Search results for: Tumor Microenvironment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 851

Search results for: Tumor Microenvironment

821 Artificial Intelligence Based Method in Identifying Tumour Infiltrating Lymphocytes of Triple Negative Breast Cancer

Authors: Nurkhairul Bariyah Baharun, Afzan Adam, Reena Rahayu Md Zin

Abstract:

Tumor microenvironment (TME) in breast cancer is mainly composed of cancer cells, immune cells, and stromal cells. The interaction between cancer cells and their microenvironment plays an important role in tumor development, progression, and treatment response. The TME in breast cancer includes tumor-infiltrating lymphocytes (TILs) that are implicated in killing tumor cells. TILs can be found in tumor stroma (sTILs) and within the tumor (iTILs). TILs in triple negative breast cancer (TNBC) have been demonstrated to have prognostic and potentially predictive value. The international Immune-Oncology Biomarker Working Group (TIL-WG) had developed a guideline focus on the assessment of sTILs using hematoxylin and eosin (H&E)-stained slides. According to the guideline, the pathologists use “eye balling” method on the H&E stained- slide for sTILs assessment. This method has low precision, poor interobserver reproducibility, and is time-consuming for a comprehensive evaluation, besides only counted sTILs in their assessment. The TIL-WG has therefore recommended that any algorithm for computational assessment of TILs utilizing the guidelines provided to overcome the limitations of manual assessment, thus providing highly accurate and reliable TILs detection and classification for reproducible and quantitative measurement. This study is carried out to develop a TNBC digital whole slide image (WSI) dataset from H&E-stained slides and IHC (CD4+ and CD8+) stained slides. TNBC cases were retrieved from the database of the Department of Pathology, Hospital Canselor Tuanku Muhriz (HCTM). TNBC cases diagnosed between the year 2010 and 2021 with no history of other cancer and available block tissue were included in the study (n=58). Tissue blocks were sectioned approximately 4 µm for H&E and IHC stain. The H&E staining was performed according to a well-established protocol. Indirect IHC stain was also performed on the tissue sections using protocol from Diagnostic BioSystems PolyVue™ Plus Kit, USA. The slides were stained with rabbit monoclonal, CD8 antibody (SP16) and Rabbit monoclonal, CD4 antibody (EP204). The selected and quality-checked slides were then scanned using a high-resolution whole slide scanner (Pannoramic DESK II DW- slide scanner) to digitalize the tissue image with a pixel resolution of 20x magnification. A manual TILs (sTILs and iTILs) assessment was then carried out by the appointed pathologist (2 pathologists) for manual TILs scoring from the digital WSIs following the guideline developed by TIL-WG 2014, and the result displayed as the percentage of sTILs and iTILs per mm² stromal and tumour area on the tissue. Following this, we aimed to develop an automated digital image scoring framework that incorporates key elements of manual guidelines (including both sTILs and iTILs) using manually annotated data for robust and objective quantification of TILs in TNBC. From the study, we have developed a digital dataset of TNBC H&E and IHC (CD4+ and CD8+) stained slides. We hope that an automated based scoring method can provide quantitative and interpretable TILs scoring, which correlates with the manual pathologist-derived sTILs and iTILs scoring and thus has potential prognostic implications.

Keywords: automated quantification, digital pathology, triple negative breast cancer, tumour infiltrating lymphocytes

Procedia PDF Downloads 116
820 Intracellular Sphingosine-1-Phosphate Receptor 3 Contributes to Lung Tumor Cell Proliferation

Authors: Michela Terlizzi, Chiara Colarusso, Aldo Pinto, Rosalinda Sorrentino

Abstract:

Sphingosine-1-phosphate (S1P) is a membrane-derived bioactive phospholipid exerting a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Higher levels of S1P have been registered in a broad range of respiratory diseases, including inflammatory disorders and cancer, although its exact role is still elusive. Based on our previous study in which we found that S1P/S1PR3 is involved in an inflammatory pattern via the activation of Toll-like Receptor 9 (TLR9), highly expressed on lung cancer cells, the main goal of the current study was to better understand the involvement of S1P/S1PR3 pathway/signaling during lung carcinogenesis, taking advantage of a mouse model of first-hand smoke exposure and of carcinogen-induced lung cancer. We used human samples of Non-Small Cell Lung Cancer (NSCLC), a mouse model of first-hand smoking, and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. We found that the intranuclear, but not the membrane, localization of S1PR3 was associated to the proliferation of lung adenocarcinoma cells, the mechanism that was correlated to human and mouse samples of smoke-exposure and carcinogen-induced lung cancer, which were characterized by higher utilization of S1P. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after TLR9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the enzyme responsible for the catalysis of the S1P last step synthesis, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. These results prove that the endogenous TLR9-induced S1P can on one side favor pro-inflammatory mechanisms in the tumor microenvironment via the activation of cell surface receptors, but on the other tumor progression via the nuclear S1PR3/SPHK II axis, highlighting a novel molecular mechanism that identifies S1P as one of the crucial mediators for lung carcinogenesis-associated inflammatory processes and that could provide differential therapeutic approaches especially in non-responsive lung cancer patients.

Keywords: sphingosine-1-phosphate (S1P), S1P Receptor 3 (S1PR3), smoking-mice, lung inflammation, lung cancer

Procedia PDF Downloads 201
819 Breast Cancer Cellular Immunotherapies

Authors: Zahra Shokrolahi, Mohammad Reza Atashzar

Abstract:

The goals of treating patients with breast cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. The term of cellular immunotherapy refers to the administration of living cells to a patient; this type of immunotherapy can be active, such as a dendritic cell (DC) vaccine, in that the cells can stimulate an anti-tumour response in the patient, or the therapy can be passive, whereby the cells have intrinsic anti-tumour activity; this is known as adoptive cell transfer (ACT) and includes the use of autologous or allogeneic lymphocytes that may, or may not, be modified. The most important breast cancer cellular immunotherapies involving the use of T cells and natural killer (NK) cells in adoptive cell transfer, as well as dendritic cells vaccines. T cell-based therapies including tumour-infiltrating lymphocytes (TILs), engineered TCR-T cells, chimeric antigen receptor (CAR T cell), Gamma-delta (γδ) T cells, natural killer T (NKT) cells. NK cell-based therapies including lymphokine-activated killers (LAK), cytokine-induced killer (CIK) cells, CAR-NK cells. Adoptive cell therapy has some advantages and disadvantages some. TILs cell strictly directed against tumor-specific antigens but are inactive against tumor changes due to immunoediting. CIK cell have MHC-independent cytotoxic effect and also need concurrent high dose IL-2 administration. CAR T cell are MHC-independent; overcome tumor MHC molecule downregulation; potent in recognizing any cell surface antigen (protein, carbohydrate or glycolipid); applicable to a broad range of patients and T cell populations; production of large numbers of tumor-specific cells in a moderately short period of time. Meanwhile CAR T cells capable of targeting only cell surface antigens; lethal toxicity due to cytokine storm reported. Here we present the most popular cancer cellular immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials .To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Keywords: breast cancer , cell therapy , CAR T cell , CIK cells

Procedia PDF Downloads 130
818 Mage Fusion Based Eye Tumor Detection

Authors: Ahmed Ashit

Abstract:

Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.

Keywords: image fusion, eye tumor, canny operators, superimposed

Procedia PDF Downloads 363
817 Effects of Aerobic Training on MicroRNA Let-7a Expression and Levels of Tumor Tissue IL-6 in Mice With Breast Cancer

Authors: Leila Anoosheh

Abstract:

Aim: The aim of this study was to assess The effects of aerobic training on microRNA let-7a expression and levels of tumor tissue IL-6 in mice with breast cancer. Method: Twenty BALB/c c mice (4-5 weeks,17 gr mass) were cancerous by injection of estrogen-dependent receptor breast cancer cells MC4-L2 and divided into two groups: tumor-training(TT) and tumor-control(TC) group. Then TT group completed aerobic training for 6 weeks, 5 days per week (14-18 m/min). After tumor emersion, tumor width and length were measured by digital caliper every week. 48 hours after the last exercise subjects were killed. Tissue sampling were collected and stored in -70ᵒ. Tumor tissue was homogenized and let-7a expression and IL-6 levels were accounted with Real time-PCR and ELISA Kit respectively. Statistical analysis of let-7a was conducted by the REST software. Repeated measures and independent tests were used to assess tumor size and IL-6, respectively. Results: Tumor size and IL-6 levels were significantly decreased in TT group compare with TC group (p<0.05). microRNA let-7a was increased significantly in TT against control group respectively (p=0/000). Conclusion: Reduction in tumor size, followed by aerobic exercise can be attributed to the loss of inflammatory factors such as IL-6; It seems that regarding to up regulation effects of aerobic exercise training on let-7a and down regulation effects of that on IL-6 in mice with breast cancer, This type of training can be used as adjuvant therapy in conjunction with other therapies for breast cancer.

Keywords: breast cancer, aerobic training, microRNA let-7a, IL-6

Procedia PDF Downloads 431
816 An Insight into Early Stage Detection of Malignant Tumor by Microwave Imaging

Authors: Muhammad Hassan Khalil, Xu Jiadong

Abstract:

Detection of malignant tumor inside the breast of women is a challenging field for the researchers. MWI (Microwave imaging) for breast cancer diagnosis has been of interest for last two decades, newly it suggested for finding cancerous tissues of women breast. A simple and basic idea of the mathematical modeling is used throughout this paper for imaging of malignant tumor. In this paper, the authors explained inverse scattering method in the microwave imaging and also present some simulation results.

Keywords: breast cancer detection, microwave imaging, tomography, tumor

Procedia PDF Downloads 411
815 Metastatic Ovarian Tumor Discovered Accidentally during Cesarean Section in a 34 Year Old Woman: A Case Report

Authors: Ghada E. Esheba, Ghufran Kheshaifaty, Kholoud Al-Harbi, Wafa'a Al-Harbi, Ala'a Al-Orabi, Moayad Turkistani

Abstract:

Krukenberg tumor is a rare metastatic ovarian carcinoma that usually occurs in female between 30 - 40 year old and rarely seen after menopause. Stomach is the most common primary site. Histopathological features of krukenberg tumors appear as diffuse stromal proliferation, mucus-production, and numerous signet-cells and these tumors spread mostly by lymphatic route. Treatment and prognostic factors are not well established. This study describes a 34 year old female with a unilateral ovarian mass discovered accidentally during cesarean section delivery and it was misdiagnosed as luteoma of pregnancy, but histopathological examination showed a diffuse infiltration of the ovary and omentum by signet ring cells. These findings were not correlated with luteoma of pregnancy or any other types of primary ovarian tumors like surface epithelial tumor, sex cord stromal tumor or germ cell tumor. However, after the analysis of immunohistochemical results (negative CK7, positive CK20 and CDX-2), the finding was the diagnostic of metastatic krukenberg tumor. Two weeks later, the patient was evaluated and a large gastric tumor was found in her stomach and she underwent gastrectomy.

Keywords: CK7, CK20, CDX-2, Krukenburg tumor, metastatic ovarian tumor

Procedia PDF Downloads 315
814 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 358
813 Stability Analysis of Tumor-Immune Fractional Order Model

Authors: Sadia Arshad, Yifa Tang, Dumitru Baleanu

Abstract:

A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results.

Keywords: cancer model, fractional calculus, numerical simulations, stability analysis

Procedia PDF Downloads 315
812 Predictive Value of Primary Tumor Depth for Cervical Lymphadenopathy in Squamous Cell Carcinoma of Buccal Mucosa

Authors: Zohra Salim

Abstract:

Objective: To access the relationship of primary tumor thickness with cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa. Methodology: A cross-sectional observational study was carried out on 80 Patients with biopsy-proven oral squamous cell carcinoma of buccal mucosa at Dow University of Health Sciences. All the study participants were treated with wide local excision of the primary tumor with elective neck dissection. Patients with prior head and neck malignancy or those with prior radiotherapy or chemotherapy were excluded from the study. Data was entered and analyzed on SPSS 21. Chi-squared test with 95% C.I and 80% power of the test was used to evaluate the relationship of tumor depth with cervical lymph nodes. Results: 50 participants were male, and 30 patients were female. 30 patients were in the age range of 20-40 years, 36 patients in the range of 40-60 years, while 14 patients were beyond age 60 years. Tumor size ranged from 0.3cm to 5cm with a mean of 2.03cm. Tumor depth ranged from 0.2cm to 5cm. 20% of the participants reported with tumor depth greater than 2.5cm, while 80% of patients reported with tumor depth less than 2.5cm. Out of 80 patients, 27 reported with negative lymph nodes, while 53 patients reported with positive lymph nodes. Conclusion: Our study concludes that relationship exists between the depth of primary tumor and cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa.

Keywords: squamous cell carcinoma, tumor depth, cervical lymphadenopathy, buccal mucosa

Procedia PDF Downloads 237
811 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector

Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi

Abstract:

In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.

Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture

Procedia PDF Downloads 432
810 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation

Authors: Djallel Bouamama, Yasser R. Haddadi

Abstract:

Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.

Keywords: brain tumor classification, image segmentation, CNN, U-NET

Procedia PDF Downloads 33
809 Identification of Functional T Cell Receptors Reactive to Tumor Antigens from the T Cell Repertoire of Healthy Donors

Authors: Isaac Quiros-Fernandez, Angel Cid-Arregui

Abstract:

Tumor-reactive T cell receptors (TCRs) are being subject of intense investigation since they offer great potential in adoptive cell therapies against cancer. However, the identification of tumor-specific TCRs has proven challenging, for instance, due to the limited expansion capacity of tumor-infiltrating T cells (TILs) and the extremely low frequencies of tumor-reactive T cells in the repertoire of patients and healthy donors. We have developed an approach for rapid identification and characterization of neoepitope-reactive TCRs from the T cell repertoire of healthy donors. CD8 T cells isolated from multiple donors are subjected to a first sorting step after staining with HLA multimers carrying the peptide of interest. The isolated cells are expanded for two weeks, after which a second sorting is performed using the same peptide-HLA multimers. The cells isolated in this way are then processed for single-cell sequencing of their TCR alpha and beta chains. Newly identified TCRs are cloned in appropriate expression vectors for functional analysis on Jurkat, NK92, and primary CD8 T cells and tumor cells expressing the appropriate antigen. We have identified TCRs specifically binding HLA-A2 presenting epitopes of tumor antigens, which are capable of inducing TCR-mediated cell activation and cytotoxicity in target cancer cell lines. This method allows the identification of tumor-reactive TCRs in about two to three weeks, starting from peripheral blood samples of readily available healthy donors.

Keywords: cancer, TCR, tumor antigens, immunotherapy

Procedia PDF Downloads 69
808 Tocilizumab Suppresses the Pro-carcinogenic Effects of Breast Cancer-associated Fibroblasts Through Inhibition of the STAT3/AUF1 Pathway

Authors: Naif Al-Jomah, Falah H Al-Mohanna, Abdelilah Aboussekhra

Abstract:

Active breast cancer-associated fibroblasts (CAFs), the most influential cells in breast tumor microenvironment, express/secrete high levels of the proinvasive/metastatic interleukin-6 (IL-6). Therefore, we have tested here the effect of the IL-6 receptor (IL-6R) inhibitor tocilizumab (TCZ; Actemra) on different active breast CAFs. We have shown that TCZ potently and persistently suppresses the expression of various CAF biomarkers, namely α-SMA, SDF-1 as well as the STAT3 pathway and its downstream target AUF1. TCZ also inhibited the proliferation, migration and invasion abilities of active breast CAF cells. Additionally, TCZ repressed the ability of CAF cells in promoting epithelial-to-mesenchymal transition, and enhancing the migratory/invasive and proliferative capacities of breast cancer cells in vitro. Importantly, these findings were confirmed in orthotopic humanized breast tumors in mice. Furthermore, TCZ suppressed the expression of the pro-angiogenic factor VEGF-A and its transactivator HIF-1α in CAF cells, and consequently inhibited the angiogenic-promoting effect of active CAFs both in vitro and in orthotopic tumor xenografts. These results indicate that inhibition of the IL-6/STAT3/AUF1 pathway by TCZ can normalize active breast CAFs and suppress their paracrine pro-carcinogenic effects, which paves the way toward development of specific CAF-targeting therapy, badly needed for more efficient breast cancer treatments.

Keywords: angiogenesis, interleukin-6, paracrine, cancer-associated fibroblasts

Procedia PDF Downloads 97
807 Effects of a Bioactive Subfraction of Strobilanthes Crispus on the Tumour Growth, Body Weight and Haematological Parameters in 4T1-Induced Breast Cancer Model

Authors: Yusha'u Shu'aibu Baraya, Kah Keng Wong, Nik Soriani Yaacob

Abstract:

Strobilanthes crispus (S. crispus), is a Malaysian herb locally known as ‘Pecah kaca’ or ‘Jin batu’ which have demonstrated potent anticancer effects in both in vitro and in vivo models. In particular, S. crispus subfraction (SCS) significantly reduced tumor growth in N-methyl-N-Nitrosourea-induced breast cancer rat model. However, there is paucity of information on the effects of SCS in breast cancer metastasis. Thus, in this study, the antimetastatic effects of SCS (100 mg/kg) was investigated following 30 days of treatment in 4T1-induced mammary tumor (n = 5) model. The response to treatment was assessed based on the outcome of the tumour growth, body weight and hematological parameters. The results demonstrated that tumor bearing mice treated with SCS (TM-S) had significant (p<0.05) reduction in the mean tumor number and tumor volume as well as tumor weight compared to the tumor bearing mice (TM), i.e. tumor untreated group. Also, there was no secondary tumor formation or tumor-associated lesions in the major organs of TM-S compared to the TM group. Similarly, comparable body weights were observed among the TM-S, normal (uninduced) mice treated with SCS and normal (untreated/control) mice (NM) groups compared to the TM group (p<0.05). Furthermore, SCS administration does not cause significant changes in the hematological parameters as compared to the NM group, which indicates no sign of anemia and toxicity related effects. In conclusion, SCS significantly inhibited the overall tumor growth and metastasis in 4T1-induced breast cancer mouse model suggesting its promising potentials as therapeutic agent for breast cancer treatment.

Keywords: 4T1-cells, breast cancer, metastasis, Strobilanthes crispus

Procedia PDF Downloads 151
806 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor

Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani

Abstract:

The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.

Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport

Procedia PDF Downloads 312
805 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 173
804 Development and Characterization of Site Specific Peptide Conjugated Polymeric Nanoparticles for Efficient Delivery of Paclitaxel

Authors: Madhu Gupta, Vikas Sharma, Suresh P. Vyas

Abstract:

CD13 receptors are abundantly overexpressed in tumor cells as well as in neovasculature. The CD13 receptors were selected as a targeted site and polymeric nanoparticles (NPs) as a targeted delivery system. By combining these, a cyclic NGR (cNGR) peptide ligand was coupled on the terminal end of polyethylene glycol-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) and prepared the dual targeted-NPs (cNGR-PEG-PTX-NPs) to enhance the intracellular delivery of anticancer drug to tumor cells and tumor endothelial cells via ligand-receptor interaction. In-vitro cytotoxicity studies confirmed that the presence of cNGR enhanced the cytotoxic efficiency by 2.8 folds in Human Umbilical Vein Endothelial (HUVEC) cells, while cytotoxicity was improved by 2.6 folds in human fibrosarcoma (HT-1080) cells as compared to non-specific stealth NPs. Compared with other tested NPs, cNGR-PEG-PTX-NPs revealed more cytotoxicity by inducing more apoptosis and higher intracellular uptake. The tumor volume inhibition rate was 59.7% in case of cNGR-PEG-PTX-NPs that was comparatively more with other formulations, indicating that cNGR-PEG-PTX-NPs could more effectively inhibit tumor growth. As a consequence, the cNGR-PEG-PTX-NPs play a key role in enhancing tumor therapeutic efficiency for treatment of CD13 receptor specific solid tumor.

Keywords: cyclic NGR, CD13 receptor, targeted polymeric NPs, solid tumor, intracellular delivery

Procedia PDF Downloads 437
803 Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies

Authors: Nadine Wiesmann, Melanie Viel, Christoph Buhr, Rachel Tanner, Wolfgang Tremel, Juergen Brieger

Abstract:

Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics.

Keywords: metal oxide nanoparticles, nanomedicine, overcome resistances against classical treatment options, zinc oxide nanoparticles

Procedia PDF Downloads 128
802 Iterative Method for Lung Tumor Localization in 4D CT

Authors: Sarah K. Hagi, Majdi Alnowaimi

Abstract:

In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.

Keywords: automated algorithm , computed tomography, lung tumor, tumor localization

Procedia PDF Downloads 602
801 Co-Registered Identification and Treatment of Skin Tumor with Optical Coherence Tomography-Guided Laser Therapy

Authors: Bo-Huei Huang, Chih-Hsun Yang, Meng-Tsan Tsai

Abstract:

Optical coherence tomography (OCT) enables to provide advantages of noninvasive imaging, high resolution, and high imaging speed. In this study, we integrated OCT and a CW laser for tumor diagnosis and treatment. The axial and transverse resolutions of the developed OCT system are 3 μm and 1 μm, respectively. The frame rate of OCT system is 30 frames/s. In this study, the tumor cells were implanted into the mice skin and scanned by OCT to observe the morphological and angiographic changes. With OCT imaging, 3D microstructures and skin angiography of mice skin can be simultaneously acquired, which can be utilized for identification of the tumor distribution. Then, the CW laser beam can be accurately controlled to expose on the center of the tumor, according to the OCT results. Moreover, OCT was used to monitor the induced photothermolysis and to evaluate the treatment outcome. The results showed that OCT-guided laser therapy could efficiently improve the treatment outcome and the extra damage induced by CW can be greatly reduced. Such OCT-guided laser therapy system could be a potential tool for dermatological applications.

Keywords: optical coherence tomography, laser therapy, skin tumor, position guide

Procedia PDF Downloads 280
800 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 418
799 Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization

Authors: Sandabad Sara, Sayd Tahri Yassine, Hammouch Ahmed

Abstract:

The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature.

Keywords: MRI, Em algorithm, brain, tumor, Nl-means

Procedia PDF Downloads 336
798 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 182
797 Angiogenic Potential of Collagen Based Biomaterials Implanted on Chick Embryo Chorioallantoic Membrane as Alternative Microenvironment for in Vitro and in Vivo Angiogenesis Assays

Authors: Anca Maria Cimpean, Serban Comsa

Abstract:

Chick embryo chorioallantoic membrane (CAM) is a well vascularised in vivo experimental model used as a platform for testing the behavior of different implants inserted on it from tumor fragments to therapeutic agents or various biomaterials. Five types of collagen-based biomaterials with 2D and 3D structure (MotifMesh, Optimaix2D, Optimaix3D, Dual Layer Collagen and Xenoderm) were implanted on CAM and continuously evaluated by stereomicroscope for up to 5 days post-implant with an emphasis of their ability to requisite and develop new blood vessels (BVs) followed by microscopic analysis. MotifMEsh did not induce any angiogenic response lacking to be invaded by BVs from the CAM, but it induced intense inflammatory response necrosis and fibroblastic reaction around the implant. Optimaix2D has good adherence. CAM with minimal or no inflammatory reaction, a good integration of the CAM between the collagen mesh’s fibers, consistent adhesion of the cells to the collagen fibers,and a good ability to form pseudo-vascular channels filled with cells. Optimaix3D induced the highest angiogenic effects on CAM. The material shows good integration on CAM. The collagen fibers of the material show the ability to organize themselves into linear and tubular structures. It is possible to see blood elements, especially at the periphery of the implant. Dual-layer collagen behaves similar to Optimaix 3D, while Xenoderm induced a moderate angiogenic effect on CAM. Based on these data, we may conclude that collagen-based materials have variable ability to requisite and develop new blood vessels. A proper selection of collagen-based biomaterial scaffolds may crucially influence the acquisition and development of blood vessels during angiogenesis assays.

Keywords: chick embryo chorioallantoic membrane, collagen scaffolds, blood vessels, vascular microenvironment

Procedia PDF Downloads 193
796 Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency

Authors: Delphine Morales, Florian Lombart, Agathe Truchot, Pauline Maire, Pascale Vigneron, Antoine Galmiche, Catherine Lok, Muriel Vayssade

Abstract:

Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer".

Keywords: 3D human skin model, melanoma, tissue engineering, vemurafenib efficiency

Procedia PDF Downloads 304
795 Physiological Normoxia and Cellular Adhesion of Diffuse Large B-Cell Lymphoma Primary Cells: Real-Time PCR and Immunohistochemistry Study

Authors: Kamila Duś-Szachniewicz, Kinga M. Walaszek, Paweł Skiba, Paweł Kołodziej, Piotr Ziółkowski

Abstract:

Cell adhesion is of fundamental importance in the cell communication, signaling, and motility, and its dysfunction occurs prevalently during cancer progression. The knowledge of the molecular and cellular processes involved in abnormalities in cancer cells adhesion has greatly increased, and it has been focused mainly on cellular adhesion molecules (CAMs) and tumor microenvironment. Unfortunately, most of the data regarding CAMs expression relates to study on cells maintained in standard oxygen condition of 21%, while the emerging evidence suggests that culturing cells in ambient air is far from physiological. In fact, oxygen in human tissues ranges from 1 to 11%. The aim of this study was to compare the effects of physiological lymph node normoxia (5% O2), and hyperoxia (21% O2) on the expression of cellular adhesion molecules of primary diffuse large B-cell lymphoma cells (DLBCL) isolated from 10 lymphoma patients. Quantitative RT-PCR and immunohistochemistry were used to confirm the differential expression of several CAMs, including ICAM, CD83, CD81, CD44, depending on the level of oxygen. Our findings also suggest that DLBCL cells maintained at ambient O2 (21%) exhibit reduced growth rate and migration ability compared to the cells growing in normoxia conditions. Taking into account all the observations, we emphasize the need to identify the optimal human cell culture conditions mimicking the physiological aspects of tumor growth and differentiation.

Keywords: adhesion molecules, diffuse large B-cell lymphoma, physiological normoxia, quantitative RT-PCR

Procedia PDF Downloads 278
794 Electro-Thermal Imaging of Breast Phantom: An Experimental Study

Authors: H. Feza Carlak, N. G. Gencer

Abstract:

To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.

Keywords: medical diagnostic imaging, breast phantom, active thermography, breast cancer detection

Procedia PDF Downloads 428
793 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 341
792 Prospects of Acellular Organ Scaffolds for Drug Discovery

Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen

Abstract:

Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.

Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering

Procedia PDF Downloads 300