed. It was found that the inverse method using the finite element method is a very efficient method to predict the mechanical behavior of the bone.Keywords: mechanical behavior of bone, nanoindentation, finite element analysis, inverse optimization approaches
Procedia PDF Downloads 3891103 Impact of Activated Sludge Bulking and Foaming on the Quality of Kuwait's Irrigation Water
Authors: Abdallah Abusam, Andrzej Mydlarczyk, Fadila Al-Salameen, Moh Elmuntasir Ahmed
Abstract:
Treated municipal wastewater produced in Kuwait is used mainly in agricultural and greenery landscape irrigations. However, there are strong doubts that severe sludge bulking and foaming problems, particularly during winter seasons, may render the treated wastewater to be unsuitable for irrigation purposes. To assess the impact of sludge bulking and foaming problems on the quality of treated effluents, samples were collected weekly for nine months (January to September 2014) from the secondary effluents, tertiary effluents and sludge-mixed liquor streams of the two plants that severely suffer from sludge bulking and foaming problems. Dominant filamentous bacteria were identified and quantified using a molecular method called VIT (Vermicon Identification Technology). Quality of the treated effluents was determined according to water and wastewater standard methods. Obtained results were then statistically analyzed and compared to irrigation water standards. Statistical results indicated that secondary effluents were greatly impacted by sludge bulking and foaming problems, while tertiary effluents were slightly affected. This finding highlights the importance of having tertiary treatment units in plants that encountering sludge bulking and foaming problems.Keywords: agriculture, filamentous bacteria, reclamation, reuse, wastewater
Procedia PDF Downloads 2691102 Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion
Authors: Gavin Hutama Farandiarta, Hegi Adi Prabowo, Istiara Rizqillah Hanifah, Millati Hanifah Saprudin, Raden Iqrafia Ashna
Abstract:
The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again.Keywords: petroleum sewage sludge, remediation soil, thermal desorption, total petroleum hydrocarbon (TPH)
Procedia PDF Downloads 2471101 Waste from Drinking Water Treatment: The Feasibility for Application in Building Materials
Authors: Marco Correa
Abstract:
The increasing reduction of the volumes of surface water sources supplying most municipalities, as well as the rising demand for treated water, combined with the disposal of effluents from washing of decanters and filters of water treatment plants generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows alternatives for sludge dehydration from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, it is presented a case study for drainage in tanks geotextile, full-scale, which involve five sledge drainage tanks from WTP of the city of Rio Verde. Aiming to the reutilization of drained water from the sledge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to in the production of building materials.Keywords: dehydration, effluent discharges, re-use, sludge, WTP sludge
Procedia PDF Downloads 3111100 Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge
Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu
Abstract:
Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster.Keywords: aluminum, acidification, sludge, recovery
Procedia PDF Downloads 6291099 Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization
Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa
Abstract:
The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.Keywords: biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc
Procedia PDF Downloads 4261098 Preliminary Dosimetric Evaluation of Two New 153Sm Bone Pain Palliative Agents
Authors: H. Yousefnia, S. Zolghadri, N. Amraee, Z. Naseri, Ar. Jalilian
Abstract:
The purpose of this study was to calculate the absorbed dose to each human organ for two new Sm-153 bone-seeking agents in order to evaluate their effectiveness in bone pain palliation therapy. In this work, the absorbed dose of 153Sm-TTHMP and 153Sm-PDTMP to each human organ was evaluated based on biodistribution studies in rats by radiation dose assessment resource (RADAR) method. The highest absorbed dose for 153Sm-TTHMP and 153Sm-PDTMP is observed in trabecular bone with 1.844 and 3.167 mGy/MBq, respectively. Bone/red marrow dose ratio, as the target/critical organ dose ratio, for 153Sm-PDTMP is greater than 153Sm-TTHMP and is compatible with 153Sm-EDTMP. The results showed that these bone-seeking agents, specially 153Sm-PDTMP, have considerable characteristics compared to the most clinically used bone pain palliative radiopharmaceutical, and therefore, can be good candidates for bone pain palliation in patients with bone metastasis; however, further biological studies in other mammals are still needed.Keywords: internal dosimetry, PDTMP, 153Sm, TTHMP
Procedia PDF Downloads 5481097 Improvement Anaerobic Digestion Performance of Sewage Sludge by Co-Digestion with Cattle Manure
Authors: Raouf Hassan
Abstract:
Biogas energy production from sewage sludge is an economically feasible and eco-friendly in nature. Sewage sludge is considered nutrient-rich substrates, but had lower values of carbone which consider an energy source for anaerobic bacteria. The lack or lower values of carbone-to-nitrogen ratio (C/N) reduced biogas yield and fermentation rate. Anaerobic co-digestion of sewage sludge offers several benefits over mono-digestion such as optimize nutrient balance, increased cost-efficiency and increased degradation rate. The high produced amounts of animal manures, which reach up to 90% of the total collected organic wastes, are recommended for the co-digestion with sewage sludge, especially with the limitations of industrial substrates. Moreover, cattle manures had high methane production potential (500 m3/t vsadded). When mixed with sewage sludge the potential methane production increased with increasing cattle manure content. In this paper, the effect of cattle manure (CM) addition as co-substrates on the sewage sludge (SS) anaerobic digestion performance was investigated under mesophilic conditions (35°C) using anaerobic batch reactors. The batch reactors were operated with a working volume 0.8 liter, and a hydraulic retention time of 30 days. The research work focus on studying two main parameters; the biogas yield (expressed as VSS) and pH values inside the reactors.Keywords: anaerobic digestion, sewage sludge, cattle manure, mesophilic, biogas yield, pH
Procedia PDF Downloads 3151096 Characterization of Fish Bone Catalyst for Biodiesel Production
Authors: Sarina Sulaiman, N.Khairudin , P.Jamal, M.Z. Alam, Zaki Zainudin, S. Azmi
Abstract:
In this study, fish bone waste was used as a new catalyst for biodiesel production. Instead of discarding the fish bone waste, it will be utilized as a source for catalyst that can provide significant benefit to the environment. Also, it can be substitute as a calcium oxide source instead of using eggshell, crab shell and snail shell. The XRD and SEM analysis proved that calcined fish bone contains calcium oxide, calcium phosphate and hydroxyapatite. The catalyst was characterized using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD).Keywords: calcinations, fish bone, transesterification, waste catalyst
Procedia PDF Downloads 3041095 A Radiographic Survey of Eggshell Powder Effect on Tibial Bone Defect Repair Tested in Dog
Authors: M. Yadegari, M. Nourbakhsh, N. Arbabzadeh
Abstract:
The skeletal system injuries are of major importance. In addition, it is recommended to use materials for hard tissue repair in open or closed fractures. It is important to use complex minerals with a beneficial effect on hard tissue repair, stimulating cell growth in the bone. Materials that could help avoid bone fracture inflammatory reaction and speed up bone fracture repair are of utmost importance in the treatment of bone fractures. Similar to minerals, the inner eggshell membrane consists of carbohydrates, lipids, proteins with the high pH, high calcium absorptive capacity and with faster bone fracture repair ability. In the present radiographic survey, eggshell-derived bone graft substitutes were used for bone defect repair in 8 dog tibia, measuring bone density on the day of implant placement and 30 and 60 days after placement. In fact, the result of this study shows the difference in bone growth and misshapen bones between treatment and control sites. Cell growth was adequate in treatment sites and misshapen bones were less frequent here than in control sites.Keywords: bone repair, eggshell powder, implant, radiography
Procedia PDF Downloads 3221094 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India
Authors: Preethi Grace Theva Neethi Dhas
Abstract:
A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.Keywords: fecal sludge management, nutrient cycle, soil health, composting
Procedia PDF Downloads 761093 Experimental Studies on Fly Ash-Waste Sludge Mix Reinforced with Geofibres
Authors: Malik Shoeb Ahmad
Abstract:
The aim of the present study is to carry out investigations on Class F fly ash obtained from NTPC thermal power plant, Dadri, U.P. (India) and electroplating waste sludge from Aligarh, U.P. (India) along with geofibre for its subsequent utilization in various geotechnical and highway engineering applications. The experimental studies such as California bearing ratio (CBR) tests were carried out to evaluate the strength of plain fly ash as well as fly ash-waste sludge mix reinforced with geofibre, as the CBR value is the vital parameters used in the design of flexible and rigid pavements. Results of the study show that the strength of the mix is highly dependent on the curing period and the sludge and geofibre content. The CBR values were determined for mix containing fly ash (83.5-93.5%), waste sludge (5-15%) and 1-2% geofibre. However, out of the various combinations of mixes the CBR value of the mix 88.5%FA+10%S+1.5%GF at 28 days of curing was found to be 53.52% when compared with the strength of plain fly ash. It has been observed that the fibre inclusion increases the strength of the plain fly ash and fly ash-waste sludge specimens by changing their brittle to ductile behavior. The TCLP leaching test was also conducted to determine the heavy metal concentration in the optimized mix. The results of TCLP test show that the heavy metal concentration in the mix 88.5%FA+10%S+1.5%G at 28 days of curing reduced substantially from 24 to 98% when compared with the concentration of heavy metals in the waste sludge collected from source. It has also been observed that the pH of the leachate of this mix is between 9-11, which ensures the proper stabilization of the heavy metals present in the mix. Hence, this study will certainly help in mass scale utilization of two industrial wastes viz., electroplating waste and fly ash, which are causing pollution to the environment to a great extent.Keywords: Dadri fly ash, geofibre, electroplating waste sludge, CBR, TCLP
Procedia PDF Downloads 3431092 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment
Authors: Margarita Belousova
Abstract:
The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment
Procedia PDF Downloads 2761091 Investigating the Efficiency of Granular Sludge for Recovery of Phosphate from Wastewater
Authors: Sara Salehi, Ka Yu Cheng, Anna Heitz, Maneesha Ginige
Abstract:
This study investigated the efficiency of granular sludge for phosphorous (P) recovery from wastewater. A laboratory scale sequencing batch reactor (SBR) was operated under alternating aerobic/anaerobic conditions to enrich a P accumulating granular biomass. This study showed that an overall 45-fold increase in P concentration could be achieved by reducing the volume of the P capturing liquor by 5-fold in the anaerobic P release phase. Moreover, different fractions of the granular biomass have different individual contributions towards generating a concentrated stream of P.Keywords: granular sludge, PAOs, P recovery, SBR
Procedia PDF Downloads 4821090 Rheological Behavior of Fresh Activated Sludge
Authors: Salam K. Al-Dawery
Abstract:
Despite of few research works on municipal sludge, still there is a lack of actual data. Thus, this work was focused on the conditioning and rheology of fresh activated sludge. The effect of cationic polyelectrolyte has been investigated at different concentrations and pH values in a comparative fashion. Yield stress is presented in all results indicating the minimum stress that necessary to reach flow conditions. Connections between particle-particle is the reason for this yield stress, also, the addition of polyelectrolyte causes strong bonds between particles and water resulting in the aggregation of particles which required higher shear stress in order to flow. The results from the experiments indicate that the cationic polyelectrolytes have significant effluence on the sludge characteristic and water quality such as turbidity, SVI, zone settling rate and shear stress.Keywords: rheology, polyelectrolyte, settling volume index, turbidity
Procedia PDF Downloads 3571089 Viscoelastic Characterization of Bovine Trabecular Bone Samples
Authors: I. Ramirez D. Edgar, J. Angeles H. José, Ruiz C. Osvaldo, H. Jacobo A. Victor, Ortiz P. Armando
Abstract:
Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.Keywords: bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties
Procedia PDF Downloads 4891088 Utilization of Sludge in the Manufacturing of Fired Clay Bricks
Authors: Anjali G. Pillai, S. Chadrakaran
Abstract:
The extensive amount of sludge generated throughout the world, as a part of water treatment works, have caused various social and economic issues, such as a demand on landfill spaces, increase in environmental pollution and raising the waste management cost. With growing social awareness about toxic incinerator emissions and the increasing concern over the disposal of sludge on the agricultural land, the recovery of sewage sludge as a building and construction raw material can be considered as an innovative approach to tackle the sludge disposal problem. The proposed work aims at studying the recycling ability of the sludge, generated from the water treatment process, by incorporating it into the fired clay brick units. The work involves initial study of the geotechnical characteristics of the brick-clay and the sludge. Chemical compatibility of both the materials will be analyzed by X-ray fluorescence technique. The variation in the strength aspects with varying proportions of sludge i.e. 10%, 20%, 30% and 40% in the sludge-clay mix will also be determined by the proctor density test. Based on the optimum moisture content, the sludge-clay bricks will be manufactured in a brick manufacturing plant and the modified brick units will be tested to determine the variation in compressive strength, bulk density, firing shrinkage, shrinkage loss and initial water absorption rate with respect to the conventional clay bricks. The results will be compared with the specifications given in Indian Standards to arrive at the potential use of the new bricks. The durability aspect will be studied by conducting the leachate analysis test using atomic adsorption spectrometry. The lightweight characteristics of the sludge modified bricks will be ascertained with the scanning electron microscope technique which will be indicative of the variation in pore structure with the increase in sludge content within the bricks. The work will determine the suitable proportion of the sludge – clay mix in the brick which can then be effectively implemented. The feasibility aspect of the work will be determined for commercial production of the units. The work involves providing a strategy for conversion of waste to resource. Moreover, it provides an alternative solution to the problem of growing scarcity of brick-clay for the manufacturing of fired clay bricks.Keywords: eco-bricks, green construction material, sludge amended bricks, sludge disposal, waste management
Procedia PDF Downloads 306