Search results for: Monte-Carlo simulations
1906 Drama in the Classroom: Work and Experience with Standardized Patients and Classroom Simulation of Difficult Clinical Scenarios
Authors: Aliyah Dosani, Kerri Alderson
Abstract:
Two different simulations using standardized patients were developed to reinforce content and foster undergraduate nursing students’ practice and development of interpersonal skills in difficult clinical situations in the classroom. The live actor simulations focused on fostering interpersonal skills, traditionally considered by students to be simple and easy. However, seemingly straightforward interactions can be very stressful, particularly in women’s complex social/emotional situations. Supporting patients in these contexts is fraught with complexity and high emotion, requiring skillful support, assessment and intervention by a registered nurse. In this presentation, the personal and professional perspectives of the development, incorporation, and execution of the live actor simulations will be discussed, as well as the inclusion of student perceptions, and the learning gained by the involved faculty.Keywords: adult learning, interpersonal skill development, simulation learning, teaching and learning
Procedia PDF Downloads 1431905 Coarse-Graining in Micromagnetic Simulations of Magnetic Hyperthermia
Authors: Razyeh Behbahani, Martin L. Plumer, Ivan Saika-Voivod
Abstract:
Micromagnetic simulations based on the stochastic Landau-Lifshitz-Gilbert equation are used to calculate dynamic magnetic hysteresis loops relevant to magnetic hyperthermia applications. With the goal to effectively simulate room-temperature loops for large iron-oxide based systems at relatively slow sweep rates on the order of 1 Oe/ns or less, a coarse-graining scheme is proposed and tested. The scheme is derived from a previously developed renormalization-group approach. Loops associated with nanorods, used as building blocks for larger nanoparticles that were employed in preclinical trials (Dennis et al., 2009 Nanotechnology 20 395103), serve as the model test system. The scaling algorithm is shown to produce nearly identical loops over several decades in the model grain sizes. Sweep-rate scaling involving the damping constant alpha is also demonstrated.Keywords: coarse-graining, hyperthermia, hysteresis loops, micromagnetic simulations
Procedia PDF Downloads 1481904 Information Exchange Process Analysis between Authoring Design Tools and Lighting Simulation Tools
Authors: Rudan Xue, Annika Moscati, Rehel Zeleke Kebede, Peter Johansson
Abstract:
Successful buildings’ simulation and analysis inevitably require information exchange between multiple building information modeling (BIM) software. The BIM infor-mation exchange based on IFC is widely used. However, Industry Foundation Classifi-cation (IFC) files are not always reliable and information can get lost when using dif-ferent software for modeling and simulations. In this research, interviews with lighting simulation experts and a case study provided by a company producing lighting devices have been the research methods used to identify the necessary steps and data for suc-cessful information exchange between lighting simulation tools and authoring design tools. Model creation, information exchange, and model simulation have been identi-fied as key aspects for the success of information exchange. The paper concludes with recommendations for improved information exchange and more reliable simulations that take all the needed parameters into consideration.Keywords: BIM, data exchange, interoperability issues, lighting simulations
Procedia PDF Downloads 2391903 Finite Volume Method Simulations of GaN Growth Process in MOVPE Reactor
Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski
Abstract:
In the present study, numerical simulations of heat and mass transfer during gallium nitride growth process in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Existing knowledge about phenomena occurring in the MOVPE process allows to produce high quality nitride based semiconductors. However, process parameters of MOVPE reactors can vary in certain ranges. Main goal of this study is optimization of the process and improvement of the quality of obtained crystal. In order to investigate this subject a series of computer simulations have been performed. Numerical simulations of heat and mass transfer in GaN epitaxial growth process have been performed to determine growth rate for various mass flow rates and pressures of reagents. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during the process, modeling is the only solution to understand the process precisely. Main heat transfer mechanisms during MOVPE process are convection and radiation. Correlation of modeling results with the experiment allows to determine optimal process parameters for obtaining crystals of highest quality.Keywords: Finite Volume Method, semiconductors, epitaxial growth, metalorganic vapor phase epitaxy, gallium nitride
Procedia PDF Downloads 3981902 Optimization of the Numerical Fracture Mechanics
Authors: H. Hentati, R. Abdelmoula, Li Jia, A. Maalej
Abstract:
In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time.Keywords: fracture mechanics, optimization, variation approach, mechanic
Procedia PDF Downloads 6061901 Accelerated Molecular Simulation: A Convolution Approach
Authors: Jannes Quer, Amir Niknejad, Marcus Weber
Abstract:
Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be ”steared” out of local minimizers of the potential energy surface – the so-called metastabilities – of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind ”stearing” is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points.Keywords: extrapolation, Eyring-Kramers, metastability, multilevel sampling
Procedia PDF Downloads 3281900 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru
Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza
Abstract:
Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality-WRF-Chem model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.Keywords: ground-ozone, lima, sulphur dioxide, WRF-chem
Procedia PDF Downloads 1371899 Experimental Validation of Computational Fluid Dynamics Used for Pharyngeal Flow Patterns during Obstructive Sleep Apnea
Authors: Pragathi Gurumurthy, Christina Hagen, Patricia Ulloa, Martin A. Koch, Thorsten M. Buzug
Abstract:
Obstructive sleep apnea (OSA) is a sleep disorder where the patient suffers a disturbed airflow during sleep due to partial or complete occlusion of the pharyngeal airway. Recently, numerical simulations have been used to better understand the mechanism of pharyngeal collapse. However, to gain confidence in the solutions so obtained, an experimental validation is required. Therefore, in this study an experimental validation of computational fluid dynamics (CFD) used for the study of human pharyngeal flow patterns during OSA is performed. A stationary incompressible Navier-Stokes equation solved using the finite element method was used to numerically study the flow patterns in a computed tomography-based human pharynx model. The inlet flow rate was set to 250 ml/s and such that a flat profile was maintained at the inlet. The outlet pressure was set to 0 Pa. The experimental technique used for the validation of CFD of fluid flow patterns is phase contrast-MRI (PC-MRI). Using the same computed tomography data of the human pharynx as in the simulations, a phantom for the experiment was 3 D printed. Glycerol (55.27% weight) in water was used as a test fluid at 25°C. Inflow conditions similar to the CFD study were simulated using an MRI compatible flow pump (CardioFlow-5000MR, Shelley Medical Imaging Technologies). The entire experiment was done on a 3 T MR system (Ingenia, Philips) with 108 channel body coil using an RF-spoiled, gradient echo sequence. A comparison of the axial velocity obtained in the pharynx from the numerical simulations and PC-MRI shows good agreement. The region of jet impingement and recirculation also coincide, therefore validating the numerical simulations. Hence, the experimental validation proves the reliability and correctness of the numerical simulations.Keywords: computational fluid dynamics, experimental validation, phase contrast-MRI, obstructive sleep apnea
Procedia PDF Downloads 3111898 Numerical Simulations of the Transition Flow of Model Propellers for Predicting Open Water Performance
Authors: Huilan Yao, Huaixin Zhang
Abstract:
Simulations of the transition flow of model propellers are important for predicting hydrodynamic performance and studying scale effects. In this paper, the transition flow of a model propeller under different loadings are simulated using a transition model provided by STAR-CCM+, and the influence of turbulence intensity (TI) on the transition, especially friction and pressure components of propeller performance, was studied. Before that, the transition model was applied to simulate the transition flow of a flat plate and an airfoil. Predicted transitions agree well with experimental results. Then, the transition model was applied for propeller simulations in open water, and the influence of TI was studied. Under the heavy and moderate loadings, thrust and torque of the propeller predicted by the transition model (different TI) and two turbulence models are very close and agree well with measurements. However, under the light loading, only the transition model with low TI predicts the most accurate results. Above all, the friction components of propeller performance predicted by the transition model with different TI have obvious difference.Keywords: transition flow, model propellers, hydrodynamic performance, numerical simulation
Procedia PDF Downloads 2631897 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria
Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero
Abstract:
Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria
Procedia PDF Downloads 3361896 Dynamic Shock Bank Liquidity Analysis
Authors: C. Recommandé, J. C. Blind, A. Clavel, R. Gourichon, V. Le Gal
Abstract:
Simulations are developed in this paper with usual DSGE model equations. The model is based on simplified version of Smets-Wouters equations in use at European Central Bank which implies 10 macro-economic variables: consumption, investment, wages, inflation, capital stock, interest rates, production, capital accumulation, labour and credit rate, and allows take into consideration the banking system. Throughout the simulations, this model will be used to evaluate the impact of rate shocks recounting the actions of the European Central Bank during 2008.Keywords: CC-LM, Central Bank, DSGE, liquidity shock, non-standard intervention
Procedia PDF Downloads 4581895 Influence of Microstructure on Deformation Mechanisms and Mechanical Properties of Additively Manufactured Steel
Authors: Etienne Bonnaud, David Lindell
Abstract:
Correlations between microstructure, deformation mechanisms, and mechanical properties in additively manufactured 316L steel components have been investigated. Mechanical properties in the vertical direction (building direction) and in the horizontal direction (in plane directions) are markedly different. Vertically built specimens show lower yield stress but higher elongation than their horizontally built counterparts. Microscopic observations by electron back scattered diffraction (EBSD) for both build orientations reveal a strong [110] fiber texture in the build direction but different grain morphologies. These microstructures are used as input in subsequent crystal plasticity numerical simulations to understand their influence on the deformation mechanisms and the mechanical properties. Mean field simulations using a visco plastic self consistent (VPSC) model were carried out first but did not give results consistent with the tensile test experiments. A more detailed full-field model had to be used based on the Visco Plastic Fast Fourier Transform (VPFTT) method. A more accurate microstructure description was then input to the simulation model, where thin vertical regions of smaller grains were also taken into account. It turned out that these small grain clusters were responsible for the discrepancies in yield stress and hardening. Texture and morphology have a strong effect on mechanical properties. The different mechanical behaviors between vertically and horizontally printed specimens could be explained by means of numerical full-field crystal plasticity simulations, and the presence of thin clusters of smaller grains was shown to play a central role in the deformation mechanisms.Keywords: additive manufacturing, crystal plasticity, full-field simulations, mean-field simulations, texture
Procedia PDF Downloads 701894 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM
Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins
Abstract:
In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS
Procedia PDF Downloads 2611893 Impact of Using Peer Instruction and PhET Simulations on the Motivation and Physics Anxiety
Authors: Jaypee Limueco
Abstract:
This research focused on the impact of Peer Instruction and PhET Simulations on the level of motivation and Physics anxiety of Grade 9 students. Two groups of students were used in the study. The experimental group involved 65 registered students while the control group has 64 registered students. To determine the level of motivation of students in learning physics, the Physics Motivation Questionnaire was administered. On the other hand, to determine the level of Physics anxiety of the students in each group, Physics Anxiety Rating Scale was used. Peer Instruction supplemented with PhET simulations was implemented in the experimental group while the traditional lecture method was used in the control group. Both instruments were again administered after the implementation of the two different teaching approaches. “Wilcoxon Signed Rank test” was used to test the significant difference between pretest and posttest of each group. “Mann Whitney U” was used to test if significant differences exist between each group before and after instruction. Results showed that there is no significant difference between the level of motivation and anxiety of the experimental and control group before the implementation at p<0.05 significance level. It implies that the students have the same level of motivation and physics anxiety before instruction. However, the results of both tests have significant differences between the groups after instruction. It is also found that there is a significant positive change in the responses of the students in the experimental group while no change was evident on the control. The result of the analysis of the Mann Whitney U shows that the change in the attributes of the students is caused by the treatment. Therefore, it is concluded that Peer Instruction and PhET simulation helped in alleviating motivation of students and minimizing their anxiety towards Physics.Keywords: anxiety, motivation, peer instruction, PhET simulations
Procedia PDF Downloads 3561892 Critical Velocities for Particle Transport from Experiments and CFD Simulations
Authors: Sajith Sajeev, Brenton McLaury, Siamack Shirazi
Abstract:
In the petroleum industry, solid particles are often present along with the produced fluids. It is imperative to keep particles from accumulating in flow lines. In this study, various experiments are conducted to study sand particle transport, where critical velocity is defined as the average fluid velocity to keep particles continuously moving. Many parameters related to the fluid, particles and pipe affect the transport process. Experimental results are presented varying the particle concentration. Additionally, CFD simulations using a discrete element modeling (DEM) approach are presented to compare with experimental result.Keywords: particle transport, critical velocity, CFD, DEM
Procedia PDF Downloads 3081891 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations
Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho
Abstract:
The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.Keywords: best management practices, on-site stormwater detention, source control, urban drainage
Procedia PDF Downloads 1881890 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.Keywords: molecular dynamics, high-intensity, nanosecond, electroporation
Procedia PDF Downloads 1121889 Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator
Authors: Petter Eklund, Jonathan Sjölund, Sandra Eriksson, Mats Leijon
Abstract:
The spoke type rotor can be used to obtain magnetic flux concentration in permanent magnet machines. This allows the air gap magnetic flux density to exceed the remanent flux density of the permanent magnets but gives problems with leakage fluxes in the magnetic circuit. The end leakage flux of one spoke type permanent magnet rotor design is studied through measurements and finite element simulations. The measurements are performed in the end regions of a 12 kW prototype generator for a vertical axis wind turbine. The simulations are made using three dimensional finite elements to calculate the magnetic field distribution in the end regions of the machine. Also two dimensional finite element simulations are performed and the impact of the two dimensional approximation is studied. It is found that the magnetic leakage flux in the end regions of the machine is equal to about 20% of the flux in the permanent magnets. The overestimation of the performance by the two dimensional approximation is quantified and a curve-fitted expression for its behavior is suggested.Keywords: end effects, end leakage flux, permanent magnet machine, spoke type rotor
Procedia PDF Downloads 3321888 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows
Authors: Nadim Zgheib, Sivaramakrishnan Balachandar
Abstract:
We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis
Procedia PDF Downloads 1861887 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis
Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi
Abstract:
Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.Keywords: Lab-on-chip, LOC, micro-mixer, OpenFOAM, PDMS
Procedia PDF Downloads 1601886 Development of Concurrent Engineering through the Application of Software Simulations of Metal Production Processing and Analysis of the Effects of Application
Authors: D. M. Eric, D. Milosevic, F. D. Eric
Abstract:
Concurrent engineering technologies are a modern concept in manufacturing engineering. One of the key goals in designing modern technological processes is further reduction of production costs, both in the prototype and the preparatory part, as well as during the serial production. Thanks to many segments of concurrent engineering, these goals can be accomplished much more easily. In this paper, we give an overview of the advantages of using modern software simulations in relation to the classical aspects of designing technological processes of metal deformation. Significant savings are achieved thanks to the electronic simulation and software detection of all possible irregularities in the functional-working regime of the technological process. In order for the expected results to be optimal, it is necessary that the input parameters are very objective and that they reliably represent the values of these parameters in real conditions. Since it is a metal deformation treatment here, the particularly important parameters are the coefficient of internal friction between the working material and the tools, as well as the parameters related to the flow curve of the processing material. The paper will give a presentation for the experimental determination of some of these parameters.Keywords: production technologies, metal processing, software simulations, effects of application
Procedia PDF Downloads 2351885 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets
Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi
Abstract:
TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter
Procedia PDF Downloads 5211884 Development of Tools for Multi Vehicles Simulation with Robot Operating System and ArduPilot
Authors: Pierre Kancir, Jean-Philippe Diguet, Marc Sevaux
Abstract:
One of the main difficulties in developing multi-robot systems (MRS) is related to the simulation and testing tools available. Indeed, if the differences between simulations and real robots are too significant, the transition from the simulation to the robot won’t be possible without another long development phase and won’t permit to validate the simulation. Moreover, the testing of different algorithmic solutions or modifications of robots requires a strong knowledge of current tools and a significant development time. Therefore, the availability of tools for MRS, mainly with flying drones, is crucial to enable the industrial emergence of these systems. This research aims to present the most commonly used tools for MRS simulations and their main shortcomings and presents complementary tools to improve the productivity of designers in the development of multi-vehicle solutions focused on a fast learning curve and rapid transition from simulations to real usage. The proposed contributions are based on existing open source tools as Gazebo simulator combined with ROS (Robot Operating System) and the open-source multi-platform autopilot ArduPilot to bring them to a broad audience.Keywords: ROS, ArduPilot, MRS, simulation, drones, Gazebo
Procedia PDF Downloads 2101883 Numerical Investigation of Fluid Outflow through a Retinal Hole after Scleral Buckling
Authors: T. Walczak, J. K. Grabski, P. Fritzkowski, M. Stopa
Abstract:
Objectives of the study are i) to perform numerical simulations that permit an analysis of the dynamics of subretinal fluid when an implant has induced scleral intussusception and ii) assess the impact of the physical parameters of the model on the flow rate. Computer simulations were created using finite element method (FEM) based on a model that takes into account the interaction of a viscous fluid (subretinal fluid) with a hyperelastic body (retina). The purpose of the calculation was to investigate the dependence of the flow rate of subretinal fluid through a hole in the retina on different factors such as viscosity of subretinal fluid, material parameters of the retina, and the offset of the implant from the retina’s hole. These simulations were performed for different speeds of eye movement that reflect the behavior of the eye when reading, REM, and saccadic movements. Similar to other works in the field of subretinal fluid flow, it was assumed stationary, single sided, forced fluid flow in the considered area simulating the subretinal space. Additionally, a hyperelastic material model of the retina and parameterized geometry of the considered model was adopted. The calculations also examined the influence the direction of the force of gravity due to the position of the patient’s head on the trend of outflow of fluid. The simulations revealed that fluid outflow from the retina becomes significant with eyeball movement speed of 100°/sec. This speed is greater than in the case of reading but is four times less than saccadic movement. The increase of viscosity of the fluid increased beneficial effect. Further, the simulation results suggest that moderate eye movement speed is optimal and that the conventional prescription of the avoidance of routine eye movement following retinal detachment surgery should be relaxed. Additionally, to verify numerical results, some calculations were repeated with use of meshless method (method of fundamental solutions), which is relatively fast and easy to implement. The paper has been supported by 02/21/DSPB/3477 grant.Keywords: CFD simulations, FEM analysis, meshless method, retinal detachment
Procedia PDF Downloads 3431882 Effect of Bi-Dispersity on Particle Clustering in Sedimentation
Authors: Ali Abbas Zaidi
Abstract:
In free settling or sedimentation, particles form clusters at high Reynolds number and dilute suspensions. It is due to the entrapment of particles in the wakes of upstream particles. In this paper, the effect of bi-dispersity of settling particles on particle clustering is investigated using particle-resolved direct numerical simulation. Immersed boundary method is used for particle fluid interactions and discrete element method is used for particle-particle interactions. The solid volume fraction used in the simulation is 1% and the Reynolds number based on Sauter mean diameter is 350. Both solid volume fraction and Reynolds number lie in the clustering regime of sedimentation. In simulations, the particle diameter ratio (i.e. diameter of larger particle to smaller particle (d₁/d₂)) is varied from 2:1, 3:1 and 4:1. For each case of particle diameter ratio, solid volume fraction for each particle size (φ₁/φ₂) is varied from 1:1, 1:2 and 2:1. For comparison, simulations are also performed for monodisperse particles. For studying particles clustering, radial distribution function and instantaneous location of particles in the computational domain are studied. It is observed that the degree of particle clustering decreases with the increase in the bi-dispersity of settling particles. The smallest degree of particle clustering or dispersion of particles is observed for particles with d₁/d₂ equal to 4:1 and φ₁/φ₂ equal to 1:2. Simulations showed that the reduction in particle clustering by increasing bi-dispersity is due to the difference in settling velocity of particles. Particles with larger size settle faster and knockout the smaller particles from clustered regions of particles in the computational domain.Keywords: dispersion in bi-disperse settling particles, particle microstructures in bi-disperse suspensions, particle resolved direct numerical simulations, settling of bi-disperse particles
Procedia PDF Downloads 2071881 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines
Authors: Mustafa Sahin, İlkay Yavrucuk
Abstract:
This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control
Procedia PDF Downloads 1361880 Quantum Mechanism Approach for Non-Ruin Probability and Comparison of Path Integral Method and Stochastic Simulations
Authors: Ahmet Kaya
Abstract:
Quantum mechanism is one of the most important approaches to calculating non-ruin probability. We apply standard Dirac notation to model given Hamiltonians. By using the traditional method and eigenvector basis, non-ruin probability is found for several examples. Also, non-ruin probability is calculated for two different Hamiltonian by using the tensor product. Finally, the path integral method is applied to the examples and comparison is made for stochastic simulations and path integral calculation.Keywords: quantum physics, Hamiltonian system, path integral, tensor product, ruin probability
Procedia PDF Downloads 3341879 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics
Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich
Abstract:
Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes
Procedia PDF Downloads 751878 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation
Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi
Abstract:
Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress
Procedia PDF Downloads 1641877 Experimental Investigation and Numerical Simulations of the Cylindrical Machining of a Ti-6Al-4V Tree
Authors: Mohamed Sahli, David Bassir, Thierry Barriere, Xavier Roizard
Abstract:
Predicting the behaviour of the Ti-6Al-4V alloy during the turning operation was very important in the choice of suitable cutting tools and also in the machining strategies. In this study, a 3D model with thermo-mechanical coupling has been proposed to study the influence of cutting parameters and also lubrication on the performance of cutting tools. The constants of the constitutive Johnson-Cook model of Ti-6Al-4V alloy were identified using inverse analysis based on the parameters of the orthogonal cutting process. Then, numerical simulations of the finishing machining operation were developed and experimentally validated for the cylindrical stock removal stage with the finishing cutting tool.Keywords: titanium turning, cutting tools, FE simulation, chip
Procedia PDF Downloads 173