Search results for: case study research
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 61944

Search results for: case study research

2574 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe

Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante

Abstract:

High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.

Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation

Procedia PDF Downloads 351
2573 Synergism in the Inquiry Lab: An Analysis of Time Targets and Achievement

Authors: John M. Basey, Clinton D. Francis, Maxwell B. Joseph

Abstract:

After gathering data from experimental procedures, inquiry-oriented-science labs often allow students the freedom to stay and complete the write up in class or leave lab early and complete the write up later. Teachers must decide whether to allow students this freedom to self-regulate this time. Student interviews have indicated four time-target strategies that may influence how students utilize this time: grade-target-A, grade-target-C, time-limited, and proficiency. The hypothesis tested was that variability in class composition relative to the four grade-target strategies has an impact on when students leave class, which in turn may influence their overall learning as exemplified by grades. Students were divided into the four indicated groups with a survey. Class composition and the GTA teaching the class had significant impacts on how long students stayed in class with class composition having the greatest impact. A factor analysis identified two factors. Factor 1 included classes with percentages of grade-target students opposite time-limited/proficiency students and explained 43% of the variance. Factor 2 included classes with percentages of grade-target-A/proficiency students opposite grade-target-C students and explained 33% of the variance. Students who stayed longer received significantly higher grades (P = 0.008) with no significant relationships between grade and Factor 1 or Factor 2 (P > 0.05). The time students stayed in class was significantly positively related to Factor 1 (P = 0.006) and significantly negatively related to Factor 2 (P = 0.008). These results support the hypothesis and indicate that teachers may want to know the composition of student-target strategies before deciding on how to have students allocate study time at the end of inquiry-oriented labs. According to these results, ideal classes for self-regulation have a high proportion of proficiency and time-limited students and a low proportion of grade-target students, or a high proportion of grade-target-A and proficiency students and a low proportion of grade-target-C students. Non-ideal classes for self-regulation were comprised of the inverse proportions.

Keywords: grades, inquiry lab design, synergism in student motivation, class composition

Procedia PDF Downloads 129
2572 Metallograpy of Remelted A356 Aluminium following Squeeze Casting

Authors: Azad Hussain, Andrew Cobley

Abstract:

The demand for lightweight parts with high mechanical strength(s) and integrity, in sectors such as the aerospace and automotive is ever increasing, motivated by the need for weight reduction in order to increase fuel efficiency with components usually manufactured using a high grade primary metal or alloy. For components manufactured using the squeeze casting process, this alloy is usually A356 aluminium (Al), it is one of the most versatile Al alloys; and is used extensively in castings for demanding environments. The A356 castings provide good strength to weight ratio making it an attractive option for components where strength has to be maintained, with the added advantage of weight reduction. In addition, the versatility in castabilitiy, weldability and corrosion resistance are other attributes that provide for the A356 cast alloy to be used in a large array of industrial applications. Conversely, it is rare to use remelted Al in these cases, due the nature of the applications of components in demanding environments, were material properties must be defined to meet certain specifications for example a known strength or ductility. However the use of remelted Al, especially primary grade Al such as A356, would offer significant cost and energy savings for manufacturers using primary alloys, provided that remelted aluminium can offer similar benefits in terms of material microstructure and mechanical properties. This study presents the results of the material microstructure and properties of 100% primary A356 Al and 100% remelt Al cast, manufactured via the direct squeeze cast method. The microstructures of the castings made from remelted A356 Al were then compared with the microstructures of primary A356 Al. The outcome of using remelting Al on the microstructure was examined via different analytical techniques, optical microscopy of polished and etched surfaces, and scanning electron microscopy. Microstructural analysis of the 100% remelted Al when compared with primary Al show similar α-Al phase, primary Al dendrites, particles and eutectic constituents. Mechanical testing of cast samples will elucidate further information as to the suitability of utilising 100% remelt for casting.

Keywords: A356, microstructure, remelt, squeeze casting

Procedia PDF Downloads 208
2571 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 109
2570 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718

Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou

Abstract:

Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.

Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718

Procedia PDF Downloads 146
2569 Annual Effective Dose Associated with Radon in Groundwater Samples from Mining Communities Within the Ife-Ilesha Schist Belt, Southwestern Nigeria.

Authors: Paulinah Oyindamola Fasanmi, Matthew Omoniyi Isinkaye

Abstract:

In this study, the activity concentration of ²²²Rn in groundwater samples collected from gold and kaolin mining communities within the Ife-Ilesha schist belt, southwestern Nigeria, with their corresponding annual effective doses have been determined using the Durridge RAD-7, radon-in-water detector. The mean concentration of ²²²Rn in all the groundwater samples was 13.83 Bql-¹. In borehole water, ²²²Rn had a mean value of 20.68 Bql-¹, while it had a mean value of 11.67 Bql-¹ in well water samples. The mean activity concentration of radon obtained from the gold mining communities ranged from 1.6 Bql-¹ from Igun town to 4.8 Bql-¹ from Ilesha town. A higher mean value of 41.8 Bql-¹ was, however, obtained from Ijero, which is the kaolin mining community. The mean annual effective dose due to ingestion and inhalation of radon from groundwater samples was obtained to be 35.35 μSvyr-¹ and 34.86 nSvyr-¹, respectively. The mean annual ingestion dose estimated for well water samples was 29.90 μSvyr-¹, while 52.85 μSvyr-¹ was obtained for borehole water samples. On the other hand, the mean annual inhalation dose for well water was 29.49 nSvyr-¹, while for borehole water, 52.13 nSvyr-¹ was obtained. The mean annual effective dose due to ingestion of radon in groundwater from the gold mining communities ranged from 4.10 μSvyr-¹ from Igun to 13.1 μSvyr-¹ from Ilesha, while a mean value of 106.7 μSvyr-¹ was obtained from Ijero kaolin mining community. For inhalation, the mean value varied from 4.0 nSvyr-¹ from Igun to 12.9 nSvyr-¹ from Ilesha, while 105.2 nSvyr-¹ was obtained from the kaolin mining community. The mean annual effective dose due to ingestion and inhalation is lower than the reference level of 100 μSvyr-¹ recommended by World Health Organization except for values obtained from Ijero kaolin mining community, which exceeded the reference levels. It has been concluded that as far as radon-related health risks are concerned, groundwater from gold mining communities is generally safe, while groundwater from kaolin mining communities needs mitigation and monitoring. It has been discovered that Kaolin mining impacts groundwater with ²²²Rn than gold mining. Also, the radon level in borehole water exceeds its level in well water.

Keywords: 222Rn, Groundwater, Radioactivity, Annual Effective Dose, Mining.

Procedia PDF Downloads 69
2568 Effect of Plant Density and Planting Pattern on Yield and Quality of Single Cross 704 Silage Corn (Zea mays L.) in Isfahan

Authors: Seyed Mohammad Ali Zahedi

Abstract:

This field experiment was conducted in Isfahan in 2011 in order to study the effect of plant density and planting pattern on growth, yield and quality of silage corn (SC 704) using a randomized complete block design with split plot layout and four replications. The main plot consisted of three planting patterns (60 and 75 cm single planting row and 75 cm double planting row referred to as 60S, 75S and 75T, respectively). The subplots consisted of four levels of plant densities (65000, 80000, 95000 and 110000 plants per hectare). Each subplot consisted of 7 rows, each with 10m length. Vegetative and reproductive characteristics of plants at silking and hard dough stages (when the plants were harvested for silage) were evaluated. Results of variance analysis showed that the effects of planting pattern and plant density were significant on leaf area per plant, leaf area index (at silking), plant height, stem diameter, dry weights of leaf, stem and ear in silking and harvest stages and on fresh and dry yield, dry matter percentage and crude protein percentage at harvest. There was no planting pattern × plant density interaction for these parameters. As row space increased from 60 cm with single planting to 75 cm with single planting, leaf area index and plant height increased, but leaf area per plant, stem diameter, dry weight of leaf, stem and ear, dry matter percentage, dry matter yield and crude protein percentage decreased. Dry matter yield reduced from 24.9 to 18.5 t/ha and crude protein percentage decreased from 6.11 to 5.60 percent. When the plant density increased from 65000 to 110000 plant per hectare, leaf area index, plant height, dry weight of leaf, stem and ear and dry matter yield increased from 19.2 to 23.3 t/ha, whereas leaf area per plant, stem diameter, dry matter percentage and crude protein percentage decreased from 6.30 to 5.25. The best results were obtained with 60 cm row distance with single planting and 110000 plants per hectare.

Keywords: silage corn, plant density, planting pattern, yield

Procedia PDF Downloads 338
2567 Higher Education and the Economy in Western Canada: Is Institutional Autonomy at Risk?

Authors: James Barmby

Abstract:

Canada’s westernmost provinces of British Columbia and Alberta are similar in many respects as they are both reliant on volatile natural resources for major portions of their economies. The two provinces have banded together to develop mutually beneficial trade, investment and labour market mobility rules, but in terms of developing systems of higher education, the two provinces are attempting to align higher education programs to economic development objectives by means that are quite different. In British Columbia, the recently announced initiative, B.C’s Skills for Jobs Blueprint will “make sure education and training programs are aligned with the demands of the labor market.” Meanwhile in Alberta, the province’s institutions of higher education are enjoying the tenth year of their membership in the Campus Alberta Quality Council, which makes recommendations to government on issues related to post-secondary education, including the approval of new programs. In B.C., public institutions of higher education are encouraged to comply with government objectives, and are rewarded with targeted funds for their efforts. In Alberta, the institutions as a system tell the government what programs they want to offer and government can agree or not agree to fund these programs through a ministerial approval process. In comparing the two higher education systems, the question emerges as to which one is more beneficial to the province: the one where change is directed primarily by financial incentives to achieve economic objectives or the one that makes recommendations to the government for changes in programs to achieve institutional objectives? How is institutional autonomy affected in each strategy? Does institutional autonomy matter anymore? In recent years, much has been written in regard to academic freedom, but less about institutional autonomy, which is seen by many as essential to protecting academic freedom. However, while institutional autonomy means freedom from government control, it does not necessarily mean self-government. In this study, a comparison of the two higher education systems is made using recent government policy initiatives in both provinces, and responses to those actions by the higher education institutions. The findings indicate that the economic needs in both provinces take precedence over issues of institutional autonomy.

Keywords: alberta, British Columbia, institutional autonomy, funding

Procedia PDF Downloads 701
2566 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations

Authors: Rima A. Ajlouni

Abstract:

The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.

Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi

Procedia PDF Downloads 402
2565 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents

Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir

Abstract:

Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.

Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS

Procedia PDF Downloads 450
2564 The Efficacy of Psychological Interventions for Psychosis: A Systematic Review and Network Meta-Analysis

Authors: Radu Soflau, Lia-Ecaterina Oltean

Abstract:

Background: Increasing evidence supports the efficacy of psychological interventions for psychosis. However, it is unclear which one of these interventions is most likely to address negative psychotic symptoms and related outcomes. We aimed to determine the relative efficacy of psychological and psychosocial interventions for negative symptoms, overall psychotic symptoms, and related outcomes. Methods: To attain this goal, we conducted a systematic review and network meta-analysis. We searched for potentially eligible trials in PubMed, EMBASE, PsycInfo, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases up until February 08, 2022. We included randomized controlled trials that investigated the efficacy of psychological for adults with psychosis. We excluded interventions for prodromal or “at risk” individuals, as well as patients with serious co-morbid medical or psychiatric conditions (others than depressive and/or anxiety disorders). Two researchers conducted study selection and performed data extraction independently. Analyses were run using STATA network and mvmeta packages, applying a random effect model under a frequentist framework in order to compute standardized mean differences or risk ratio. Findings: We identified 47844 records and screened 29466 records for eligibility. The majority of eligible interventions were delivered in addition to pharmacological treatment. Treatment as usual (TAU) was the most frequent common comparator. Theoretically driven psychological interventions generally outperformed TAU at post-test and follow-up, displaying small and small-to-medium effect sizes. A similar pattern of results emerged in sensitivity analyses focused on studies that employed an inclusion criterion for relevant negative symptom severity. Conclusion: While the efficacy of some psychological interventions is promising, there is a need for more high-quality studies, as well as more trials directly comparing psychological treatments for negative psychotic symptoms.

Keywords: psychosis, network meta-analysis, psychological interventions, efficacy, negative symptoms

Procedia PDF Downloads 103
2563 Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace

Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini

Abstract:

Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.

Keywords: energy cunsumption, energy recovery, modeling, energy eficiency

Procedia PDF Downloads 73
2562 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability

Procedia PDF Downloads 250
2561 Analysis of Post-vaccination Immunity in Children with Severe Chronic Diseases Receiving Immunosuppressive Therapy by Specific IgG Antibodies Definition Method

Authors: Marina G. Galitskaya, Svetlana G. Makarova, Andrey P. Fisenko.

Abstract:

Children on medication-induced immunosuppression are at high risk of developing severe course infectious diseases. Therefore, preventive vaccination is especially important for these children. However, due to the immunosuppressive effects of treatment for the underlying disease, the effectiveness of vaccination may decrease below the protective level. In a multidisciplinary children's medical center, post-vaccination immunity was studied in 79 children aged 4-17 years. The children were divided into 2 groups: Group 1 (38 children) with kidney pathology (Nephrotic Syndrome) and Group 2 (41 children) with inflammatory bowel diseases (Ulcerative Colitis, Crohn's Disease). Both groups of children were vaccinated according to the national vaccination calendar and received immunosuppressive therapy (prednisolone, methotrexate, cyclosporine, and other drugs) for at least 1 year. Using the enzyme-linked immunosorbent assay method, specific IgG antibodies to vaccine-preventable infections were determined: measles, rubella, mumps, diphtheria, pertussis, tetanus, and hepatitis B. The study showed the percentage of children with positive IgG values for vaccine-preventable infections. The highest percentage of children had protective antibody levels to measles (84.2% in children with nephrotic syndrome and 92.6% in those with inflammatory bowel disease) and rubella (71% and 80.4%, respectively). The lowest percentage of children with protective antibodies was for hepatitis B (5.2% and 29.2% respectively). Antibodies to mumps, diphtheria, pertussis, and tetanus were found not in all children (from 39,4% to 82,9%). The remaining percentage of children did not have detectable IgG antibodies to vaccine-preventable infections. Not all children, despite the previous vaccination, preserved antibodies to vaccine-controlled infections and remained unprotected by specific IgG antibodies. The issue of a booster vaccine dose should be considered in children without contraindications to vaccination. Children receiving long-term immunosuppressive therapy require an individual vaccination approach, including a specific definition of the performed vaccination.

Keywords: immunosuppressive therapy, inflammatory bowel diseases, nephrotic syndrome, post-vaccination immunity, specific antibodies, vaccine-preventable infections.

Procedia PDF Downloads 33
2560 Dynamic Model for Forecasting Rainfall Induced Landslides

Authors: R. Premasiri, W. A. H. A. Abeygunasekara, S. M. Hewavidana, T. Jananthan, R. M. S. Madawala, K. Vaheeshan

Abstract:

Forecasting the potential for disastrous events such as landslides has become one of the major necessities in the current world. Most of all, the landslides occurred in Sri Lanka are found to be triggered mostly by intense rainfall events. The study area is the landslide near Gerandiella waterfall which is located by the 41st kilometer post on Nuwara Eliya-Gampala main road in Kotmale Division in Sri Lanka. The landslide endangers the entire Kotmale town beneath the slope. Geographic Information System (GIS) platform is very much useful when it comes to the need of emulating the real-world processes. The models are used in a wide array of applications ranging from simple evaluations to the levels of forecast future events. This project investigates the possibility of developing a dynamic model to map the spatial distribution of the slope stability. The model incorporates several theoretical models including the infinite slope model, Green Ampt infiltration model and Perched ground water flow model. A series of rainfall values can be fed to the model as the main input to simulate the dynamics of slope stability. Hydrological model developed using GIS is used to quantify the perched water table height, which is one of the most critical parameters affecting the slope stability. Infinite slope stability model is used to quantify the degree of slope stability in terms of factor of safety. DEM was built with the use of digitized contour data. Stratigraphy was modeled in Surfer using borehole data and resistivity images. Data available from rainfall gauges and piezometers were used in calibrating the model. During the calibration, the parameters were adjusted until a good fit between the simulated ground water levels and the piezometer readings was obtained. This model equipped with the predicted rainfall values can be used to forecast of the slope dynamics of the area of interest. Therefore it can be investigated the slope stability of rainfall induced landslides by adjusting temporal dimensions.

Keywords: factor of safety, geographic information system, hydrological model, slope stability

Procedia PDF Downloads 423
2559 Molecular Interactions between Vicia Faba L. Cultivars and Plant Growth Promoting Rhizobacteria (PGPR), Utilized as Yield Enhancing 'Plant Probiotics'

Authors: Eleni Stefanidou, Nikolaos Katsenios, Ioanna Karamichali, Aspasia Efthimiadou, Panagiotis Madesis

Abstract:

The excessive use of pesticides and fertilizers has significant environmental and human health-related negative effects. In the frame of the development of sustainable agriculture practices, especially in the context of extreme environmental changes (climate change), it is important to develop alternative practices to increase productivity and biotic and abiotic stress tolerance. Beneficial bacteria, such as symbiotic bacteria in legumes (rhizobia) and symbiotic or free-living Plant Growth Promoting Rhizobacteria (PGPR), which could act as "plant probiotics", can promote plant growth and significantly increase the resistance of crops under adverse environmental conditions. In this study, we explored the symbiotic relationships between Faba bean (Vicia faba L.) cultivars with different PGPR bacteria, aiming to identify the possible influence on yield and biotic-abiotic phytoprotection benefits. Transcriptomic analysis of root and whole plant samples was executed for two Vicia faba L. cultivars (Polikarpi and Solon) treated with selected PGPR bacteria (6 treatments: B. subtilis + Rhizobium-mixture, A. chroococcum + Rhizobium-mixture, B. subtilis, A. chroococcum and Rhizobium-mixture). Preliminary results indicate a significant yield (Seed weight and Total number of pods) increase in both varieties, ranging around 25%, in comparison to the control, especially for the Solon cultivar. The increase was observed for all treatments, with the B. subtilis + Rhizobium-mixture treatment being the highest performing. The correlation of the physiological and morphological data with the transcriptome analysis revealed molecular mechanisms and molecular targets underlying the observed yield increase, opening perspectives for the use of nitrogen-fixing bacteria as a natural, more ecological enhancer of legume crop productivity.

Keywords: plant probiotics, PGPR, legumes, sustainable agriculture

Procedia PDF Downloads 80
2558 Heat Loss Control in Stave Cooled Blast Furnace by Optimizing Gas Flow Pattern through Burden Distribution

Authors: Basant Kumar Singh, S. Subhachandhar, Vineet Ranjan Tripathi, Amit Kumar Singh, Uttam Singh, Santosh Kumar Lal

Abstract:

Productivity of Blast Furnace is largely impacted by fuel efficiency and controlling heat loss is one of the enabling parameters for achieving lower fuel rate. 'I' Blast Furnace is the latest and largest Blast Furnace of Tata Steel Jamshedpur with working volume of 3230 m³ and with rated capacity of 3.055 million tons per annum. Optimizing heat losses in Belly and Bosh zone remained major challenge for blast furnace operators after its commissioning. 'I' Blast has installed Cast Iron & Copper Staves cooling members where copper staves are installed in Belly, Bosh & Lower Stack whereas cast iron staves are installed in upper stack area. Stave cooled Blast Furnaces are prone to higher heat losses in Belly and Bosh region with an increase in coal injection rate as Bosh gas volume increases. Under these conditions, managing gas flow pattern through proper burden distribution, casting techniques & by maintaining desired raw material qualities are of utmost importance for sustaining high injection rates. This study details, the burden distribution control by Ore & Coke ratio adjustment at wall and center of Blast Furnace as the coal injection rates increased from 140 kg/thm to 210 kg/thm. Control of blowing parameters, casting philosophy, specification for raw materials & devising operational practice for controlling heat losses is also elaborated with the model that is used to visualize heat loss pattern in different zones of Blast Furnace.

Keywords: blast furnace, staves, gas flow pattern, belly/bosh heat losses, ore/coke ratio, blowing parameters, casting, operation practice

Procedia PDF Downloads 375
2557 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection

Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour

Abstract:

Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.

Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid

Procedia PDF Downloads 146
2556 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete

Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier

Abstract:

Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.

Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior

Procedia PDF Downloads 69
2555 Approaches to Estimating the Radiation and Socio-Economic Consequences of the Fukushima Daiichi Nuclear Power Plant Accident Using the Data Available in the Public Domain

Authors: Dmitry Aron

Abstract:

Major radiation accidents carry not only the potential risks of negative consequences for public health due to exposure but also because of large-scale emergency measures were taken by authorities to protect the population, which can lead to unreasonable social and economic damage. It is technically difficult, as a rule, to assess the possible costs and damages from decisions on evacuation or resettlement of residents in the shortest possible time, since it requires specially prepared information systems containing relevant information on demographic, economic parameters and incoming data on radiation conditions. Foreign observers also face the difficulties in assessing the consequences of an accident in a foreign territory, since they usually do not have official and detailed statistical data on the territory of foreign state beforehand. Also, they can suppose the application of unofficial data from open Internet sources is an unreliable and overly labor-consuming procedure. This paper describes an approach to prompt creation of relational database that contains detailed actual data on economics, demographics and radiation situation at the Fukushima Prefecture during the Fukushima Daiichi NPP accident, received by the author from open Internet sources. This database was developed and used to assess the number of evacuated population, radiation doses, expected financial losses and other parameters of the affected areas. The costs for the areas with temporarily evacuated and long-term resettled population were investigated, and the radiological and economic effectiveness of the measures taken to protect the population was estimated. Some of the results are presented in the article. The study showed that such a tool for analyzing the consequences of radiation accidents can be prepared in a short space of time for the entire territory of Japan, and it can serve for the modeling of social and economic consequences for hypothetical accidents for any nuclear power plant in its territory.

Keywords: Fukushima, radiation accident, emergency measures, database

Procedia PDF Downloads 191
2554 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 124
2553 Development of a Microfluidic Device for Low-Volume Sample Lysis

Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman

Abstract:

We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.

Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet

Procedia PDF Downloads 79
2552 A Step Towards Circular Economy: Assessing the Efficacy of Ion Exchange Resins in the Recycling of Automotive Engine Coolants

Authors: George Madalin Danila, Mihaiella Cretu, Cristian Puscasu

Abstract:

The recycling of used antifreeze/coolant is a widely discussed and intricate issue. Complying with government regulations for the proper disposal of hazardous waste poses a significant challenge for today's automotive and industrial industries. In recent years, global focus has shifted toward Earth's fragile ecology, emphasizing the need to restore and preserve the natural environment. The business and industrial sectors have undergone substantial changes to adapt and offer products tailored to these evolving markets. The global antifreeze market size was evaluated at US 5.4 billion in 2020 to reach USD 5,9 billion by 2025 due to the increased number of vehicles worldwide, but also to the growth of HVAC systems. This study presents the evaluation of an ion exchange resin-based installation designed for the recycling of engine coolants, specifically ethylene glycol (EG) and propylene glycol (PG). The recycling process aims to restore the coolant to meet the stringent ASTM standards for both new and recycled coolants. A combination of physical-chemical methods, gas chromatography-mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS) was employed to analyze and validate the purity and performance of the recycled product. The experimental setup included performance tests, namely corrosion to glassware and the tendency to foaming of coolant, to assess the efficacy of the recycled coolants in comparison to new coolant standards. The results demonstrate that the recycled EG coolants exhibit comparable quality to new coolants, with all critical parameters falling within the acceptable ASTM limits. This indicates that the ion exchange resin method is a viable and efficient solution for the recycling of engine coolants, offering an environmentally friendly alternative to the disposal of used coolants while ensuring compliance with industry standards.

Keywords: engine coolant, glycols, recycling, ion exchange resin, circular economy

Procedia PDF Downloads 43
2551 Optical Flow Technique for Supersonic Jet Measurements

Authors: Haoxiang Desmond Lim, Jie Wu, Tze How Daniel New, Shengxian Shi

Abstract:

This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.

Keywords: Schlieren, optical flow, supersonic jets, shock shear layer

Procedia PDF Downloads 312
2550 A Model of Human Security: A Comparison of Vulnerabilities and Timespace

Authors: Anders Troedsson

Abstract:

For us humans, risks are intimately linked to human vulnerabilities - where there is vulnerability, there is potentially insecurity, and risk. Reducing vulnerability through compensatory measures means increasing security and decreasing risk. The paper suggests that a meaningful way to approach the study of risks (including threats, assaults, crisis etc.), is to understand the vulnerabilities these external phenomena evoke in humans. As is argued, the basis of risk evaluation, as well as responses, is the more or less subjective perception by the individual person, or a group of persons, exposed to the external event or phenomena in question. This will be determined primarily by the vulnerability or vulnerabilities that the external factor are perceived to evoke. In this way, risk perception is primarily an inward dynamic, rather than an outward one. Therefore, a route towards an understanding of the perception of risks, is a closer scrutiny of the vulnerabilities which they can evoke, thereby approaching an understanding of what in the paper is called the essence of risk (including threat, assault etc.), or that which a certain perceived risk means to an individual or group of individuals. As a necessary basis for gauging the wide spectrum of potential risks and their meaning, the paper proposes a model of human vulnerabilities, drawing from i.a. a long tradition of needs theory. In order to account for the subjectivity factor, which mediates between the innate vulnerabilities on the one hand, and the event or phenomenon out there on the other hand, an ensuing ontological discussion about the timespace characteristics of risk/threat/assault as perceived by humans leads to the positing of two dimensions. These two dimensions are applied on the vulnerabilities, resulting in a modelling effort featuring four realms of vulnerabilities which are related to each other and together represent a dynamic whole. In approaching the problem of risk perception, the paper thus defines the relevant realms of vulnerabilities, depicting them as a dynamic whole. With reference to a substantial body of literature and a growing international policy trend since the 1990s, this model is put in the language of human security - a concept relevant not only for international security studies and policy, but also for other academic disciplines and spheres of human endeavor.

Keywords: human security, timespace, vulnerabilities, risk perception

Procedia PDF Downloads 336
2549 Involvement of Nrf2 in Kolaviron-Mediated Attenuation of Behavioural Incompetence and Neurodegeneration in a Murine Model of Parkinson's Disease

Authors: Yusuf E. Mustapha, Inioluwa A Akindoyeni, Oluwatoyin G. Ezekiel, Ifeoluwa O. Awogbindin, Ebenezer O. Farombi

Abstract:

Background: Parkinson's disease (PD) is the most prevalent motor disorder. Available therapies are palliative with no effect on disease progression. Kolaviron (KV), a natural anti-inflammatory and antioxidant agent, has been reported to possess neuroprotective effects in Parkinsonian flies and rats. Objective: The present study investigates the neuroprotective effect of KV, focusing on the DJ1/Nrf2 signaling pathway. Methodology: All-trans retinoic acid (ATRA, 10 mg/kg, i.p.) was used to inhibit Nrf2. Murine model of PD was established with four doses of MPTP (20 mg/kg i.p.) at 2 hours interval. MPTP mice were pre-treated with either KV (200 mg/kg/day p.o), ATRA, or both conditions for seven days before PD induction. Motor behaviour was evaluated, and markers of oxidative stress/damage and its regulators were assessed with immunofluorescence and ELISA techniques. Results: MPTP-treated mice covered less distance with reduced numbers of anticlockwise rotations, heightened freezing, and prolonged immobility when compared to control. However, KV significantly attenuated these deficits. Pretreatment of MPTP mice with KV upregulated Nrf2 expression beyond MPTP level with a remarkable reduction in Keap1 expression and marked elevation of DJ-1 level, whereas co-administration with ATRA abrogated these effects. KV treatment restored MPTP-mediated depletion of endogenous antioxidant, striatal oxidative stress, oxidative damage, and inhibition of acetylcholinesterase activity. However, ATRA treatment potentiated acetylcholinesterase inhibition and attenuated the protective effect of KV on the level of nitric oxide and activities of catalase and superoxide dismutase. Conclusion: Kolaviron protects Parkinsonian mice by stabilizing and activating the Nrf2 signaling pathway. Thus, kolaviron can be explored as a pharmacological lead in PD management.

Keywords: Garcinia kola, Kolaviron, Parkinson Disease, Nrf2, behavioral incompetence, neurodegeneration

Procedia PDF Downloads 101
2548 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux

Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour

Abstract:

Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.

Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity

Procedia PDF Downloads 84
2547 Seismic Refraction and Resistivity Survey of Ini Local Government Area, South-South Nigeria: Assessing Structural Setting and Groundwater Potential

Authors: Mfoniso Udofia Aka

Abstract:

A seismic refraction and resistivity survey was conducted in Ini Local Government Area, South-South Nigeria, to evaluate the structural setting and groundwater potential. The study involved 20 Vertical Electrical Soundings (VES) using an ABEM Terrameter with a Schlumberger array and a 400-meter electrode spread, analyzed with WinResist software. Concurrently, 20 seismic refraction surveys were performed with a Geometric ES 3000 12-Channel seismograph, employing a 60-meter slant interval. The survey identified three distinct geological layers: top, middle, and lower. Seismic velocities (Vp) ranged from 209 to 500 m/s in the top layer, 221 to 1210 m/s in the middle layer, and 510 to 1700 m/s in the lower layer. Secondary seismic velocities (Vs) ranged from 170 to 410 m/s in the topsoil, 205 to 880 m/s in the middle layer, and 480 to 1120 m/s in the lower layer. Poisson’s ratios varied from -0.029 to -7.709 for the top layer, -0.027 to -6.963 for the middle layer, and -0.144 to -6.324 for the lower layer. The depths of these layers were approximately 1.0 to 3.0 meters for the top layer, 4.0 to 12.0 meters for the middle layer, and 8.0 to 14.5 meters for the lower layer. The topsoil consists of a surficial layer overlaid by reddish/clayey laterite and fine to medium coarse-grained sandy material, identified as the auriferous zone. Resistivity values were 1300 to 3215 Ωm for the topsoil, 720 to 1600 Ωm for the laterite, and 100 to 1350 Ωm for the sandy zone. Aquifer thickness and depth varied, with shallow aquifers ranging from 4.5 to 15.2 meters, medium-depth aquifers from 15.5 to 70.0 meters, and deep aquifers from 4.0 to 70.0 meters. Locations 1, 15, and 13 exhibited favorable water potential with shallow formations, while locations 5, 11, 9, and 14 showed less potential due to the lack of fractured or weathered zones. The auriferous sandy zone indicated significant potential for industrial development. Future surveys should consider using a more robust energy source to enhance data acquisition and accuracy.

Keywords: hydrogeological, aquifer, seismic section geo-electric section, stratigraphy

Procedia PDF Downloads 29
2546 Management of Blood Exposure Risk: Knowledge and Attitudes of Caregivers in Pediatric Dapartments

Authors: Hela Ghali, Oumayma Ben Amor, Salwa Khefacha, Mohamed Ben Rejeb, Sirine Frigui, Meriam Tourki Dhidah, Lamine Dhidah, Houyem Said Laatiri

Abstract:

Background: Blood exposure accidents are the most common problem in hospitals that threaten healthcare professionals with a high risk of infectious complications which weighs heavily on health systems worldwide. Paramedics are the highest risk group due to the nature of their daily activities. We aimed to determine knowledge and attitudes about the management of blood-exposure accidents among nurses and technicians in two pediatric departments. Materials/Methods: This is a cross-sectional descriptive study conducted on March 2017, carried out with the care staff of the pediatric ward of the Farhat Hached Teaching Hospital of Sousse and pediatric surgery of the Fattouma Bourguiba University Hospital in Monastir, using a pre- tested and self-administered questionnaire. Data entry and analysis were performed using Excel software. Results: The response rate was 85.1%. A female predominance (82.5%) was reported among respondents with a sex ratio of 0.21. 80% of the participants were under 35 years old. Seniority of less than 10 years was found in 77.5% of respondents. Only 22.5% knew the definition of a blood- exposure accident. 100% and 95% of participants reported the relative risk, respectively, to hepatitis and AIDS viruses. However, only 15% recognized the severity factors of a blood-exposure accident. Hygiene compliance was the most important dimension for almost the entire population for the prevention. On the other hand, only 12.5% knew the meaning of 'standard precautions' and ¼ considered them necessary for at-risk patients only. 40% reported being exposed at least once, among them, 87.5% used betadine, and 77.5% said that anti-infectious chemoprophylaxis is necessary regardless of the patient's serological status. However, 52.5% did not know the official reporting circuit of management of blood-exposure accident in their institutions. Conclusion: For better management of risks in hospitals and an improvement of the safety of the care, a reinforcement of the sensibilization of the caregivers with regard to the risks of blood exposure accident is necessary, while developing their knowledge to act in security.

Keywords: attitudes, blood-exposure accident, knowledge, pediatric department

Procedia PDF Downloads 196
2545 Multi-Stakeholder Involvement in Construction and Challenges of Building Information Modeling Implementation

Authors: Zeynep Yazicioglu

Abstract:

Project development is a complex process where many stakeholders work together. Employers and main contractors are the base stakeholders, whereas designers, engineers, sub-contractors, suppliers, supervisors, and consultants are other stakeholders. A combination of the complexity of the building process with a large number of stakeholders often leads to time and cost overruns and irregular resource utilization. Failure to comply with the work schedule and inefficient use of resources in the construction processes indicate that it is necessary to accelerate production and increase productivity. The development of computer software called Building Information Modeling, abbreviated as BIM, is a major technological breakthrough in this area. The use of BIM enables architectural, structural, mechanical, and electrical projects to be drawn in coordination. BIM is a tool that should be considered by every stakeholder with the opportunities it offers, such as minimizing construction errors, reducing construction time, forecasting, and determination of the final construction cost. It is a process spreading over the years, enabling all stakeholders associated with the project and construction to use it. The main goal of this paper is to explore the problems associated with the adoption of BIM in multi-stakeholder projects. The paper is a conceptual study, summarizing the author’s practical experience with design offices and construction firms working with BIM. In the transition period to BIM, three of the challenges will be examined in this paper: 1. The compatibility of supplier companies with BIM, 2. The need for two-dimensional drawings, 3. Contractual issues related to BIM. The paper reviews the literature on BIM usage and reviews the challenges in the transition stage to BIM. Even on an international scale, the supplier that can work in harmony with BIM is not very common, which means that BIM's transition is continuing. In parallel, employers, local approval authorities, and material suppliers still need a 2-D drawing. In the BIM environment, different stakeholders can work on the same project simultaneously, giving rise to design ownership issues. Practical applications and problems encountered are also discussed, providing a number of suggestions for the future.

Keywords: BIM opportunities, collaboration, contract issues about BIM, stakeholders of project

Procedia PDF Downloads 102