Search results for: antibacterial agent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1962

Search results for: antibacterial agent

1932 Facile Surfactant-Assisted Green Synthesis of Stable Biogenic Gold Nanoparticles with Potential Antibacterial Activity

Authors: Sneha Singh, Abhimanyu Dev, Vinod Nigam

Abstract:

The major issue which decides the impending use of gold nanoparticles (AuNPs) in nanobiotechnological applications is their particle size and stability. Often the AuNPs obtained biomimetically are considered useless owing to their instability in the aqueous medium and thereby limiting the widespread acceptance of this facile green synthesis procedure. So, the use of nontoxic surfactants is warranted to stabilize the biogenic nanoparticles (NPs). But does the surfactant only play a role in stabilizing by being adsorbed to the NPs surface or can it have any other significant contribution in synthesis process and controlling their size as well as shape? Keeping this idea in mind, AuNPs were synthesized by using surfactant treated (lechate) and untreated (cell lysate supernatant) Bacillus licheniformis cell extract. The cell extracts mediated reduction of chloroauric acid (HAuCl 4) in the presence of non-ionic surfactant, Tween 20 (TW20), and its effect on the AuNPs stability was studied. Interestingly, the surfactant used in the study served as potential alternative to harvest cellular enzymes involved in bioreduction process in a hassle free condition. The surfactants ability to solubilize/leach membrane proteins and simultaneously stabilizing the AuNPs could have advantage from process point of view as it will reduce the time and economics involve in the nanofabrication of biogenic NPs. The synthesis was substantiated with UV-Vis spectroscopy, Dynamic light scattering study, FTIR spectroscopy, and Transmission electron microscopy. The Zeta potential of AuNPs solutions was measured routinely to corroborate the stability observations recorded visually. Highly stable, ultra-small AuNPs of 2.6 nm size were obtained from the study. Further, the biological efficacy of the obtained AuNPs as potential antibacterial agent was evaluated against Bacilllus subtilis, Pseudomonas aeruginosa, and Escherichia coli by observing the zone of inhibition. This potential of AuNPs of size < 3 nm as antibacterial agent could pave way for development of new antimicrobials and overcoming the problems of antibiotics resistance

Keywords: antibacterial, bioreduction, nanoparticles, surfactant

Procedia PDF Downloads 214
1931 Preparation of Biomedical Hydrogels Using Phenolic Compounds and Electron Beam Irradiation

Authors: Farnaz Sadeghi, Moslem Tavakol

Abstract:

In this study, an attempt has been made to prepare a physically cross-linked gel by cooling of tannic acid (TA)-polyvinyl alcohol (PVA) solution that subsequently convert to antibacterial chemically cross-linked hydrogel by using electron beam irradiation. PVA is known for its biocompatibility and hydrophilicity, and TA is known for being a natural compound which can serve as a cross-linking agent and a therapeutic agent. Swelling behavior, gel content, pore size, and mechanical properties of hydrogels which prepared at 14, 28, and 56 (kGy) with different ratios of polymers were investigated. PVA-TA hydrogel showed sustained release of tannic acid as approximately 20% and 50% of loaded TA released from the hydrogel after 4 and 72 h release time. We found that gel content decreased and the moisture retention capability increased by an increase in TA composition. In addition, PVA-TA hydrogels showed a good antibacterial activity against S.aureus. MTT analysis indicated that close to 83% of fibroblast cells remained viable after 48 h exposure to hydrogel extract. Moreover, the cooling of 10% PVA solution containing 0.5 and 0.75% w/v tannic acid to room and refrigerator, respectively, led to formation of physical gel that did not present any flow index after inversion of hydrogel cast. According to the results, the hydrogel prepared by electron beam irradiation of blended PVA-TA solution could be further investigated as a promising candidate for wound healing.

Keywords: poly vinyl alcohol, tannic acid, electron beam irradiation, hydrogel wound dressing

Procedia PDF Downloads 124
1930 The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens

Authors: M. E. Abalaka, S. Y. Daniyan, S. O. Adeyemo, D. Damisa

Abstract:

Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.

Keywords: gold nanoparticles, Gomphrena celesioides, Prunus amygdalus, pathogens

Procedia PDF Downloads 275
1929 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems

Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu

Abstract:

Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.

Keywords: agent communication, introspective agent, isolation of agent, policy enforcement system

Procedia PDF Downloads 276
1928 Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract

Authors: Yousef M. Abouzeed A. Elfahem, F. Zgheel, M. A. Saad, Mohamed O. Ahmed

Abstract:

The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug.

Keywords: Vitis vinifera raisin, extraction, phenolic compounds, antibacterial activity

Procedia PDF Downloads 582
1927 Phytochemical Evaluation and In-Vitro Antibacterial Activity of Ethanolic Extracts of Moroccan Lavandula x Intermedia Leaves and Flowers

Authors: Jamila Fliou, Federica Spinola, Ouassima Riffi, Asmaa Zriouel, Ali Amechrouq, Luca Nalbone, Alessandro Giuffrida, Filippo Giarratana

Abstract:

This study performed a preliminary evaluation of the phytochemical composition and in vitro antibacterial activity of ethanolic extracts of Lavandula x intermedia leaves and flowers collected in the Fez-Meknes region of Morocco. Phytochemical analyses comprised qualitative colourimetric determinations of alkaloids, anthraquinones, and terpenes and quantitative analysis of total polyphenols, flavonoids, and condensed tannins by UV spectrophotometer. Antibacterial activity was evaluated by determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against different ATCC bacterial strains. The phytochemical analysis showed a high amount of total polyphenols, flavonoids, and tannins in the leaf extract and a higher amount of terpenes based on colourimetric reaction than the flower extract. A positive colourimetric reaction for alkaloids and anthraquinones was detected for both extracts. The antibacterial activity of leaves and flower extract was not different against Gram-positive and Gram-negative strains (p<0.05). The results of the present study suggest the possible use of ethanolic extracts of L. x intermedia collected in the Fez-Meknes region of Morocco as a natural agent against bacterial pathogens.

Keywords: antimicrobial activity, Lavandula spp., lavender, lavandin, UV spectrophotometric analysis

Procedia PDF Downloads 42
1926 Antibacterial Activity of Ethanolic and Aqueous Extracts of Punica Granatum L. Bark

Authors: H. Kadi, A. Moussaoui, A. Medah, N. Benayahia, Nahal Bouderba

Abstract:

For thousands of years, Punica granatum L. has been used in traditional medicine all over the world and predate the introduction of antibacterial drugs. The aim of the present study was to investigate the antibacterial activity of aqueous and ethanolic extracts of Punica granatum L. bark obtained by decoction and maceration. The different extracts of Punica granatum L. (Lythraceae) bark have been tested for antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus stearothermophilus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) by disc diffusion method. The ethanolic macerate extract showed the strong in vitro antibacterial activity against Pseudomonas aeruginosa with zone inhibition of 24.4 mm. However, the results tests by disc diffusion method revealed the effectiveness of ethanolic decoctate against Gram-positive bacteria (Staphylococcus aureus and Bacillus stearothermophilus) with diameter zone of inhibition varying with 21.1mm and 23.75 mm respectively.

Keywords: Punica granatum L. bark, antibacterial activity, maceration, decoction

Procedia PDF Downloads 427
1925 Essential Oil Composition and Antimicrobial Activity of Rosmarinus officinalis L. Grown in Algeria (Djelfa)

Authors: Samah Lakehal, A. Meliani, F. Z. Benrebiha, C. Chaouia

Abstract:

In the last few years, due to the misuse of antibiotics and an increasing incidence of immunodeficiency-related diseases, the development of microbial drug resistance has become more and more of a pressing problem. Recently, natural products from medicinal plants represent a fertile ground for the development of novel antibacterial agents. Plants essential oils have come more into the focus of phytomedicine. The present study describes antimicrobial activity of Rosmarinus officinalis L. essential oil known medicinally for its powerful antibacterial properties. The essential oil of rosemary obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (Djelfa city of south Algeria) was investigated by GC-MS. The essential oil yield of the study was 1.4 %. The major components were found to be camphor, camphene, 1,8-cineole. The essential oil has been tested for antimicrobial activity against eight bacteria (Gram-negative and Gram-positive), and three fungi including Candida albicans. Inhibition of growth was tested by the agar diffusion method based on the determination of the diameter of inhibition. The oil was found to have significant antibacterial activity and therefore can be used as a natural antimicrobial agent for the treatment of several infectious diseases caused by those germs, which have developed resistance to antibiotics.

Keywords: antimicrobial activity, Rosmarinus officinalis L., essential oils, GC/MS, camphor

Procedia PDF Downloads 369
1924 In vitro Antioxidant and Antibacterial Activities of Methanol Extracts of Tamus communis L. from Algeria

Authors: F. Belkhiri, A. Baghiani, S. Boumerfeg, N. Charef, S. Khennouf, L. Arrar

Abstract:

The present study was conducted to evaluate the in vitro antioxidant and antibacterial properties of methanolic extracts from roots of Tamus communis L. (TCRE), which is a plant used in traditional medicine in Algeria. The antioxidant potential of pattern was evaluated using tow complementary techniques, inhibition of free radical DPPH and the test of β-Carotene/linoleic acid. The antioxidant test indicates that non-polar fractions of TCRE (chloroform and ethyl acetate fractions) were more active than the polar fractions. Among these fractions, the chloroform extract appear in the DPPH test an IC50 of (18.89 µg/ml) comparable to that of BHT (18.6 µg/ml). This fraction was able to inhibiting the oxidation of β-Carotene with a percentage of inhibition (89.84 %). In antibacterial test, non-polar fractions showed antibacterial activity very important compared with the polar fractions. These fractions have inhibited the growth of four from nine bacterial strains, causing zones of inhibition from 08 to 23 mm of diameter.

Keywords: antioxidant activity, antibacterial activity, Tamus communis L., polar fractions

Procedia PDF Downloads 553
1923 Preparation and in vitro Bactericidal and Fungicidal Efficiency of NanoSilver/Methylcellulose Hydrogel

Authors: A. Panacek, M. Kilianova, R. Prucek, V. Husickova, R. Vecerova, M. Kolar, L. Kvitek, R. Zboril

Abstract:

In this work we describe the preparation of NanoSilver/methylcellulose hydrogel containing silver nanoparticles (NPs) for topical bactericidal applications. Highly concentrated dispersion of silver NPs as high as of 5g/L of silver with diameter of 10nm was prepared by reduction of AgNO3 via strong reducing agent NaBH4. Silver NPs were stabilized by addition of sodium polyacrylate in order to prevent their aggregation at such high concentration. This way synthesized silver NPs were subsequently incorporated into methylcellulose suspension at elevated temperature resulting in formation of NanoSilver/methylcellulose hydrogel when temperature cooled down to laboratory conditions. In vitro antibacterial activity assay proved high bactericidal and fungicidal efficiency of silver NPs alone in the form of dispersion as well as in the form of hydrogel against broad spectrum of bacteria and yeasts including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus. A very low concentrations of silver as low as 0.84mg/L Ag in as-prepared dispersion gave antibacterial performance. NanoSilver/methylcellulose hydrogel showed antibacterial action at the lowest used silver concentration equal to 25mg/L. Such prepared NanoSilver/methylcellulose hydrogel represent promising topical antimicrobial formulation for treatment of burns and wounds.

Keywords: antimicrobial, burn, hydrogel, silver NPs

Procedia PDF Downloads 418
1922 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers

Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole

Abstract:

Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)

Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing

Procedia PDF Downloads 104
1921 Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions

Authors: M. Abdel-Hamid, P. Saporito, R. V. Mateiu, A. Osman, E. Romeih, H. Jenssen

Abstract:

Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa.

Keywords: camel milk, whey proteins, antibacterial peptide, anti-biofilm

Procedia PDF Downloads 191
1920 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.

Keywords: reverse logistics, multi agent system, prometheus methodology

Procedia PDF Downloads 440
1919 Salmonella Spp. and Essential Oil of Laurus nobilis

Authors: Karima Oldyerou, B. Meddah, A. Tirtouil

Abstract:

The food borne infections have a significant impact on public health. Salmonella is the first bacterial cause, especially because of its general availability in the intestinal tract of poultry, pigs and cattle. This bacteria and essential oil of Laurus nobilis subject in this article. In vitro evaluation of the antibacterial activity shows a sensitivity of Salmonella spp. with a MIC of 2.5 mg.ml -1 in vivo after infection of wistar rats and administered orally this essential oil, microbiological results fecal material shows the antibacterial effect of this oil on Salmonella spp.

Keywords: Laurus nobilis, essential oil, salmonella, antibacterial activity, fecal matte

Procedia PDF Downloads 319
1918 Phytochemial Screening, Anti-Microbial and Mineral Determination of Brysocarpus coccineus Root

Authors: I. L. Ibrahim, A. Mann, A. Ndanaimi

Abstract:

The research involved phytochemical screening, antibacterial activities and mineral determination by flame photometry of the crude extract of Brysocarpus coccineus schum indeed were carried out. The result of Phytochemical screening reveal tha saponins, alkaloids, cardiac glycosides, and anthraquinones were present. This suggests that the plant extract could be used as anti-inflammatory and anti-bleeding agents. Estimation of mineral content shows that the crude extract of B. coccineus contains 0.73 (Na+), 1.06 (K+) and 1.98 (Ca+) which justifies its use to be safe for hypertensive patients and could be used to lower blood pressure. The antibacterial properties of aqueous and ethanol extract were studied against some bacteria; pseudomonas aeruginosa, Escherichia coli, Bacilus subtilis, Klebsilla penmuoniae by disc diffusion method. The aqueous extract showed significant activity against the organisms while the ethanol at concentrations 5-10mg/ml ethanol extract showed significant zone of inhibition against the organisms, E. coli, (19 mm), B. cereus (12 mm), P. aeruginosa (11 mm), K. pnemuoniae (11 mm). Minimum inhibitory concentration (MIC) was carried with considerable effect of inhibition on the organisms. The MIC values observed were 1, 24, 16 and 19 mm against E. coli, B. cereus, P. aeruginosa and K. pnemuoniae respectively. Therefore, the plant could be a potential source of antibacterial agent although more pharmacological and clinical study may be recommended.

Keywords: phytochemicals, microorganisms, screenings, mineral ions

Procedia PDF Downloads 385
1917 Zinc (II) Complexes of Nitrogen, Oxygen and Sulfur Coordination Modes: Synthesis, Spectral Studies and Antibacterial Activities

Authors: Ayodele Odularu, Peter Ajibade, Albert Bolhuis

Abstract:

This study aimed at assessing the antibacterial activities of four zinc (II) complexes. Zinc (II) complexes of nitrogen, oxygen and sulfur coordination modes were synthesized using direct substitution reaction. The characterization techniques involved physicochemical properties (molar conductivity) and spectroscopic techniques. The molar conductivity gave the non-electrolytic nature of zinc (II) complexes. The spectral studies of zinc (II) complexes were done using electronic spectra (UV-Vis) and Fourier Transform Infra-red Spectroscopy (FT-IR). Spectral data from the spectroscopic studies confirmed the coordination of the mixed ligands with zinc (II) ion. The antibacterial activities of zinc(II) complexes of were all in supportive of Overtone’s concept and Tweedy’s theory of chelation for bacterial strains of S. aureus MRSA252 and E coli MC4100 because the zones of inhibition were greater than the corresponding ligands. In summary, all zinc (II) complexes of ZEPY, ZE1PH, ZE1PY and ZE135PY all have potentials for antibacterial activities.

Keywords: antibacterial activities, spectral studies, syntheses, zinc(II) complexes

Procedia PDF Downloads 247
1916 Screening for Antibacterial, Antifungal and Cytotoxic Agents in Three Hard Coral Species from Persian Gulf

Authors: Maryam Ehsanpou, Majid Afkhami, Flora Mohammadizadeh, Amirhoushang Bahri, Rastin Afkhami

Abstract:

Within the frame of a biodiversity and bioactivity study of marine macro organisms from the Persian Gulf, three hard coral species extracts were investigated for cytotoxic, antibacterial and antifungal activities against five human pathogenic microorganisms. All concentrations of extracts from three hard corals showed no antifungal activity towards the tested strains. In antibacterial assays, the hard coral extracts showed significant activity solely against Staphylococcus aureus with MICs ranging from 3 to 9 μg/ml. The highest antibacterial activity was found in the aqueous methanol extract of Porites compressa with an inhibition zone of 22 mm against Staphylococcus aureus at 18 μg/ml extract concentration. Methanol extracts from Porites harrisoi and Porites compressa exhibited only weak cytotoxic activities. It is important for future research to concentrate on finding the mechanisms employed by corals to defend themselves against invasion, the mechanism of infections and the type of chemical compounds in coral extracts that inhibit antibacterial growth or proliferation in underexplored areas such as the Persian Gulf.

Keywords: antibacterial, antifungal, cytotoxic, hard corals, Persian Gulf

Procedia PDF Downloads 463
1915 Effect of Iron Fortification on the Antibacterial Activity of Synbiotic Fermented Milk

Authors: Siti Helmyati, Euis Nurdiyawati, Joko Susilo, Endri Yuliati, Siti Fadhilatun Nashriyah, Kurnia Widyastuti

Abstract:

Background: Iron fortification is one of the most effective and sustainable strategies to overcome anemia. It contradictively, has negative effect on gut microbiota balance. Pathogenic bacteria required iron for their growth. The iron source have greatly affect iron absorption in the intestine. Probiotic can inhibit the growth of pathogen. Lactobacillus plantarum Dad 13, Indonesian local isolate provides many benefits for health while fructo-oligosaccharides (FOS) provides selective substrates for probiotics’ growth. Objective: To determine the effect of iron fortification (NaFeEDTA and FeSO4) on antibacterial activity of synbiotic fermented milk. Methods: The antibacterial activity test was performed using the disc diffusion method. Paper discs were soaked in three kinds of synbiotic fermented milk, which are: 1) fortified with NaFeEDTA, 2) FeSO4 and 3) control. Escherichia coli was inoculated on nutrient agar medium. The ability of inhibition was shown by the formation of clear zone around the paper disc and measured in diameter (mm). Results: Synbiotic fermented milk fortified with iron (either NaFeEDTA or FeSO4) had antibacterial activity against Escherichia coli with diameter of clear zone were 6.53 mm and 12.3 mm, respectively (p<0.05). Compared to control (10.73 mm), synbiotic fermented milk fortified with FeSO4 had similar antibacterial activity (p>0.05). Conclusions: In vitro, synbiotic fermented milk fortified with NaFeEDTA and FeSO4 had different antibacterial activity against Escherichia coli. Iron fortification compound affected the antibacterial activity of synbiotic fermented milk.

Keywords: lactobacillus plantarum Dad 13, FOS, NaFeEDTA, FeSO4, antibacterial activity

Procedia PDF Downloads 527
1914 Design, Synthesis and In-Vitro Antibacterial and Antifungal Activities of Some Novel Spiro[Azetidine-2, 3’-Indole]-2, 4(1’H)-Dione

Authors: Ravi J. Shah

Abstract:

The present study deals with the synthesis of novel spiro[azetidine-2, 3’-indole]-2’, 4(1’H)-dione derivative from the reactions of 3-(phenylimino)-1,3-dihydro-2H-indol-2-one derivatives with chloracetyl chloride in presence of triethyl amine (TEA). All the compounds were characterized using IR, 1H NMR, MS and elemental analysis. They were screened for their antibacterial and antifungal activities. Results revealed that, compounds (7a), (7b), (7c), (7d) and (7e) showed very good activity with MIC value of 6.25-12.5 μg/ml against three evaluated bacterial strains and the remaining compounds showed good to moderate activity comparable to standard drugs as antibacterial agents. Compounds (7c) and (7h) displayed equipotent antifungal activity in comparison to standard drugs. Structure-activity relationship study of the compounds showed that the presence of electron withdrawing group substitution at 5’ and 7’ positions of indoline ring and on ortho or para position of phenyl ring increases both antibacterial and antifungal activity of the compound. Henceforth, our findings will have a good impact on chemists and biochemists for further investigations in search of bromine containing spiro fused antimicrobial agents.

Keywords: antibacterial activity, antifungal activity, 2-Azetidinone, indoline

Procedia PDF Downloads 462
1913 Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy

Authors: Fuad Abdullah Alatawi

Abstract:

Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans.

Keywords: ficus microcarpa, iron oxide, antibacterial activity, cytotoxicity

Procedia PDF Downloads 94
1912 Phytochemical and Antibacterial Activity of Chrysanthellum indicum (Linn) Extracts

Authors: I. L. Ibrahim, A. Mann, B. M. Abdullahi

Abstract:

Infectious diseases are prevalent in developing countries and plant extracts are known to contained bioactive compounds that can be used in the management of these diseases. The entire plant of Chrysanthellum indicum (Linn) was air-dried and pulverized into fine powder and then percolated to give ethanol and aqueous extracts. These extracts were phytochemically screened for metabolites and evaluated antibacterial activity against some pathogenic organisms Klebsilla, pneumonia, Bacillus subtilis, and Pseudomonas aeruginosa using agar dilution method. It was found that crude extracts of C. indicum revealed the presence of saponins, tannins, alkaloids, steroidal nucleus, cardiac glycosides, and coumarin while flavonoids and anthraquinones were absent. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the active extract of C. indicum shows that the extract could be a potential source of antibacterial agents.

Keywords: antibacterial activity, Chrysanthellum indicum, infectious diseases, phytochemical screening

Procedia PDF Downloads 486
1911 Antibacterial Activity of Northern Algerian Honey

Authors: Messaouda Belaid, Salima Kebbouche-Gana, Djamila Benaziza

Abstract:

Our study focuses on determining the antibacterial activity of some honeys from northern Algeria. To test this activity, the agar well diffusion methods was employed. The bacterial strains tested were Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeroginosae. The results showed that all the microbes tested were inhibited by all honey used in this study but Those bacteria that appear to be more sensitive to all honey tested are Staphylococcus aureus and Pseudomonas aeroginosae.

Keywords: honey, antibacterial activity, Northern Algeria, Staphylococcus aureus

Procedia PDF Downloads 364
1910 Olive Oils from Algeria: Phenolic Compounds Composition and Antibacterial Activity

Authors: Firdaousse Laincer, Rahima Laribi, Abderazak Tamendjari, Rovellini Venturini

Abstract:

Phenolic compounds present in olive oil have received much attention in recent years due to their beneficial functional and nutritional effects. Phenolic composition, antibacterial activity of phenolic extracts of olive oil varieties from Algeria were investigated. The analysis of polyphenols was performed by Folin-Ciocalteu and HPLC. As a result, many phenolic compounds were identified and quantified by using HPLC; derivatives of oleuropein and ligstroside, hydroxytyrosol, tyrosol, flavonoids, and lignans reporting unique and characteristic phenolic profile. These phenolic fractions also differentiate the total antibacterial activity. Among the bacteria tested, S. aureus and, to a lesser extent, B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg•mL-1 and 1.2 to 1.8 mg•mL-1, respectively. The results obtained denote that Algerian olive oils may constitute a good source of healthy compounds, phenolics compounds, in the diet, suggesting that their consumption could be useful in the prevention of diseases.

Keywords: antibacterial activity, olive oil, phenols, HPLC

Procedia PDF Downloads 424
1909 Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy

Authors: Shivankar Agrawal, Indira Sarangthem

Abstract:

Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell.

Keywords: antibacterial activity, antioxidant, fungi, Staphylococcus aureus, MRSA, thermophiles

Procedia PDF Downloads 113
1908 Antibacterial Activities, Chemical Constitutes and Acute Toxicity of Peganum Harmala L. Essential Oil

Authors: Samy Selim

Abstract:

Natural products are still major sources of innovative therapeutic agents for various conditions, including infectious diseases. Peganum harmala L. oil had wide range uses as traditional medicinal plants. The current study was designed to evaluate the antibacterial activity of P. harmala essential oil. The chemical constitutes and toxicity of these oils was also determined to obtain further information on the correlation between the chemical contents and antibacterial activity. The antibacterial effect of the essential oils of P. harmala oil was studied against some foodborne pathogenic bacteria species. The oil of plant was subjected to gas chromatography-mass spectrometry (GC/MS). The impact of oils administration on the change in rate of weight gain and complete blood picture in hamsters were investigated. P. harmala oil had strong antibacterial effect against bacterial species especially at minimum inhibitory concentration (MIC) less than 75.0 μg/ml. From the oil of P. harmala, forty one compounds were identified, and the major constituent was 1-hexyl-2-nitrocyclohexane (9.07%). Acute toxicity test was performed on hamsters and showed complete survival after 14 days, and there were no toxicity symptoms occurred. This study demonstrated that these essential oils seemed to be destitute of toxic effect which could compromise the medicinal use of these plants in folk medicine.

Keywords: analysis mass spectrometry, antibacterial activities, acute toxicity, chemical constitutes, gas chromatography, weight gain, Peganum harmala

Procedia PDF Downloads 459
1907 Effect of Zinc Oxide Nanoparticles along with Sodium Hydroxide on Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

Authors: Mohammad Mirjalili, Maryam Mohammdi, Loghman Karimi

Abstract:

In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of Polyethylene terephthalate using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at ultrasound bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The self-cleaning property of treated polyethylene terephthalate was evaluated through discoloring methylene blue stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyethylene terephthalate improved significantly.

Keywords: zinc oxide, polyethylene terephthalate, self-cleaning, antibacterial

Procedia PDF Downloads 299
1906 Investigation of Antibacterial Property of Bamboo In-Terms of Percentage on Comparing with ZnO Treated Cotton Fabric

Authors: Arjun Dakuri, J. Hayavadana

Abstract:

The study includes selection of 100 % bamboo fabric and cotton fabric for the study. The 100% bamboo fabrics were of 127 g/m², and 112 g/m² and 100% cotton grey fabric were of 104 g/m². The cotton fabric was desized, scoured, bleached and then treated with ZnO (as antimicrobial agent) with 1%, 2% and 3% using pad-dry cure method, whereas the bamboo fabrics were only desized. The antimicrobial activity of bamboo and ZnO treated cotton fabrics were evaluated and compared against E. coli and S. aureus as per the standard AATCC - 147. Moisture management properties of selected fabrics were also analyzed. Further, the selected fabric samples were tested for comfort properties like bending length, tearing strength, drape-ability, and specific handle force and air permeability. It was observed that bamboo fabrics show significant antibacterial activity and the same was shown by 3% ZnO treated cotton fabric. Both cotton and bamboo fabrics show improved moisture management properties than the cotton fabric. The comfort properties of bamboo fabrics are found to be superior to cotton fabrics making it more suitable for applications in place of cotton.

Keywords: antimicrobial activity, bamboo, cotton, comfort properties, moisture management, zinc oxide

Procedia PDF Downloads 321
1905 Synthesis, Molecular-Docking, and Biological Evaluation of Thiazolopyrimidine Carboxylates as Potential Antidiabetic and Antibacterial Agents

Authors: Iram Batool, Aamer Saeed, Irfan Zia Qureshi, Ayesha Razzaq, Saima Kalsoom

Abstract:

Heterocyclic compounds analogues and their derivatives have attracted strong interest in medicinal chemistry due to their biological and pharmacological properties. A series of new thiazolopyrimidine carboxylates were conveniently synthesized by one-pot three-component reaction of ethyl acetoacetate, 2-aminothiazole and benzaldehyde substituted with electron-donating and electron-withdrawing groups in order to find some more potent antidiabetic and antibacterial drugs. The structures of synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. An in vitro antidiabetic effect was evaluated in adult male BALB/c mice and antibacterial activities were tested against Micrococcus luteus, Salmonella typhimurium, Bacillus subtilis, Bordetella bronchiseptica and Escherichia coli. Some of the tested compounds proved to possess good to excellent activities more than the reference drugs. An in silico molecular docking was also performed on synthesized compounds. The current study is expected to provide useful insights into the design of antidiabetic and antibacterial drugs and understanding the mechanism by which such drugs interact with RNA and diabetes target and exert their biochemical action.

Keywords: antidiabetic, antibacterial, MOE docking, thiazolopyrimidine

Procedia PDF Downloads 432
1904 Agarose Based Multifunctional Nanofibrous Bandages for Wound Healing Applications

Authors: Sachin Latiyan, T. S. Sampath Kumar, Mukesh Doble

Abstract:

Natural polymer based nanofibrous wound dressings have gained increased attention because of their high surface area, bioactivity, biodegradability and resemblance to extracellular matrix. Agarose (a natural polymer) have been used largely for angiogenesis, cartilage formation and wound healing applications. However, electrospinning of agarose is tedious thereby rendering limited studies on fabrication and evaluation of agarose based nanofibrous wound dressings. Thus, present study focuses on the fabrication of agarose (10% w/v)/ polyvinyl alcohol (12% w/v) based multifunctional nanofibrous scaffolds. Zinc citrate (1, 3 and 5% w/w of the polymer) was added as a potential antibacterial agent to combat wound infections. The fabricated scaffolds exhibit ~500% swelling (in phosphate buffer saline) with enhanced mechanical strength which is suitable for most of the wound healing applications. In vitro studies were found to reveal an increased migration and proliferation of L929 mouse fibroblasts with agarose blends w.r.t to the control. The fabricated dressings were found to be effective against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains. Hence, a multifunctional (as provides effective swelling and mechanical support along with antibacterial property), natural product based, eco-friendly scaffold was successfully fabricated to serve as a potential wound dressing material.

Keywords: antibacterial dressings, benign solvent, nanofibrous agarose, biocompatibility, enhanced swelling and mechanical strength, biopolymeric dressings

Procedia PDF Downloads 68
1903 The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, complexes, antibacterial, Escherichia coli, metal

Procedia PDF Downloads 288