Search results for: Darren A. Diaz
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 148

Search results for: Darren A. Diaz

118 Latinx Adults’ Emergent Bilinguals’ Perceptions of Culturally Diverse Teaching Strategies

Authors: Sharon Diaz Ruiz

Abstract:

The population of Latinx adult English language learners (ELLs) in the United States will increase in the next few years and become even more racially and linguistically diverse. Our classrooms reflect these demographic changes; therefore, there will always be the need to identify language teaching practices that would allow educators to meet this linguistic diversity. This qualitative study explores Latinx adult English language learners' perceptions of culturally responsive teaching strategies. Participants in this study will be enrolled in an English developmental course for the Fall of 2022. The data collection process will consist of overt observation during five presentations/activities, including culturally inclusive readings and student reflections. The teaching materials selected will align with the course module's goals and objectives. The result of this investigation will shed light on the gap in the literature documenting the application of culturally responsive pedagogy to Latino adult language learners.

Keywords: emergent bilinguals, adult learners, Latinx learners, ELL

Procedia PDF Downloads 99
117 An Open Loop Distribution Module for Precise and Uniform Drip Fertigation in Soilless Culture

Authors: Juan Ignacio Arango, Andres Diaz, Giacomo Barbieri

Abstract:

In soilless culture, the definition of efficient fertigation strategies is fundamental for the growth of crops. Flexible test-benches able to independently manage groups of crops are key for investigating efficient fertigation practices through experimentation. These test-benches must be able to provide nutrient solution (NS) in a precise, uniform and repeatable way in order to effectively implement and compare different fertigation strategies. This article describes a distribution module for investigating fertigation practices able to control the fertigation dose and frequency. The proposed solution is characterized in terms of precision, uniformity and repeatability since these parameters are fundamental in the implementation of effective experiments for the investigation of fertigation practices. After a calibration process, the implemented system reaches a precision of 1mL, a uniformity of 98.5% at a total cost of 735USD.

Keywords: recision horticulture, test-bench, fertigation strategy, automation, flexibility

Procedia PDF Downloads 136
116 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms: Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. The existence of influential users who have developed a reputation for their knowledge and experience of specific topics is a major factor contributing to this impact. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is related to the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: Twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 117
115 Types of Limit Application Problems in Engineering Students: Case Studies

Authors: Veronica Diaz Quezada

Abstract:

The society of the 21st century requires training of engineers capable of solving routine and non-routine problems in applications of the limit of real functions, as part of the course Calculus I. For this purpose, research was conducted with a methodological design that combines quantitative and qualitative procedures and that aims, to identify and to characterize the types of problems according to their nature and context, through the application of a mathematics test; to know— through a questionnaire— the opinion of difficulties in their solution, previous and missing knowledge of some students of three engineering careers of a state university in Chile. This research is completed with three case studies. The results favor the performance of students in solving problems of a fantasist and realistic context, but these do not guarantee mathematical skills which are necessary to solve non-routine problems of limit applications. In conclusion, through this research, it became clear that the students of the three engineerings do not have all the necessary skills to solve problems of application of the limit of a function of the real variable.

Keywords: case studies, engineering program, limits, problem solving

Procedia PDF Downloads 127
114 Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite

Authors: Clarissa D. M. O. Guimaraes, Mariza C. M. Fernandes, Francisco R. V. Diaz, Juliana R. Souza

Abstract:

The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications.

Keywords: composites, mineral filler, tailings of scheelite, tribology

Procedia PDF Downloads 163
113 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 29
112 Limits Problem Solving in Engineering Careers: Competences and Errors

Authors: Veronica Diaz Quezada

Abstract:

In this article, the performance and errors are featured and analysed in the limit problems solving of a real-valued function, in correspondence to competency-based education in engineering careers, in the south of Chile. The methodological component is contextualised in a qualitative research, with a descriptive and explorative design, with elaboration, content validation and application of quantitative instruments, consisting of two parallel forms of open answer tests, based on limit application problems. The mathematical competences and errors made by students from five engineering careers from a public University are identified and characterized. Results show better performance only to solve routine-context problem-solving competence, thus they are oriented towards a rational solution or they use a suitable problem-solving method, achieving the correct solution. Regarding errors, most of them are related to techniques and the incorrect use of theorems and definitions of real-valued function limits of real variable.

Keywords: engineering education, errors, limits, mathematics competences, problem solving

Procedia PDF Downloads 150
111 Use and Appreciation of a Type of Mathematics Textbook for Secondary Education

Authors: Verónica Díaz Quezada

Abstract:

Despite the wide variety of educational resources on the market and the advances produced in the technological field, the practice of teaching continues to be supported mainly by textbooks. This article reports on descriptive research with qualitative methodology carried out on secondary school mathematics teachers in a region of Chile, in order to describe the use and the indicators of appreciation that teachers have on the textbooks distributed by the official body to public educational establishments. Data were collected through an open response opinion questionnaire. According to the results, among the texts available for the annual performance of their teaching work, the expository and technological books predominate, to the detriment of comprehensive books. The exhibition structure favors master expositions and repetitive exercises, while, with the technological structure, a productive exercise is attempted, proposing numerous applications with the intention of giving meaning to the different mathematical rules and procedures. In relation to the indicators of appreciation that teachers have regarding the use of mathematics textbooks, the suitability and quality of the teaching resources are verified as the most satisfying characteristic.

Keywords: mathematics, secondary school, teachers, textbooks

Procedia PDF Downloads 163
110 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. A most important factor contributing to this effect is the existence of influential users, who have developed a reputation for their awareness and experience on specific subjects. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is based on the pioneering work of Katz and Lazarsfeld (1959), who created the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 136
109 The Effect of Undernutrition on Sputum Culture Conversion and Treatment Outcomes among People with Multidrug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis

Authors: Fasil Wagnew, Kerri Viney, Kefyalew Addis Alene, Matthew Kelly, Darren Gray

Abstract:

Background: Undernutrition is a risk factor for tuberculosis (TB), including poor treatment outcomes. However, evidence regarding the effect of undernutrition on TB treatment outcomes is not well understood. We aimed to evaluate the effect of undernutrition on sputum culture conversion and treatment outcomes among people with multi-drug resistance (MDR)-TB. Methods: We searched for publications in the Medline, Embase, Scopus, and Web of Science databases without restrictions on geography or year of publication. We conducted a random-effect meta-analysis to estimate the effects of undernutrition on sputum culture conversion and treatment outcomes. Two reviewers independently assessed the study eligibility, extracted the necessary information, and assessed the risk of bias. Depending on the nature of the data, odds ratio (OR) and hazard ratio (HR) with 95% confidence intervals (CIs) were used to summarize the effect estimates. Potential publication bias was checked using funnel plots and Egger’s tests. Results: Of 2358 records screened, 59 studies comprising a total of 31,254 people with MDR-TB were included. Undernutrition was significantly associated with a lower sputum culture conversion rate (HR 0·7, 95% CI 0·6–0·9, I2=67·1%) and a higher rate of mortality (OR 2·9, 95%CI 2·1–3·8, I2=23·7%) and unfavourable treatment outcomes (OR 1·8, 95%CI 1·5–2·0, I2=72·7%). There was no statistically significant publication bias in the included studies. Three studies were low, forty-two studies were moderate, and fourteen studies were high quality. Interpretations: Undernutrition was significantly associated with unfavourable treatment outcomes, including mortality and lower sputum culture conversion among people with MDR-TB. These findings have implications for supporting targeted nutritional interventions alongside standardised second-line TB drugs.

Keywords: undernutrition, MDR-TB, sputum culture conversion, treatment outcomes, meta-analysis

Procedia PDF Downloads 151
108 Effects of Zinc and Vitamin A Supplementation on Prognostic Markers and Treatment Outcomes of Adults with Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis

Authors: Fasil Wagnew, Kefyalew Addis Alene, Setegn Eshetie, Tom Wingfield, Matthew Kelly, Darren Gray

Abstract:

Introduction: Undernutrition is a major and under-appreciated risk factor for TB, which is estimated to be responsible for 1.9 million TB cases per year globally. The effectiveness of micronutrient supplementation on TB treatment outcomes and its prognostic markers such as sputum conversion and serum zinc, retinol, and hemoglobin levels has been poorly understood. This systematic review and meta-analysis aimed to determine the association between zinc and vitamin A supplementation and TB treatment outcomes and its prognostic markers. Methods: A systematic literature search for randomized controlled trials (RCTs) was performed in PubMed, Embase, and Scopus databases. Meta-analysis with a random effect model was performed to estimate risk ratio (RR) and mean difference (MD), with a 95% confidence interval (CI), for dichotomous and continuous outcomes, respectively. Results: Our search identified 2,195 records. Of these, nine RCTs consisting of 1,375 participants were included in the final analyses. Among adults with pulmonary TB, zinc (RR: 0.94, 95%CI: 0.86, 1.03), vitamin A (RR: 0.90, 95%CI: 0.80, 1.01), and combined zinc and vitamin A (RR: 0.98, 95%CI: 0.89, 1.08) supplementation were not significantly associated with TB treatment success. Combined zinc and vitamin A supplementation was significantly associated with increased sputum smear conversion at 2 months (RR: 1.16, 95%CI: 1.03, 1.32), serum zinc levels at 2 months (MD of 0.86umol/l, 95% CI: 0.14, 1.57), serum retinol levels at 2 months (MD: 0.06umol/l, 95 % CI: 0.04, 0.08) and 6 months (MD: 0.12umol/l, 95 % CI: 0.10, 0.14), and serum hemoglobin level at 6 months (MD: 0.29 ug/dl, 95% CI: 0.08 to 0.51), among adults with TB. Conclusions: Providing zinc and vitamin A supplementation to adults with pulmonary TB during treatment may increase early sputum smear conversion, serum zinc, retinol, and hemoglobin levels. However, the use of zinc, vitamin A, or both were not associated with TB treatment success.

Keywords: zinc and vitamin A supplementation, tuberculosis, treatment outcomes, meta-analysis, RCT

Procedia PDF Downloads 168
107 Adverse Childhood Experiences (ACES) and Later-Life Depression: Perceived Social Support as a Potential Protective Factor

Authors: E. Von Cheong, Carol Sinnott, Darren Dahly, Patricia M. Kearney

Abstract:

Introduction and Aim: Adverse childhood experiences (ACEs) are all too common and have been linked to poorer health and wellbeing across the life course. While the prevention of ACEs is a worthy goal, it is important that we also try to lessen the impact of ACEs for those who do experience them. This study aims to investigate associations between adverse childhood experiences (ACEs) and later-life depressive symptoms; and to explore whether perceived social support (PSS) moderates these. Method: We analysed baseline data from the Mitchelstown (Ireland) 2010-11 cohort involving 2047 men and women aged 50–69 years. Self-reported assessments included ACEs (Centre for Disease Control ACE questionnaire), PSS (Oslo Social Support Scale), and depressive symptoms (CES-D). The primary exposure was self-report of at least one ACE. We also investigated the effects of ACE exposure by the subtypes abuse, neglect, and household dysfunction. Associations between each of these exposures and depressive symptoms were estimated using logistic regression, adjusted for socio-demographic factors that were selected using the Directed Acyclic Graph (DAG) approach. We also tested whether the estimated associations varied across levels of PSS (poor, moderate, and good). Results: 23.7% of participants reported at least one ACE (95% CI: 21.9% to 25.6%). ACE exposures (overall or subtype) were associated with a higher odds of depressive symptoms, but only among individuals with poor PSS. For example, exposure to any ACE (vs. none) was associated with 3 times the odds of depressive symptoms (Adjusted OR 2.97; 95% CI 1.63 to 5.40) among individuals reporting poor PSS, while among those reporting moderate PSS, the adjusted OR was 1.18 (95% CI 0.72 to 1.94). Discussion: ACEs are common among older adults in Ireland and are associated with higher odds of later-life depressive symptoms among those also reporting poor PSS. Interventions that enhance perception of social support following ACE exposure may help reduce the burden of depression in older populations.

Keywords: adverse childhood experiences, depression, later-life, perceived social support

Procedia PDF Downloads 239
106 Systematic Review of Associations between Interoception, Vagal Tone, and Emotional Regulation

Authors: Darren Edwards, Thomas Pinna

Abstract:

Background: Interoception and heart rate variability have been found to predict outcomes of mental health and well-being. However, these have usually been investigated independently of one another. Objectives: This review aimed to explore the associations between interoception and heart rate variability (HRV) with emotion regulation (ER) and ER strategies within the existing literature and utilizing systematic review methodology. Methods: The process of article retrieval and selection followed the preferred reporting items for systematic review and meta-analyses (PRISMA) guidelines. Databases PsychINFO, Web of Science, PubMed, CINAHL, and MEDLINE were scanned for papers published. Preliminary inclusion and exclusion criteria were specified following the patient, intervention, comparison, and outcome (PICO) framework, whilst the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS) framework was used to help formulate the research question, and to critically assess for bias in the identified full-length articles. Results: 237 studies were identified after initial database searches. Of these, eight studies were included in the final selection. Six studies explored the associations between HRV and ER, whilst three investigated the associations between interoception and ER (one of which was included in the HRV selection too). Overall, the results seem to show that greater HRV and interoception are associated with better ER. Specifically, high parasympathetic activity largely predicted the use of adaptive ER strategies such as reappraisal, and better acceptance of emotions. High interoception, instead, was predictive of effective down-regulation of negative emotions and handling of social uncertainty, there was no association with any specific ER strategy. Conclusions: Awareness of one’s own bodily feelings and vagal activation seem to be of central importance for the effective regulation of emotional responses.

Keywords: emotional regulation, vagal tone, interoception, chronic conditions, health and well-being, psychological flexibility

Procedia PDF Downloads 112
105 Model and Neural Control of the Depth of Anesthesia during Surgery

Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz

Abstract:

At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.

Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model

Procedia PDF Downloads 334
104 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 145
103 Practitioner System in Vocational Education: Perspectives of Academics and Industry Practitioners

Authors: Hsiao-Tseng Lin, Nguyen Ngoc Dat, Szu-Mei Hsiao, R. J. Hernández-Díaz

Abstract:

The practitioner system has become an important tool for universities working to shrink the gap between industry and vocational education. Beginning in 2015, Meiho University conducted a consecutive three-year program for teaching excellence, funded in part by Taiwan’s Ministry of Education, with a total project funding of over $2.5 million USD. One of the highlights of this program is the recruitment of 300 industry practitioners to participate in collaborative teaching, a dual-mentor system, and curriculum planning. More than 60% of the practitioners boast more than 10 years of practical industry experience, and 52% of them have earned master's degree or higher. Students rated their overall program satisfaction over 4.5(out of 5.0) on average. This study explores the perspectives of academics and industry practitioners using in-depth interviews and surveys, along with an examination of the challenges of the practitioner system. The paper enables the framing of practitioner system policies by vocational education institutions and industry to facilitate more effective and efficient transfer of knowledge between academics and practitioners, leading to enhanced university competitive advantage, which would ultimately benefit society.

Keywords: collaborative teaching, industry practitioners, practitioner system, vocational education

Procedia PDF Downloads 209
102 Economic Growth After an Earthquake: A Synthetic Control Approach

Authors: Diego Diaz H., Cristian Larroulet

Abstract:

Although a large earthquake has clear and immediate consequences such as deaths, destruction of infrastructure and displacement (at least temporary) of part of the population, scientific research about the impact of a geological disaster in economic activity is inconclusive, especially when looking beyond the very short term. Estimating the economic impact years after a disaster strike is non-trivial since there is an unavoidable difficulty in attributing the observed effect to the disaster and not to other economic shocks. Case studies are performed that determine the impact of earthquakes in Chile, Japan, and New Zealand at a regional level by applying the synthetic control method, using the natural disaster as treatment. This consisted in constructing a counterfactual from every region in the same country that is not affected (or is slightly affected) by the earthquake. The results show that the economies of Canterbury and Tohoku achieved greater levels of GDP per capita in the years after the disaster than they would have in the absence of the disaster. For the case of Chile, however, the region of Maule experiences a decline in GDP per capita because of the earthquake. All the results are robust according to the placebo tests. Also, the results suggest that national institutional quality improve the growth process after the disaster.

Keywords: earthquake, economic growth, institutional quality, synthetic control

Procedia PDF Downloads 222
101 The Game of Dominoes as Teaching-Learning Method of Basic Concepts of Differential Calculus

Authors: Luis Miguel Méndez Díaz

Abstract:

In this article, a mathematics teaching-learning strategy will be presented, specifically differential calculus in one variable, in a fun and competitive space in which the action on the part of the student is manifested and not only the repetition of information on the part of the teacher. Said action refers to motivating, problematizing, summarizing, and coordinating a game of dominoes whose thematic cards are designed around the basic and main contents of differential calculus. The strategies for teaching this area are diverse and precisely the game of dominoes is one of the most used strategies in the practice of mathematics because it stimulates logical reasoning and mental abilities. The objective on this investigation is to identify the way in which the game of dominoes affects the learning and understanding of fundamentals concepts of differential calculus in one variable through experimentation carried out on students of the first semester of the School of Engineering and Sciences of the Technological Institute of Monterrey Campus Querétaro. Finally, the results of this study will be presented and the use of this strategy in other topics around mathematics will be recommended to facilitate logical and meaningful learning in students.

Keywords: collaborative learning, logical-mathematical intelligence, mathematical games, multiple intelligences

Procedia PDF Downloads 81
100 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 22
99 Application of Lean Manufacturing Tools in Hot Asphalt Production

Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz

Abstract:

The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.

Keywords: asphalt, lean manufacturing, productivity, process

Procedia PDF Downloads 113
98 Solving of Types Mathematical Routine and Non-Routine Problems in Algebra

Authors: Verónica Díaz Quezada

Abstract:

The importance given to the development of the problem solving skill and the requirement to solve problems framed in mathematical or real life contexts, in practice, they are not evidence in relation to the teaching of proportional variations. This qualitative and descriptive study aims to (1) to improve problem solving ability of high school students in Chile, (ii) to elaborate and describe a didactic intervention strategy based on learning situations in proportional variations, focused on solving types of routine problems of various contexts and non-routine problems. For this purpose, participant observation was conducted, test of mathematics problems and an opinion questionnaire to thirty-six high school students. Through the results, the highest academic performance is evidenced in the routine problems of purely mathematical context, realistic, fantasy context, and non-routine problems, except in the routine problems of real context and compound proportionality problems. The results highlight the need to consider in the curriculum different types of problems in the teaching of mathematics that relate the discipline to everyday life situations

Keywords: algebra, high school, proportion variations, nonroutine problem solving, routine problem solving

Procedia PDF Downloads 139
97 Assessing Creative Agents: Engagement in Addressing Sustainability Challenges and Alignment with New European Bauhaus Principles

Authors: Chema Segovia, Pau Díaz-Solano, Tony Ramos Murphy

Abstract:

The PALIMPSEST project, funded by Horizon 2020 and associated with the New European Bauhaus, aims to revitalize sustainability practices in heritage landscapes through co-creation processes led by creative agents. Specifically, PALIMPSEST focuses on the pivotal roles of architecture, design, and art in addressing sustainability challenges. The project aims to demonstrate that these creative disciplines can generate a distinctive kind of value while addressing environmental needs, enhancing societal engagement, supporting foresighting activities, and increasing awareness. In the summer of 2023, Palimpsest launched an open call to select the teams that will lead the development of three creativity-based sustainability processes in three different pilot cities: Jerez de la Frontera (Spain), Lodz (Poland), and Milan (Italy). The call received 141 applications. Through a survey conducted among the candidates and an in-depth analysis of their proposals, we assessed the level of engagement that European creative agents have in tackling sustainability challenges, as well as their alignment with the principles advocated by the New European Bauhaus.

Keywords: arts, architecture, co-creation, design, new European Bauhaus, sustainability

Procedia PDF Downloads 80
96 Effect of Gamma Radiation, Age of Paddy, Rice Variety and Packaging Materials on the Surface Free Fatty Acid Content of Brown Rice

Authors: Zenaida M. De Guzman, Davison T. Baldos, Gilberto T. Diano, Jeff Darren G. Valdez, Levelyn Mitos Tolentino, Gina B. Abrera, Ma. Lucia Cobar, Cristina Gragasin

Abstract:

One of the factors affecting the quality of brown rice is the free fatty acid produced from surface lipids. It is the purpose of the study to determine the effect of gamma radiation, packaging materials and age and variety of paddy on the surface free fatty acid content using two different brown rice variety, namely, RC-160 and SL-7, packed in two different packaging materials, namely, regular polyethylene bag and Super bag irradiated at 0.5 and 1.0 kGy. Brown rice was produced from 2-week old (Lot 1) and two months old paddy (Lot 2) and irradiated at the Co-60 Multipurpose Irradiation Facility, PNRI. The surface Free Fatty Acid (FFA) content was obtained following the AOCS Official Method (1982) with some modifications. The experiment was laid out using Split-Plot Randomized Control Block Design. Analysis of variance (ANOVA) showed that the effects of variety, age of paddy and interactions of both were both significant. The surface FFA of SL-7 variety was found to be significantly higher than the RC-160 variety for all radiation doses. Likewise, Lot 2 was observed to have higher surface FFA than Lot 1 regardless of packaging material and radiation dose. It was observed that the surface FFA of both varieties packed in both packaging materials increased significantly up to the 2nd or 3rd month of storage and remains the same until the 5th month. On the other hand, radiation dose did not significantly affect the surface free fatty acid content for all storage/sampling time while the packaging material significantly interacts with the type of variety and radiation dose. Gamma radiation was proven to have no significant effect on the surface free fatty acid at 0.5 and 1.0 kGy and further analyses are needed to determine the action of gamma radiation to the activity of enzyme (lipase-induced and microbial) responsible for the production of other lipolytic products and the effect of gamma radiation on the integrity of the packaging materials.

Keywords: brown rice, free fatty acid, gamma radiation, polyethylene bag

Procedia PDF Downloads 387
95 Utilizing Quicklime (Calcium Oxide) for Self-Healing Properties in Innovation of Coconut Husk Fiber Bricks

Authors: Christian Gabriel Mariveles, Darelle Jay Gallardo, Leslie Dayaoen, Laurenz Paul Diaz

Abstract:

True experimental research with descriptive analysis was conducted. Utilizing Quicklime (Calcium Oxide) for self-healing properties of coconut husk fibre concrete brick. There are 2 setups established: the first one has the 1:1:2 ratio of calcium oxide, cement and sand, and the second one has a 2:1:2 ratio of the same variables. The bricks are made from the residences along Barangay Greater Lagro. The mixture of sand and cement is mixed with coconut husk fibers and then molded with different ratios in the molder. After the drying of cement, the researchers tested the bricks in the laboratory for compressive strength. The brick with the highest PSI is picked by the researchers to drop into freefall testing, and it makes remarkable remarks as it is deformed after dropping to different heights with a maximum of 20 feet. Unfortunately, the self-healing capabilities were not observed during the 12 weeks of monitoring. However, the brick was weighed after 12 weeks of monitoring, and it increased in weight by 0.030 kg. from 1.833 kg. to 1.863 kg. meaning that this ratio 2 has the potential to self-heal, but 12 weeks of monitoring by the researchers is not enough to conclude that it has a significant difference.

Keywords: self healing, coconut husk bricks, research, calcium oxide, utilizing quicklime

Procedia PDF Downloads 41
94 The Impact of COVID-19 on Antibiotic Prescribing in Primary Care in England: Evaluation and Risk Prediction of the Appropriateness of Type and Repeat Prescribing

Authors: Xiaomin Zhong, Alexander Pate, Ya-Ting Yang, Ali Fahmi, Darren M. Ashcroft, Ben Goldacre, Brian Mackenna, Amir Mehrkar, Sebastian C. J. Bacon, Jon Massey, Louis Fisher, Peter Inglesby, Kieran Hand, Tjeerd van Staa, Victoria Palin

Abstract:

Background: This study aimed to predict risks of potentially inappropriate antibiotic type and repeat prescribing and assess changes during COVID-19. Methods: With the approval of NHS England, we used the OpenSAFELY platform to access the TPP SystmOne electronic health record (EHR) system and selected patients prescribed antibiotics from 2019 to 2021. Multinomial logistic regression models predicted the patient’s probability of receiving an inappropriate antibiotic type or repeating the antibiotic course for each common infection. Findings: The population included 9.1 million patients with 29.2 million antibiotic prescriptions. 29.1% of prescriptions were identified as repeat prescribing. Those with same-day incident infection coded in the EHR had considerably lower rates of repeat prescribing (18.0%), and 8.6% had a potentially inappropriate type. No major changes in the rates of repeat antibiotic prescribing during COVID-19 were found. In the ten risk prediction models, good levels of calibration and moderate levels of discrimination were found. Important predictors included age, prior antibiotic prescribing, and region. Patients varied in their predicted risks. For sore throat, the range from 2.5 to 97.5th percentile was 2.7 to 23.5% (inappropriate type) and 6.0 to 27.2% (repeat prescription). For otitis externa, these numbers were 25.9 to 63.9% and 8.5 to 37.1%, respectively. Interpretation: Our study found no evidence of changes in the level of inappropriate or repeat antibiotic prescribing after the start of COVID-19. Repeat antibiotic prescribing was frequent and varied according to regional and patient characteristics. There is a need for treatment guidelines to be developed around antibiotic failure and clinicians provided with individualised patient information.

Keywords: antibiotics, infection, COVID-19 pandemic, antibiotic stewardship, primary care

Procedia PDF Downloads 118
93 Models, Resources and Activities of Project Scheduling Problems

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, José J. Hernández-Flores, Edith Olaco Garcia

Abstract:

The Project Scheduling Problem (PSP) is a generic name given to a whole class of problems in which the best form, time, resources and costs for project scheduling are necessary. The PSP is an application area related to the project management. This paper aims at being a guide to understand PSP by presenting a survey of the general parameters of PSP: the Resources (those elements that realize the activities of a project), and the Activities (set of operations or own tasks of a person or organization); the mathematical models of the main variants of PSP and the algorithms used to solve the variants of the PSP. The project scheduling is an important task in project management. This paper contains mathematical models, resources, activities, and algorithms of project scheduling problems. The project scheduling problem has attracted researchers of the automotive industry, steel manufacturer, medical research, pharmaceutical research, telecommunication, industry, aviation industry, development of the software, manufacturing management, innovation and technology management, construction industry, government project management, financial services, machine scheduling, transportation management, and others. The project managers need to finish a project with the minimum cost and the maximum quality.

Keywords: PSP, Combinatorial Optimization Problems, Project Management; Manufacturing Management, Technology Management.

Procedia PDF Downloads 416
92 Effect of a Nutritional Supplement Containing Euterpe oleracea Mart., Inulin, Phaseolus vulgaris and Caralluma fimbriata in Persons with Metabolic Syndrome

Authors: Eduardo Cabrera-Rode, Janet Rodriguez, Aimee Alvarez, Ragmila Echevarria, Antonio D. Reyes, Ileana Cubas-Duenas, Silvia E. Turcios, Oscar Diaz-Diaz

Abstract:

Obex is a nutritional supplement to help weight loss naturally. In addition, this supplement has a satiating effect that helps control the craving to eat between meals. The purpose of this study was to evaluate the effect of Obex in the metabolic syndrome (MS). This was an open label pilot study conducted in 30 patients with MS and ages between 29 and 60 years old. Participants received Obex, at a dose of one sachet before (30 to 45 minutes) the two main meals (lunch and dinner) daily (mean two sachets per day) for 3 months. The content of the sachets was dissolved in a glass of water or fruit juice. Obex ingredients: Açai (Euterpe oleracea Mart.) berry, inulin, Phaseolus vulgaris, Caralluma fimbriata, inositol, choline, arginine, ornitine, zinc sulfate, carnitine fumarate, methionine, calcium pantothenate, pyridoxine and folic acid. In addition to anthropometric measures and blood pressure, fasting plasma glucose, total cholesterol, triglycerides and HDL-cholesterol and insulin were determined. Insulin resistance was assessed by HOMA-IR index. Three indirect indexes were used to calculate insulin sensitivity [QUICKI index (Quantitative insulin sensitivity check index), Bennett index and Raynaud index]. Metabolic syndrome was defined according to the Joint Interim Statement (JIS) criteria. The JIS criteria require at least three of the following components: (1) abdominal obesity (waist circumference major or equal major or equal 94 cm for men or 80 cm for women), (2) triglycerides major or equal 1.7 mmol/L, (3) HDL cholesterol minor 1.03 mmol/L for men or minor 1.30 mmol/L for women, (4) systolic/diastolic blood pressure major or equal 130/85mmHg or use antihypertensive drugs, and (5) fasting plasma glucose major or equal 5.6 mmol/L or known treatment for diabetes. This study was approved by the Ethical and Research Committee of the National Institute of Endocrinology, Cuba and conducted according to the Declaration of Helsinki. Obex is registered as a food supplement in the National Institute of Nutrition and Food, Havana, Cuba. Written consent was obtained from all patients before the study. The clinical trial had been registered at ClinicalTrials.gov. After three months of treatment, 43.3% (13/30) of participants decreased the frequency of MS. Compared to baseline, Obex significantly reduced body weight, BMI, waist circumference, and waist/hip ratio and improved HDL-c (p<0.0001) and in addition to lowering blood pressure (p<0.05). After Obex intake, subjects also have shown a reduction in fasting plasma glucose (p<0.0001) and insulin sensitivity was enhanced (p=0.001). No adverse effects were seen in any of the participants during the study. In this pilot study, consumption of Obex decreased the prevalence of MS due to the improved selected components of the metabolic syndrome, indicating that further studies are warranted. Obex emerges as an effective and well tolerated treatment for preventing or delaying MS and therefore potential reduction of cardiovascular risk.

Keywords: nutritional supplement, metabolic syndrome, weight loss, insulin resistance

Procedia PDF Downloads 296
91 N Doped Multiwall Carbon Nanotubes Growth over a Ni Catalyst Substrate

Authors: Angie Quevedo, Juan Bussi, Nestor Tancredi, Juan Fajardo-Díaz, Florentino López-Urías, Emilio Muñóz-Sandoval

Abstract:

In this work, we study the carbon nanotubes (CNTs) formation by catalytic chemical vapor deposition (CCVD) over a catalyst with 20 % of Ni supported over La₂Zr₂O₇ (Ni20LZO). The high C solubility of Ni made it one of the most used in CNTs synthesis. Nevertheless, Ni presents also sintering and coalescence at high temperature. These troubles can be reduced by choosing a suitable support. We propose La₂Zr₂O₇ as for this matter since the incorporation of Ni by co-precipitation and calcination at 900 °C allows a good dispersion and interaction of the active metal (in the oxidized form, NiO) with this support. The CCVD was performed using 1 g of Ni20LZO at 950 °C during 30 min in Ar:H₂ atmosphere (2.5 L/min). The precursor, benzylamine, was added by a nebulizer-sprayer. X ray diffraction study shows the phase separation of NiO and La₂Zr₂O₇ after the calcination and the reduction to Ni after the synthesis. Raman spectra show D and G bands with a ID/IG ratio of 0.75. Elemental study verifies the incorporation of 1% of N. Thermogravimetric analysis shows the oxidation process start at around 450 °C. Future studies will determine the application potential of the samples.

Keywords: N doped carbon nanotubes, catalytic chemical vapor deposition, nickel catalyst, bimetallic oxide

Procedia PDF Downloads 160
90 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers

Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz

Abstract:

Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.

Keywords: electrospinning, nanofibers, montmorillonite, materials science

Procedia PDF Downloads 343
89 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications

Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches

Abstract:

Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.

Keywords: groundwater monitoring, observation networks, machine learning, madrid

Procedia PDF Downloads 77