Search results for: rapid compression machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6057

Search results for: rapid compression machine

177 OpenFOAM Based Simulation of High Reynolds Number Separated Flows Using Bridging Method of Turbulence

Authors: Sagar Saroha, Sawan S. Sinha, Sunil Lakshmipathy

Abstract:

Reynolds averaged Navier-Stokes (RANS) model is the popular computational tool for prediction of turbulent flows. Being computationally less expensive as compared to direct numerical simulation (DNS), RANS has received wide acceptance in industry and research community as well. However, for high Reynolds number flows, the traditional RANS approach based on the Boussinesq hypothesis is incapacitated to capture all the essential flow characteristics, and thus, its performance is restricted in high Reynolds number flows of practical interest. RANS performance turns out to be inadequate in regimes like flow over curved surfaces, flows with rapid changes in the mean strain rate, duct flows involving secondary streamlines and three-dimensional separated flows. In the recent decade, partially averaged Navier-Stokes (PANS) methodology has gained acceptability among seamless bridging methods of turbulence- placed between DNS and RANS. PANS methodology, being a scale resolving bridging method, is inherently more suitable than RANS for simulating turbulent flows. The superior ability of PANS method has been demonstrated for some cases like swirling flows, high-speed mixing environment, and high Reynolds number turbulent flows. In our work, we intend to evaluate PANS in case of separated turbulent flows past bluff bodies -which is of broad aerodynamic research and industrial application. PANS equations, being derived from base RANS, continue to inherit the inadequacies from the parent RANS model based on linear eddy-viscosity model (LEVM) closure. To enhance PANS’ capabilities for simulating separated flows, the shortcomings of the LEVM closure need to be addressed. Inabilities of the LEVMs have inspired the development of non-linear eddy viscosity models (NLEVM). To explore the potential improvement in PANS performance, in our study we evaluate the PANS behavior in conjugation with NLEVM. Our work can be categorized into three significant steps: (i) Extraction of PANS version of NLEVM from RANS model, (ii) testing the model in the homogeneous turbulence environment and (iii) application and evaluation of the model in the canonical case of separated non-homogeneous flow field (flow past prismatic bodies and bodies of revolution at high Reynolds number). PANS version of NLEVM shall be derived and implemented in OpenFOAM -an open source solver. Homogeneous flows evaluation will comprise the study of the influence of the PANS’ filter-width control parameter on the turbulent stresses; the homogeneous analysis performed over typical velocity fields and asymptotic analysis of Reynolds stress tensor. Non-homogeneous flow case will include the study of mean integrated quantities and various instantaneous flow field features including wake structures. Performance of PANS + NLEVM shall be compared against the LEVM based PANS and LEVM based RANS. This assessment will contribute to significant improvement of the predictive ability of the computational fluid dynamics (CFD) tools in massively separated turbulent flows past bluff bodies.

Keywords: bridging methods of turbulence, high Re-CFD, non-linear PANS, separated turbulent flows

Procedia PDF Downloads 144
176 Scalable Performance Testing: Facilitating The Assessment Of Application Performance Under Substantial Loads And Mitigating The Risk Of System Failures

Authors: Solanki Ravirajsinh

Abstract:

In the software testing life cycle, failing to conduct thorough performance testing can result in significant losses for an organization due to application crashes and improper behavior under high user loads in production. Simulating large volumes of requests, such as 5 million within 5-10 minutes, is challenging without a scalable performance testing framework. Leveraging cloud services to implement a performance testing framework makes it feasible to handle 5-10 million requests in just 5-10 minutes, helping organizations ensure their applications perform reliably under peak conditions. Implementing a scalable performance testing framework using cloud services and tools like JMeter, EC2 instances (Virtual machine), cloud logs (Monitor errors and logs), EFS (File storage system), and security groups offers several key benefits for organizations. Creating performance test framework using this approach helps optimize resource utilization, effective benchmarking, increased reliability, cost savings by resolving performance issues before the application is released. In performance testing, a master-slave framework facilitates distributed testing across multiple EC2 instances to emulate many concurrent users and efficiently handle high loads. The master node orchestrates the test execution by coordinating with multiple slave nodes to distribute the workload. Slave nodes execute the test scripts provided by the master node, with each node handling a portion of the overall user load and generating requests to the target application or service. By leveraging JMeter's master-slave framework in conjunction with cloud services like EC2 instances, EFS, CloudWatch logs, security groups, and command-line tools, organizations can achieve superior scalability and flexibility in their performance testing efforts. In this master-slave framework, JMeter must be installed on both the master and each slave EC2 instance. The master EC2 instance functions as the "brain," while the slave instances operate as the "body parts." The master directs each slave to execute a specified number of requests. Upon completion of the execution, the slave instances transmit their results back to the master. The master then consolidates these results into a comprehensive report detailing metrics such as the number of requests sent, encountered errors, network latency, response times, server capacity, throughput, and bandwidth. Leveraging cloud services, the framework benefits from automatic scaling based on the volume of requests. Notably, integrating cloud services allows organizations to handle more than 5-10 million requests within 5 minutes, depending on the server capacity of the hosted website or application.

Keywords: identify crashes of application under heavy load, JMeter with cloud Services, Scalable performance testing, JMeter master and slave using cloud Services

Procedia PDF Downloads 20
175 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 118
174 Spatial Variation in Urbanization and Slum Development in India: Issues and Challenges in Urban Planning

Authors: Mala Mukherjee

Abstract:

Background: India is urbanizing very fast and urbanisation in India is treated as one of the most crucial components of economic growth. Though the pace of urbanisation (31.6 per cent in 2011) is however slower and lower than the average for Asia but the absolute number of people residing in cities and towns has increased substantially. Rapid urbanization leads to urban poverty and it is well represented in slums. Currently India has four metropolises and 53 million plus cities. All of them have significant slum population but the standard of living and success of slum development programmes varies across regions. Objectives: Objectives of the paper are to show how urbanisation and slum development varies across space; to show spatial variation in the standard of living in Indian slums; to analyse how the implementation of slum development policies like JNNURM, Rajiv Awas Yojana varies across cities and bring different results in different regions and what are the factors responsible for such variation. Data Sources and Methodology: Census 2011 data on urban population and slum households and amenities have been used for analysing the regional variation of urbanisation in 53 million plus cities of India. Special focus has been put on Kolkata Metropolitan Area. Statistical techniques like z-score and PCA have been employed to work out Standard of Living Deprivation score for all the slums of 53 metropolises. ARC-GIS software is used for making maps. Standard of living has been measured in terms of access to basic amenities, infrastructure and assets like drinking water, sanitation, housing condition, bank account, and so on. Findings: 1. The first finding reveals that migration and urbanization is very high in Greater Mumbai, Delhi, Bangaluru, Chennai, Hyderabad and Kolkata; but slum population is high in Greater Mumbai (50% population live in slums), Meerut, Faridabad, Ludhiana, Nagpur, Kolkata etc. Though the rate of urbanization is high in southern and western states but the percentage of slum population is high in northern states (except Greater Mumbai). 2. Standard of Living also varies widely. Slums of Greater Mumbai and North Indian Cities score fairly high in the index indicating the fact that standard of living is high in those slums compare to the slums in eastern India (Dhanbad, Jamshedpur, Kolkata). Therefore, though Kolkata have relatively lesser percentage of slum population compare to north and south Indian cities but the standard of living in Kolkata’s slums is deplorable. 3. It is interesting to note that even within Kolkata Metropolitan Area slums located in the southern and eastern municipal towns like Rajpur-Sonarpur, Pujali, Diamond Harbour, Baduria and Dankuni have lower standard of living compare to the slums located in the Hooghly Industrial belt like Titagarh, Rishrah, Srerampore etc. Slums of the Hooghly Industrial Belt are older than the slums located in eastern and southern part of the urban agglomeration. 4. Therefore, urban development and emergence of slums should not be the only issue of urban governance but standard of living should be the main focus. Slums located in the main cities like Delhi, Mumbai, Kolkata get more attention from the urban planners and similarly, older slums in a city receives greater political attention compare to the slums of smaller cities and newly emerged slums of the peripheral parts.

Keywords: urbanisation, slum, spatial variation, India

Procedia PDF Downloads 358
173 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle

Authors: Pawel Magryta, Mateusz Paszko

Abstract:

In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag

Procedia PDF Downloads 306
172 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation

Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov

Abstract:

The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.

Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood

Procedia PDF Downloads 146
171 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays

Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner

Abstract:

Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.

Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation

Procedia PDF Downloads 289
170 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 307
169 Continued usage of Wearable FItness Technology: An Extended UTAUT2 Model Perspective

Authors: Rasha Elsawy

Abstract:

Aside from the rapid growth of global information technology and the Internet, another key trend is the swift proliferation of wearable technologies. The future of wearable technologies is very bright as an emerging revolution in this technological world. Beyond this, individual continuance intention toward IT is an important area that drew academics' and practitioners' attention. The literature review exhibits that continuance usage is an important concern that needs to be addressed for any technology to be advantageous and for consumers to succeed. However, consumers noticeably abandon their wearable devices soon after purchase, losing all subsequent benefits that can only be achieved through continued usage. Purpose-This thesis aims to develop an integrated model designed to explain and predict consumers' behavioural intention(BI) and continued use (CU) of wearable fitness technology (WFT) to identify the determinants of the CU of technology. Because of this, the question arises as to whether there are differences between technology adoption and post-adoption (CU) factors. Design/methodology/approach- The study employs the unified theory of acceptance and use of technology2 (UTAUT2), which has the best explanatory power, as an underpinning framework—extending it with further factors, along with user-specific personal characteristics as moderators. All items will be adapted from previous literature and slightly modified according to the WFT/SW context. A longitudinal investigation will be carried out to examine the research model, wherein a survey will include these constructs involved in the conceptual model. A quantitative approach based on a questionnaire survey will collect data from existing wearable technology users. Data will be analysed using the structural equation modelling (SEM) method based on IBM SPSS statistics and AMOS 28.0. Findings- The research findings will provide unique perspectives on user behaviour, intention, and actual continuance usage when accepting WFT. Originality/value- Unlike previous works, the current thesis comprehensively explores factors that affect consumers' decisions to continue using wearable technology. That is influenced by technological/utilitarian, affective, emotional, psychological, and social factors, along with the role of proposed moderators. That novel research framework is proposed by extending the UTAUT2 model with additional contextual variables classified into Performance Expectancy, Effort Expectancy, Social Influence (societal pressure regarding body image), Facilitating Conditions, Hedonic Motivation (to be split up into two concepts: perceived enjoyment and perceived device annoyance), Price value, and Habit-forming techniques; adding technology upgradability as determinants of consumers' behavioural intention and continuance usage of Information Technology (IT). Further, using personality traits theory and proposing relevant user-specific personal characteristics (openness to technological innovativeness, conscientiousness in health, extraversion, neuroticism, and agreeableness) to moderate the research model. Thus, the present thesis obtains a more convincing explanation expected to provide theoretical foundations for future emerging IT (such as wearable fitness devices) research from a behavioural perspective.

Keywords: wearable technology, wearable fitness devices/smartwatches, continuance use, behavioural intention, upgradability, longitudinal study

Procedia PDF Downloads 111
168 Severe Post Operative Gas Gangrene of the Liver: Off-Label Treatment by Percutaneous Radiofrequency Ablation

Authors: Luciano Tarantino

Abstract:

Gas gangrene is a rare, severe infection with a very high mortality rate caused by Clostridium species. The infection causes a non-suppurative localized producing gas lesion from which harmful toxins that impair the inflammatory response cause vessel damage and multiple organ failure. Gas gangrene of the liver is very rare and develops suddenly, often as a complication of abdominal surgery and liver transplantation. The present paper deals with a case of gas gangrene of the liver that occurred after percutaneous MW ablation of hepatocellular carcinoma, resulting in progressive liver necrosis and multi-organ failure in spite of specific antibiotics administration. The patient was successfully treated with percutaneous Radiofrequency ablation. Case report: Female, 76 years old, Child A class cirrhosis, treated with synchronous insertion of 3 MW antennae for large HCC (5.5 cm) in the VIII segment. 24 hours after treatment, the patient was asymptomatic and left the hospital . 2 days later, she complained of fever, weakness, abdominal swelling, and pain. Abdominal US detected a 2.3 cm in size gas-containing area, eccentric within the large (7 cm) ablated area. The patient was promptly hospitalized with the diagnosis of anaerobic liver abscess and started antibiotic therapy with Imipenem/cilastatine+metronidazole+teicoplanine. On the fourth day, the patient was moved to the ICU because of dyspnea, congestive heart failure, atrial fibrillation, right pleural effusion, ascites, and renal failure. Blood tests demonstrated severe leukopenia and neutropenia, anemia, increased creatinine and blood nitrogen, high-level FDP, and high INR. Blood cultures were negative. At US, unenhanced CT, and CEUS, a progressive enlargement of the infected liver lesion was observed. Percutaneous drainage was attempted, but only drops of non-suppurative brownish material could be obtained. Pleural and peritoneal drainages gave serosanguineous muddy fluid. The Surgeon and the Anesthesiologist excluded any indication of surgical resection because of the high perioperative mortality risk. Therefore, we asked for the informed consent of the patient and her relatives to treat the gangrenous liver lesion by percutaneous Ablation. Under conscious sedation, percutaneous RFA of GG was performed by double insertion of 3 cool-tip needles (Covidien LDT, USA ) into the infected area. The procedure was well tolerated by the patient. A dramatic improvement in the patient's condition was observed in the subsequent 24 hours and thereafter. Fever and dyspnea disappeared. Normalization of blood tests, including creatinine, was observed within 4 days. Heart performance improved, 10 days after the RFA the patient left the hospital and was followed-up with weekly as an outpatient for 2 months and every two months thereafter. At 18 months follow-up, the patient is well compensated (Child-Pugh class B7), without any peritoneal or pleural effusion and without any HCC recurrence at imaging (US every 3 months, CT every 6 months). Percutaneous RFA could be a valuable therapy of focal GG of the liver in patients non-responder to antibiotics and when surgery and liver transplantation are not feasible. A fast and early indication is needed in case of rapid worsening of patient's conditions.

Keywords: liver tumor ablation, interventional ultrasound, liver infection, gas gangrene, radiofrequency ablation

Procedia PDF Downloads 74
167 Big Data Applications for the Transport Sector

Authors: Antonella Falanga, Armando Cartenì

Abstract:

Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, cloud computing, decision-making, mobility demand, transportation

Procedia PDF Downloads 59
166 Suitability Assessment of Water Harvesting and Land Restoration in Catchment Comprising Abandoned Quarry Site in Addis Ababa, Ethiopia

Authors: Rahel Birhanu Kassaye, Ralf Otterpohl, Kumelachew Yeshitila

Abstract:

Water resource management and land degradation are among the critical issues threatening the suitable livability of many cities in developing countries such as Ethiopia. Rapid expansion of urban areas and fast growing population has increased the pressure on water security. On the other hand, the large transformation of natural green cover and agricultural land loss to settlement and industrial activities such as quarrying is contributing to environmental concerns. Integrated water harvesting is considered to play a crucial role in terms of providing alternative water source to insure water security and helping to improve soil condition, agricultural productivity and regeneration of ecosystem. Moreover, it helps to control stormwater runoff, thus reducing flood risks and pollution, thereby improving the quality of receiving water bodies and the health of inhabitants. The aim of this research was to investigate the potential of applying integrated water harvesting approaches as a provision for water source and enabling land restoration in Jemo river catchment consisting of abandoned quarry site adjacent to a settlement area that is facing serious water shortage in western hilly part of Addis Ababa city, Ethiopia. The abandoned quarry site, apart from its contribution to the loss of aesthetics, has resulted in poor water infiltration and increase in stormwater runoff leading to land degradation and flooding in the downstream. Application of GIS and multi-criteria based analysis are used for the assessment of potential water harvesting technologies considering the technology features and site characteristics of the case study area. Biophysical parameters including precipitation, surrounding land use, surface gradient, soil characteristics and geological aspects are used as site characteristic indicators and water harvesting technologies including retention pond, check dam, agro-forestation employing contour trench system were considered for evaluation with technical and socio-economic factors used as parameters in the assessment. The assessment results indicate the different suitability potential among the analyzed water harvesting and restoration techniques with respect to the abandoned quarry site characteristics. Application of agro-forestation with contour trench system with the revegetation of indigenous plants is found to be the most suitable option for reclamation and restoration of the quarry site. Successful application of the selected technologies and strategies for water harvesting and restoration is considered to play a significant role to provide additional water source, maintain good water quality, increase agricultural productivity at urban peri-urban interface scale and improve biodiversity in the catchment. The results of the study provide guideline for decision makers and contribute to the integration of decentralized water harvesting and restoration techniques in the water management and planning of the case study area.

Keywords: abandoned quarry site, land reclamation and restoration, multi-criteria assessment, water harvesting

Procedia PDF Downloads 212
165 Assessing the Threat of Dual Citizenship to State Interests: A Case Study of Sri Lanka

Authors: Kasuri Kaushalya Pathirana Pahamunu Pathirannehelage

Abstract:

Recent changes in the international system challenged the traditional idea of citizenship, prompting a need for a clearer definition. With the rapid globalization and shifting geopolitical dynamics, the concept of dual citizenship has emerged as a focal point of debate regarding its implications for state interests. As borders become less rigid and people identify with multiple nationalities, the traditional idea of citizenship is changing. This change is especially important given the increased connections between countries and the challenges that sovereign states face. While many countries accept dual citizenship, others are hesitant, seeing it as a potential threat to their national goals. This difference underscores the complicated relationship between national interests and the evolving concept of citizenship in the modern world. This study seeks to critically assess whether dual citizenship represents a significant threat to sovereign states by examining its effects across economic, social, and political sectors. Employing qualitative methodologies, including the analysis of published articles, reports, government acts, and a mix of primary and secondary sources, this research delves into the complexities surrounding dual citizenship. The findings reveal a nuanced landscape, showcasing both positive and negative impacts on state sovereignty and international cooperation. By exploring the tension between multinationalism and state interests, particularly through the lens of Sri Lanka’s evolving policies, this study aims to contribute valuable insights to the fields of political science and international relations, ultimately addressing the question of dual citizenship's implications for state interests. The evolving framework of dual citizenship in Sri Lanka provides a unique opportunity to examine its implications for various aspects of the nation. Specifically, this study will analyse the impact of dual citizenship on the country's economy, international cooperation, and social development. By exploring these dimensions, the research aims to provide a comprehensive understanding of how dual citizenship influences not only individual rights but also broader state interests and development goals within the context of globalization. It’s crucial to assess the potential threats posed by dual citizenship, as it can impact national security, economic stability, social unity, and political issues within countries. Understanding these effects is important for policymakers and researchers as they work to balance globalization with the need to protect state sovereignty. Dual citizenship presents a complex interplay of challenges and benefits to state interests, influencing critical areas such as international cooperation and state sovereignty. On the one hand, it can foster stronger ties between nations, enhance economic collaboration, and encourage cultural exchange, ultimately contributing to more robust international relationships. On the other hand, it may create tensions related to national identity, complicate governance, and raise concerns about loyalty and allegiance, which can challenge the notion of state sovereignty. As countries navigate these dual realities, it becomes essential to carefully assess and manage the implications of dual citizenship. By doing so, states can harness the potential advantages while addressing the associated risks, ultimately striving for a balance that promotes both national interests and international relations.

Keywords: dual citizenship, globalization, sustainable development, nationalism

Procedia PDF Downloads 11
164 Design of Experiment for Optimizing Immunoassay Microarray Printing

Authors: Alex J. Summers, Jasmine P. Devadhasan, Douglas Montgomery, Brittany Fischer, Jian Gu, Frederic Zenhausern

Abstract:

Immunoassays have been utilized for several applications, including the detection of pathogens. Our laboratory is in the development of a tier 1 biothreat panel utilizing Vertical Flow Assay (VFA) technology for simultaneous detection of pathogens and toxins. One method of manufacturing VFA membranes is with non-contact piezoelectric dispensing, which provides advantages, such as low-volume and rapid dispensing without compromising the structural integrity of antibody or substrate. Challenges of this processinclude premature discontinuation of dispensing and misaligned spotting. Preliminary data revealed the Yp 11C7 mAb (11C7)reagent to exhibit a large angle of failure during printing which may have contributed to variable printing outputs. A Design of Experiment (DOE) was executed using this reagent to investigate the effects of hydrostatic pressure and reagent concentration on microarray printing outputs. A Nano-plotter 2.1 (GeSIM, Germany) was used for printing antibody reagents ontonitrocellulose membrane sheets in a clean room environment. A spotting plan was executed using Spot-Front-End software to dispense volumes of 11C7 reagent (20-50 droplets; 1.5-5 mg/mL) in a 6-test spot array at 50 target membrane locations. Hydrostatic pressure was controlled by raising the Pressure Compensation Vessel (PCV) above or lowering it below our current working level. It was hypothesized that raising or lowering the PCV 6 inches would be sufficient to cause either liquid accumulation at the tip or discontinue droplet formation. After aspirating 11C7 reagent, we tested this hypothesis under stroboscope.75% of the effective raised PCV height and of our hypothesized lowered PCV height were used. Humidity (55%) was maintained using an Airwin BO-CT1 humidifier. The number and quality of membranes was assessed after staining printed membranes with dye. The droplet angle of failure was recorded before and after printing to determine a “stroboscope score” for each run. The DOE set was analyzed using JMP software. Hydrostatic pressure and reagent concentration had a significant effect on the number of membranes output. As hydrostatic pressure was increased by raising the PCV 3.75 inches or decreased by lowering the PCV -4.5 inches, membrane output decreased. However, with the hydrostatic pressure closest to equilibrium, our current working level, membrane output, reached the 50-membrane target. As the reagent concentration increased from 1.5 to 5 mg/mL, the membrane output also increased. Reagent concentration likely effected the number of membrane output due to the associated dispensing volume needed to saturate the membranes. However, only hydrostatic pressure had a significant effect on stroboscope score, which could be due to discontinuation of dispensing, and thus the stroboscope check could not find a droplet to record. Our JMP predictive model had a high degree of agreement with our observed results. The JMP model predicted that dispensing the highest concentration of 11C7 at our current PCV working level would yield the highest number of quality membranes, which correlated with our results. Acknowledgements: This work was supported by the Chemical Biological Technologies Directorate (Contract # HDTRA1-16-C-0026) and the Advanced Technology International (Contract # MCDC-18-04-09-002) from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA).

Keywords: immunoassay, microarray, design of experiment, piezoelectric dispensing

Procedia PDF Downloads 176
163 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 139
162 The Quantum Theory of Music and Languages

Authors: Mballa Abanda Serge, Henda Gnakate Biba, Romaric Guemno Kuate, Akono Rufine Nicole, Petfiang Sidonie, Bella Sidonie

Abstract:

The main hypotheses proposed around the definition of the syllable and of music, of the common origin of music and language, should lead the reader to reflect on the cross-cutting questions raised by the debate on the notion of universals in linguistics and musicology. These are objects of controversy, and there lies its interest: the debate raises questions that are at the heart of theories on language. It is an inventive, original and innovative research thesis. The main hypotheses proposed around the definition of the syllable and of music, of the common origin of music and language, should lead the reader to reflect on the cross-cutting questions raised by the debate on the notion of universals in linguistics and musicology. These are objects of controversy, and there lies its interest: the debate raises questions that are at the heart of theories on language. It is an inventive, original and innovative research thesis. A contribution to the theoretical, musicological, ethno musicological and linguistic conceptualization of languages, giving rise to the practice of interlocution between the social and cognitive sciences, the activities of artistic creation and the question of modeling in the human sciences: mathematics, computer science, translation automation and artificial intelligence. When you apply this theory to any text of a folksong of a world-tone language, you do not only piece together the exact melody, rhythm, and harmonies of that song as if you knew it in advance but also the exact speaking of this language. The author believes that the issue of the disappearance of tonal languages and their preservation has been structurally resolved, as well as one of the greatest cultural equations related to the composition and creation of tonal, polytonal and random music. The experimentation confirming the theorization, It designed a semi-digital, semi-analog application which translates the tonal languages of Africa (about 2,100 languages) into blues, jazz, world music, polyphonic music, tonal and anatonal music and deterministic and random music). To test this application, I use a music reading and writing software that allows me to collect the data extracted from my mother tongue, which is already modeled in the musical staves saved in the ethnographic (semiotic) dictionary for automatic translation ( volume 2 of the book). Translation is done (from writing to writing, from writing to speech and from writing to music). Mode of operation: you type a text on your computer, a structured song (chorus-verse), and you command the machine a melody of blues, jazz and world music or variety etc. The software runs, giving you the option to choose harmonies, and then you select your melody.

Keywords: music, entanglement, langauge, science

Procedia PDF Downloads 74
161 Methodological Deficiencies in Knowledge Representation Conceptual Theories of Artificial Intelligence

Authors: Nasser Salah Eldin Mohammed Salih Shebka

Abstract:

Current problematic issues in AI fields are mainly due to those of knowledge representation conceptual theories, which in turn reflected on the entire scope of cognitive sciences. Knowledge representation methods and tools are driven from theoretical concepts regarding human scientific perception of the conception, nature, and process of knowledge acquisition, knowledge engineering and knowledge generation. And although, these theoretical conceptions were themselves driven from the study of the human knowledge representation process and related theories; some essential factors were overlooked or underestimated, thus causing critical methodological deficiencies in the conceptual theories of human knowledge and knowledge representation conceptions. The evaluation criteria of human cumulative knowledge from the perspectives of nature and theoretical aspects of knowledge representation conceptions are affected greatly by the very materialistic nature of cognitive sciences. This nature caused what we define as methodological deficiencies in the nature of theoretical aspects of knowledge representation concepts in AI. These methodological deficiencies are not confined to applications of knowledge representation theories throughout AI fields, but also exceeds to cover the scientific nature of cognitive sciences. The methodological deficiencies we investigated in our work are: - The Segregation between cognitive abilities in knowledge driven models.- Insufficiency of the two-value logic used to represent knowledge particularly on machine language level in relation to the problematic issues of semantics and meaning theories. - Deficient consideration of the parameters of (existence) and (time) in the structure of knowledge. The latter requires that we present a more detailed introduction of the manner in which the meanings of Existence and Time are to be considered in the structure of knowledge. This doesn’t imply that it’s easy to apply in structures of knowledge representation systems, but outlining a deficiency caused by the absence of such essential parameters, can be considered as an attempt to redefine knowledge representation conceptual approaches, or if proven impossible; constructs a perspective on the possibility of simulating human cognition on machines. Furthermore, a redirection of the aforementioned expressions is required in order to formulate the exact meaning under discussion. This redirection of meaning alters the role of Existence and time factors to the Frame Work Environment of knowledge structure; and therefore; knowledge representation conceptual theories. Findings of our work indicate the necessity to differentiate between two comparative concepts when addressing the relation between existence and time parameters, and between that of the structure of human knowledge. The topics presented throughout the paper can also be viewed as an evaluation criterion to determine AI’s capability to achieve its ultimate objectives. Ultimately, we argue some of the implications of our findings that suggests that; although scientific progress may have not reached its peak, or that human scientific evolution has reached a point where it’s not possible to discover evolutionary facts about the human Brain and detailed descriptions of how it represents knowledge, but it simply implies that; unless these methodological deficiencies are properly addressed; the future of AI’s qualitative progress remains questionable.

Keywords: cognitive sciences, knowledge representation, ontological reasoning, temporal logic

Procedia PDF Downloads 111
160 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship

Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris

Abstract:

A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.

Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather

Procedia PDF Downloads 162
159 Using Technology to Deliver and Scale Early Childhood Development Services in Resource Constrained Environments: Case Studies from South Africa

Authors: Sonja Giese, Tess N. Peacock

Abstract:

South African based Innovation Edge is experimenting with technology to drive positive behavior change, enable data-driven decision making, and scale quality early years services. This paper uses five case studies to illustrate how technology can be used in resource-constrained environments to first, encourage parenting practices that build early language development (using a stage-based mobile messaging pilot, ChildConnect), secondly, to improve the quality of ECD programs (using a mobile application, CareUp), thirdly, how to affordably scale services for the early detection of visual and hearing impairments (using a mobile tool, HearX), fourthly, how to build a transparent and accountable system for the registration and funding of ECD (using a blockchain enabled platform, Amply), and finally enable rapid data collection and feedback to facilitate quality enhancement of programs at scale (the Early Learning Outcomes Measure). ChildConnect and CareUp were both developed using a design based iterative research approach. The usage and uptake of ChildConnect and CareUp was evaluated with qualitative and quantitative methods. Actual child outcomes were not measured in the initial pilots. Although parents who used and engaged on either platform felt more supported and informed, parent engagement and usage remains a challenge. This is contrast to ECD practitioners whose usage and knowledge with CareUp showed both sustained engagement and knowledge improvement. HearX is an easy-to-use tool to identify hearing loss and visual impairment. The tool was tested with 10000 children in an informal settlement. The feasibility of cost-effectively decentralising screening services was demonstrated. Practical and financial barriers remain with respect to parental consent and for successful referrals. Amply uses mobile and blockchain technology to increase impact and accountability of public services. In the pilot project, Amply is being used to replace an existing paper-based system to register children for a government-funded pre-school subsidy in South Africa. Early Learning Outcomes Measure defines what it means for a child to be developmentally ‘on track’ at aged 50-69 months. ELOM administration is enabled via a tablet which allows for easy and accurate data collection, transfer, analysis, and feedback. ELOM is being used extensively to drive quality enhancement of ECD programs across multiple modalities. The nature of ECD services in South Africa is that they are in large part provided by disconnected private individuals or Non-Governmental Organizations (in contrast to basic education which is publicly provided by the government). It is a disparate sector which means that scaling successful interventions is that much harder. All five interventions show the potential of technology to support and enhance a range of ECD services, but pathways to scale are still being tested.

Keywords: assessment, behavior change, communication, data, disabilities, mobile, scale, technology, quality

Procedia PDF Downloads 130
158 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function

Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio

Abstract:

Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).

Keywords: algorithm, diabetes, laboratory medicine, non-invasive

Procedia PDF Downloads 24
157 Spatial Pattern of Farm Mechanization: A Micro Level Study of Western Trans-Ghaghara Plain, India

Authors: Zafar Tabrez, Nizamuddin Khan

Abstract:

Agriculture in India in the pre-green revolution period was mostly controlled by terrain, climate and edaphic factors. But after the introduction of innovative factors and technological inputs, green revolution occurred and agricultural scene witnessed great change. In the development of India’s agriculture, speedy, and extensive introduction of technological change is one of the crucial factors. The technological change consists of adoption of farming techniques such as use of fertilisers, pesticides and fungicides, improved variety of seeds, modern agricultural implements, improved irrigation facilities, contour bunding for the conservation of moisture and soil, which are developed through research and calculated to bring about diversification and increase of production and greater economic return to the farmers. The green revolution in India took place during late 60s, equipped with technological inputs like high yielding varieties seeds, assured irrigation as well as modern machines and implements. Initially the revolution started in Punjab, Haryana and western Uttar Pradesh. With the efforts of government, agricultural planners, as well as policy makers, the modern technocratic agricultural development scheme was also implemented and introduced in backward and marginal regions of the country later on. Agriculture sector occupies the centre stage of India’s social security and overall economic welfare. The country has attained self-sufficiency in food grain production and also has sufficient buffer stock. Our first Prime Minister, Jawaharlal Nehru said ‘everything else can wait but not agriculture’. There is still a continuous change in the technological inputs and cropping patterns. Keeping these points in view, author attempts to investigate extensively the mechanization of agriculture and the change by selecting western Trans-Ghaghara plain as a case study and block a unit of the study. It includes the districts of Gonda, Balrampur, Bahraich and Shravasti which incorporate 44 blocks. It is based on secondary sources of data by blocks for the year 1997 and 2007. It may be observed that there is a wide range of variations and the change in farm mechanization, i.e., agricultural machineries such as ploughs, wooden and iron, advanced harrow and cultivator, advanced thrasher machine, sprayers, advanced sowing instrument, and tractors etc. It may be further noted that due to continuous decline in size of land holdings and outflux of people for the same nature of works or to be employed in non-agricultural sectors, the magnitude and direction of agricultural systems are affected in the study area which is one of the marginalized regions of Uttar Pradesh, India.

Keywords: agriculture, technological inputs, farm mechanization, food production, cropping pattern

Procedia PDF Downloads 307
156 Obstructive Bronchitis and Pneumonia by a Mixed Infection of HPIV- 3, S. pneumoniae in an Immunocompromised 10M Infant: Case Report

Authors: Olga Smilevska Spasova, Katerina Boshkovska, Gorica Popova, Mirjana Popovska

Abstract:

Introduction: Pneumonia is an infection of the pulmonary parenchyma. HPIV 3 is one of four viruses that is a member of the Paramyxoviridae family designated types 1-4 that have a nonsegmented, single-stranded RNA genome with a lipid-containing envelope. They are spread from the respiratory tract by aerosolized secretions or by direct contact with secretions. Type 3 is endemic and can cause serious illness in immunocompromised patients. Illness caused by parainfluenza occurs shortly after inoculation with the virus. The level of immunoglobulin A antibody in serum is the best predictor of susceptibility to infection. Streptococcus pneumonia or pneumococcus is a Gram-positive, spherical bacteria, usually found in pairs and it is a member of the genus Streptococcus. Streptococcus pneumonia resides asymptomatically in healthy carriers typically colonizing the respiratory tract, sinuses, and nasal cavity. In individuals with weaker immune systems like young infants, pneumococcal bacterium is the most common cause of community-acquired pneumonia in the world. Case Report: The aim is to present a case of lower respiratory tract infection in an infant caused by parainfluenza virus 3, S. pneumonia and undifferentiated gram-negative bacteria that was successfully treated. The infant is with a history of recurrent episodes of wheezing in the past 3mounts.Infant of 10months presents 2weeks before admittance with high fever, runny nose, and cough. The primary pediatrician prescribed oral cefpodoxime for 10days and inhaled salbutamol. Two days before admittance in hospital the infant with high fever, cough, and difficulty breathing. At admittance, infant is pale, anxious with rapid respirations, cough, wheezing and tachycardia. On auscultation: vesicular breathing sounds with high pitched wheezing and on the right coarse crackles. Investigations: Blood analysis: RBC: 4, 7 x1012L, WBC: 8,3x109L: Neut: 42.73% Lym: 41.57%, Hgb: 9.38 g/dl MCV: 62.7fl, MCH: 20.0pg MCHC: 31.8 g/dl RDW: 18.7% Plt-307.9 x109LCRP: 2,5mg/l, serum iron-7.92umol/l, O2sat-97% on blood gas analysis, puls-125/min.X-ray of chest with hyperinflationand right pericardial consolidation. Microbiological analysis of sputum sample is positive for undifferentiated gram-negative bacteria (colonizer)–resistant to cefotaxime, ampicillin, cefoxitin, sulfamet.+trimetoprim and sensitive to amikacin, gentamicin, and ciprofloxacin. Molecular multiplex RT-PCR for 19 viruses and multiplex PCR for 7 bacteria test for respiratory pathogens positive for Parainfluenza virus 3(Ct=22.73), Streptococcus pneumonia (Ct=26.75).IED: IgG-9.31g/l, IgA-0.351g/l, IgM-0.86g/l. Therapy: Treatment was started with inhaled salbutamol, intravenous antibiotic cefotaxime as well as systemic corticosteroids. On day 7 because of slow clinical resolution of chest auscultation findings and an etiologic clue with a positive sputum sample for resistant undifferentiated gram negative bacteria, a second intravenous antibiotic was administered amikacin. The infant is discharged on day 14 with resolution of clinical findings. Conclusion: Mixed co-infections with respiratory viruses and bacteria in immunocompromised infants are likely to lead to a more severe form of community acquired pneumonia that will need hospitalization.

Keywords: HPIV- 3, infant, pneumonia, S. pneumonia, x-ray chest

Procedia PDF Downloads 74
155 Factors Affecting Treatment Resilience in Patients with Oesophago-Gastric Cancers Undergoing Palliative Chemotherapy: A Literature Review

Authors: Kiran Datta, Daniella Holland-Hart, Anthony Byrne

Abstract:

Introduction: Oesophago-gastric (OG) cancers are the fifth commonest in the UK, accounting for over 12,000 deaths each year. Most patients will present at later stages of the disease, with only 21% of patients with stage 4 disease surviving longer than a year. As a result, many patients are unsuitable for curative surgery and instead receive palliative treatment to improve prognosis and symptom burden. However, palliative chemotherapy can result in significant toxicity: almost half of the patients are unable to complete their chemotherapy regimen, with this proportion rising significantly in older and frailer patients. In addition, clinical trials often exclude older and frailer patients due to strict inclusion criteria, meaning there is limited evidence to guide which patients are most likely to benefit from palliative chemotherapy. Inappropriate chemotherapy administration is at odds with the goals of palliative treatment and care, which are to improve quality of life, and this also represents a significant resource expenditure. This literature review aimed to examine and appraise evidence regarding treatment resilience in order to guide clinicians in identifying the most suitable candidates for palliative chemotherapy. Factors influencing treatment resilience were assessed, as measured by completion rates, dose reductions, and toxicities. Methods: This literature review was conducted using rapid review methodology, utilising modified systematic methods. A literature search was performed across the MEDLINE, EMBASE, and Cochrane Library databases, with results limited to papers within the last 15 years and available in English. Key inclusion criteria included: 1) participants with either oesophageal, gastro-oesophageal junction, or gastric cancers; 2) patients treated with palliative chemotherapy; 3) available data evaluating the association between baseline participant characteristics and treatment resilience. Results: Of the 2326 papers returned, 11 reports of 10 studies were included in this review after excluding duplicates and irrelevant papers. Treatment resilience factors that were assessed included: age, performance status, frailty, inflammatory markers, and sarcopenia. Age was generally a poor predictor for how well patients would tolerate chemotherapy, while poor performance status was a better indicator of the need for dose reduction and treatment non-completion. Frailty was assessed across one cohort using multiple screening tools and was an effective marker of the risk of toxicity and the requirement for dose reduction. Inflammatory markers included lymphopenia and the Glasgow Prognostic Score, which assessed inflammation and hypoalbuminaemia. Although quick to obtain and interpret, these findings appeared less reliable due to the inclusion of patients treated with palliative radiotherapy. Sarcopenia and body composition were often associated with chemotherapy toxicity but not the rate of regimen completion. Conclusion: This review demonstrates that there are numerous measures that can estimate the ability of patients with oesophago-gastric cancer to tolerate palliative chemotherapy, and these should be incorporated into clinical assessments to promote personalised decision-making around treatment. Age should not be a barrier to receiving chemotherapy and older and frailer patients should be included in future clinical trials to better represent typical patients with oesophago-gastric cancers. Decisions regarding palliative treatment should be guided by these factors identified as well as patient preference.

Keywords: frailty, oesophago-gastric cancer, palliative chemotherapy, treatment resilience

Procedia PDF Downloads 73
154 Unpacking the Spatial Outcomes of Public Transportation in a Developing Country Context: The Case of Johannesburg

Authors: Adedayo B. Adegbaju, Carel B. Schoeman, Ilse M. Schoeman

Abstract:

The unique urban contexts that emanated from the apartheid history of South Africa informed the transport landscape of the City of Johannesburg. Apartheid‘s divisive spatial planning and land use management policies promoted sprawling and separated workers from job opportunities. This was further exacerbated by poor funding of public transport and road designs that encouraged the use of private cars. However, the democratization of the country in 1994 and the hosting of the 2010 FIFA World Cup provided a new impetus to the city’s public transport-oriented urban planning inputs. At the same time, the state’s new approach to policy formulations that entails the provision of public transport as one of the tools to end years of marginalization and inequalities soon began to largely reflect in planning decisions of other spheres of government. The Rea Vaya BRT and the Gautrain were respectively implemented by the municipal and provincial governments to demonstrate strong political will and commitment to the new policy direction. While the Gautrain was implemented to facilitate elite movement within Gauteng and to crowd investments and economic growths around station nodes, the BRT was provided for previously marginalized public transport users to provide a sustainable alternative to the dominant minibus taxi. The aim of this research is to evaluate the spatial impacts of the Gautrain and Rea Vaya BRT on the City of Johannesburg and to inform future outcomes by determining the existing potentials. By using the case study approach with a focus on the BRT and fast rail in a metropolitan context, the triangulation research method, which combines various data collection methods, was used to determine the research outcomes. The use of interviews, questionnaires, field observation, and databases such as REX, Quantec, StatsSA, GCRO observatory, national and provincial household travel surveys, and the quality of life surveys provided the basis for data collection. The research concludes that the Gautrain has demonstrated that viable alternatives to the private car can be provided, with its satisfactory feedbacks from users; while some of its station nodes (Sandton, Rosebank) have shown promises of transit-oriented development, one of the project‘s key objectives. The other stations have been unable to stimulate growth due to reasons like non-implementation of their urban design frameworks and lack of public sector investment required to attract private investors. The Rea Vaya BRT continues to be expanded in spite of both its inability to induce modal change and its low ridership figures. The research identifies factors like the low peak to base ratio, pricing, and the city‘s disjointed urban fabric as some of the reasons for its below-average performance. By drawing from the highlights and limitations, the study recommends that public transport provision should be institutionally integrated across and within spheres of government. Similarly, harmonization of the funding structure, better understanding of users’ needs, and travel patterns, underlined with continuity of policy direction and objectives, will equally promote optimal outcomes.

Keywords: bus rapid transit, Gautrain, Rea Vaya, sustainable transport, spatial and transport planning, transit oriented development

Procedia PDF Downloads 110
153 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts

Procedia PDF Downloads 125
152 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis

Authors: Avi Shrivastava

Abstract:

In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.

Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine

Procedia PDF Downloads 67
151 Evaluation of the Biological Activity of New Antimicrobial and Biodegradable Textile Materials for Protective Equipment

Authors: Safa Ladhari, Alireza Saidi, Phuong Nguyen-Tri

Abstract:

During health crises, such as COVID-19, using disposable protective equipment (PEs) (masks, gowns, etc.) causes long-term problems, increasing the volume of hazardous waste that must be handled safely and expensively. Therefore, producing textiles for antimicrobial and reusable materials is highly desirable to decrease the use of disposable PEs that should be treated as hazardous waste. In addition, if these items are used regularly in the workplace or for daily activities by the public, they will most likely end up in household waste. Furthermore, they may pose a high risk of contagion to waste collection workers if contaminated. Therefore, to protect the whole population in times of sanitary crisis, it is necessary to equip these materials with tools that make them resilient to the challenges of carrying out daily activities without compromising public health and the environment and without depending on them external technologies and producers. In addition, the materials frequently used for EPs are plastics of petrochemical origin. The subject of the present work is replacing petroplastics with bioplastic since it offers better biodegradability. The chosen polymer is polyhydroxybutyrate (PHB), a family of polyhydroxyalkanoates synthesized by different bacteria. It has similar properties to conventional plastics. However, it is renewable, biocompatible, and has attractive barrier properties compared to other polyesters. These characteristics make it ideal for EP protection applications. The current research topic focuses on the preparation and rapid evaluation of the biological activity of nanotechnology-based antimicrobial agents to treat textile surfaces used for PE. This work will be carried out to provide antibacterial solutions that can be transferred to a workplace application in the fight against short-term biological risks. Three main objectives are proposed during this research topic: 1) the development of suitable methods for the deposition of antibacterial agents on the surface of textiles; 2) the development of a method for measuring the antibacterial activity of the prepared textiles and 3) the study of the biodegradability of the prepared textiles. The studied textile is a non-woven fabric based on a biodegradable polymer manufactured by the electrospinning method. Indeed, nanofibers are increasingly studied due to their unique characteristics, such as high surface-to-volume ratio, improved thermal, mechanical, and electrical properties, and confinement effects. The electrospun film will be surface modified by plasma treatment and then loaded with hybrid antibacterial silver and titanium dioxide nanoparticles by the dip-coating method. This work uses simple methods with emerging technologies to fabricate nanofibers with suitable size and morphology to be used as components for protective equipment. The antibacterial agents generally used are based on silver, zinc, copper, etc. However, to our knowledge, few researchers have used hybrid nanoparticles to ensure antibacterial activity with biodegradable polymers. Also, we will exploit visible light to improve the antibacterial effectiveness of the fabric, which differs from the traditional contact mode of killing bacteria and presents an innovation of active protective equipment. Finally, this work will allow for the innovation of new antibacterial textile materials through a simple and ecological method.

Keywords: protective equipment, antibacterial textile materials, biodegradable polymer, electrospinning, hybrid antibacterial nanoparticles

Procedia PDF Downloads 79
150 3D Seismic Acquisition Challenges in the NW Ghadames Basin Libya, an Integrated Geophysical Sedimentological and Subsurface Studies Approach as a Solution

Authors: S. Sharma, Gaballa Aqeelah, Tawfig Alghbaili, Ali Elmessmari

Abstract:

There were abrupt discontinuities in the Brute Stack in the northernmost locations during the acquisition of 2D (2007) and 3D (2021) seismic data in the northwest region of the Ghadames Basin, Libya. In both campaigns, complete fluid circulation loss was seen in these regions during up-hole drilling. Geophysics, sedimentology and shallow subsurface geology were all integrated to look into what was causing the seismic signal to disappear at shallow depths. The Upper Cretaceous Nalut Formation is the near-surface or surface formation in the studied area. It is distinguished by abnormally high resistivity in all the neighboring wells. The Nalut Formation in all the nearby wells from the present study and previous outcrop study suggests lithology of dolomite and chert/flint in nodular or layered forms. There are also reports of karstic caverns, vugs, and thick cracks, which all work together to produce the high resistivity. Four up-hole samples that were analyzed for microfacies revealed a near-coastal to tidal environment. Algal (Chara) infested deposits up to 30 feet thick and monotonous, very porous, are seen in two up-hole sediments; these deposits are interpreted to be scattered, continental algal travertine mounds. Chert/flint, dolomite, and calcite in varying amounts are confirmed by XRD analysis. Regional tracking of the high resistivity of the Nalut Formation, which is thought to be connected to the sea level drop that created the paleokarst layer, is possible. It is abruptly overlain by a blanket marine transgressive deposit caused by rapid sea level rise, which is a regional, relatively high radioactive layer of argillaceous limestone. The examined area's close proximity to the mountainous, E-W trending ridges of northern Libya made it easier for recent freshwater circulation, which later enhanced cavern development and mineralization in the paleokarst layer. Seismic signal loss at shallow depth is caused by extremely heterogeneous mineralogy of pore- filling or lack thereof. Scattering effect of shallow karstic layer on seismic signal has been well documented. Higher velocity inflection points at shallower depths in the northern part and deeper intervals in the southern part, in both cases at Nalut level, demonstrate the layer's influence on the seismic signal. During the Permian-Carboniferous, the Ghadames Basin underwent uplift and extensive erosion, which resulted in this karstic layer of the Nalut Formation uplifted to a shallow depth in the northern part of the studied area weakening the acoustic signal, whereas in the southern part of the 3D acquisition area the Nalut Formation remained at the deeper interval without affecting the seismic signal. Results from actions taken during seismic processing to deal with this signal loss are visible and have improved. This study recommends using denser spacing or dynamite to circumvent the karst layer in a comparable geographic area in order to prevent signal loss at lesser depths.

Keywords: well logging, seismic data acquisition, sesimic data processing, up-holes

Procedia PDF Downloads 82
149 Chemical Modifications of Three Underutilized Vegetable Fibres for Improved Composite Value Addition and Dye Absorption Performance

Authors: Abayomi O. Adetuyi, Jamiu M. Jabar, Samuel O. Afolabi

Abstract:

Vegetable fibres are classes of fibres of low density, biodegradable and non-abrasive that are largely abundant fibre materials with specific properties and mostly found/ obtained in plants on earth surface. They are classified into three categories, depending on the part of the plant from which they are gotten from namely: fruit, Blast and Leaf fibre. Ever since four/five millennium B.C, attention has been focussing on the commonest and highly utilized cotton fibre obtained from the fruit of cotton plants (Gossypium spp), for the production of cotton fabric used in every home today. The present study, therefore, focused on the ability of three underutilized vegetable (fruit) fibres namely: coir fiber (Eleas coniferus), palm kernel fiber and empty fruit bunch fiber (Elias guinensis) through chemical modifications for better composite value addition performance to polyurethane form and dye adsorption. These fibres were sourced from their parents’ plants, identified and cleansed with 2% hot detergent solution 1:100, rinsed in distilled water and oven-dried to constant weight, before been chemically modified through alkali bleaching, mercerization and acetylation. The alkali bleaching involves treating 0.5g of each fiber material with 100 mL of 2% H2O2 in 25 % NaOH solution with refluxing for 2 h. While that of mercerization and acetylation involves the use of 5% sodium hydroxide NaOH solution for 2 h and 10% acetic acid- acetic anhydride 1:1 (v/v) (CH3COOH) / (CH3CO)2O solution with conc. H2SO4 as catalyst for 1 h, respectively on the fibres. All were subsequently washed thoroughly with distilled water and oven dried at 105 0C for 1 h. These modified fibres were incorporated as composite into polyurethane form and used in dye adsorption study of indigo. The first two treatments led to fiber weight reduction, while the acidified acetic anhydride treatment gave the fibers weight increment. All the treated fibers were found to be of less hydrophilic nature, better mechanical properties, higher thermal stabilities as well as better adsorption surfaces/capacities than the untreated ones. These were confirmed by gravimetric analysis, Instron Universal Testing Machine, Thermogravimetric Analyser and the Scanning Electron Microscope (SEM) respectively. The fiber morphology of the modified fibers showed smoother surfaces than unmodified fibres.The empty fruit bunch fibre and the coconut coir fibre are better than the palm kernel fibres as reinforcers for composites or as adsorbents for waste-water treatment. Acetylation and alkaline bleaching treatment improve the potentials of the fibres more than mercerization treatment. Conclusively, vegetable fibres, especially empty fruit bunch fibre and the coconut coir fibre, which are cheap, abundant and underutilized, can replace the very costly powdered activated carbon in wastewater treatment and as reinforcer in foam.

Keywords: chemical modification, industrial application, value addition, vegetable fibre

Procedia PDF Downloads 326
148 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 69