Search results for: effect of key parameters
15506 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite
Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed
Abstract:
Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.Keywords: carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites
Procedia PDF Downloads 41015505 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition
Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang
Abstract:
Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model
Procedia PDF Downloads 11515504 The Effect of Sowing Time on Phytopathogenic Characteristics and Yield of Sunflower Hybrids
Authors: Adrienn Novák
Abstract:
The field research was carried out at the Látókép AGTC KIT research area of the University of Debrecen in Eastern-Hungary, on the area of the aeolain loess of the Hajdúság. We examined the effects of the sowing time on the phytopathogenic characteristics and yield production by applying various fertilizer treatments on two different sunflower genotypes (NK Ferti, PR64H42) in 2012 and 2013. We applied three different sowing times (early, optimal, late) and two different treatment levels of fungicides (control = no fungicides applied, double fungicide protection). During our investigations, the studied cropyears were of different sowing time optimum in terms of yield amount (2012: early, 2013: average). By Pearson’s correlation analysis, we have found that delaying the sowing time pronouncedly decreased the extent of infection in both crop years (Diaporthe: r=0.663**, r=0.681**, Sclerotinia: r=0.465**, r=0.622**). The fungicide treatment not only decreased the extent of infection, but had yield increasing effect too (2012: r=0.498**, 2013: r=0.603**). In 2012, delaying of the sowing time increased (r=0.600**), but in 2013, it decreased (r= 0.356*) the yield amount.Keywords: fungicide treatment, genotypes, sowing time, yield, sunflower
Procedia PDF Downloads 21415503 Influence of Antecedent Soil Moisture on Soil Erosion: A Two-Year Field Study
Authors: Yu-Da Chen, Chia-Chun Wu
Abstract:
The relationship between antecedent soil moisture content and soil erosion is a complicated phenomenon. Some studies confirm the effect of antecedent soil moisture content on soil erosion, but some deny it. Therefore, the objective of this study is to clarify such contradictions through field experiments. This study conducted two-year field observations of soil losses from natural rainfall events on runoff plots with a length of 10 meters, width of 3 meters, and uniform slope of 9%. Volumetric soil moisture sensors were used to log the soil moisture changes for each rainfall event. A total of 49 effective events were monitored. Results of this study show that antecedent soil moisture content promotes the generation of surface runoff, especially for rainfall events with short duration or lower magnitudes. A positive correlation was found between antecedent soil moisture content and soil loss per unit Rainfall-Runoff Erosivity Index, which indicated that soil with high moisture content is more susceptible to detachment. Once the rainfall duration exceeds 10 hours, the impact from the rainfall duration to soil erosion overwrites, and the effect of antecedent soil moisture is almost negligible.Keywords: antecedent soil moisture content, soil loss, runoff coefficient, rainfall-runoff erosivity
Procedia PDF Downloads 7015502 Assessment of Heart Rate, Blood Pressure and Percentage Oxygen Saturation in Young Habitual Shisha Smokers in Kano, Nigeria
Authors: B. I. Waziri, M. A. Yahaya
Abstract:
Background: Practice of shisha smoking involves the use of a multi-stemmed instrument to smoke tobacco or non-tobacco herbal mixture where the smoke is designed to pass through water or other liquid before reaching the smoker. The presence of tobacco content and the use of charcoal when burning the ingredients in this popular practice necessitate for investigation of many physiological parameters of habitual shisha smokers in our environment. Methods: 103 young shisha smokers, regular in the practice for more than three years living in Nasarawa, Kano state, Nigeria, were recruited for the study. The controls were 100 university students (nonsmokers) match for age (18 - 30 years), sex and BMI (20 - 24) with the smokers. Participants with known history of cigarette smoking, cardiovascular or respiratory diseases were excluded. Ethical approval was obtained from the Ministry of Health, Kano Nigeria. Hear rate, blood pressure and percentage oxygen saturation (SPO₂) were measured using stethoscope, sphygmomanometer and pulse oximeter respectively. Data were analyzed using IBM SPSS version 20 and mean values of the measured parameters were compared between the smokers and controls using independent sample t-test. P-values < 0.05 were considered significant. Results: The mean Heart rate was found to be significantly higher (p = 0.01) in the shisha smokers (91.32 ± 0.84) compared to controls (79.19 ± 1.18). Systolic and diastolic blood pressure was also higher (p = 0.00) in the shisha smokers (128.75 ± 1.11 and 85.85 ± 0.78 respectively) compared to controls with the systolic and diastolic pressure of 116.64 ± 0.82 and 80.39 ± 0.83 respectively. SPO₂ was significantly lower (p = 0.00) in the shisha smokers (91.98% ± 0.42%) compared to the controls (97.98 ± 0.18). Conclusion: Habitual Shisha Smoking caused a significant increase in Heart rate, both systolic and diastolic blood pressure and a significant decrease in SPO2 among youth in Kano State, Nigeria.Keywords: blood pressure, heart rate, shisha, youth
Procedia PDF Downloads 15115501 Development and Validation of a Rapid Turbidimetric Assay to Determine the Potency of Cefepime Hydrochloride in Powder Injectable Solution
Authors: Danilo F. Rodrigues, Hérida Regina N. Salgado
Abstract:
Introduction: The emergence of resistant microorganisms to a large number of clinically approved antimicrobials has been increasing, which restrict the options for the treatment of bacterial infections. As a strategy, drugs with high antimicrobial activities are in evidence. Stands out a class of antimicrobial, the cephalosporins, having as fourth generation cefepime (CEF) a semi-synthetic product which has activity against various Gram-positive bacteria (e.g. oxacillin resistant Staphylococcus aureus) and Gram-negative (e.g. Pseudomonas aeruginosa) aerobic. There are few studies in the literature regarding the development of microbiological methodologies for the analysis of this antimicrobial, so researches in this area are highly relevant to optimize the analysis of this drug in the industry and ensure the quality of the marketed product. The development of microbiological methods for the analysis of antimicrobials has gained strength in recent years and has been highlighted in relation to physicochemical methods, especially because they make possible to determine the bioactivity of the drug against a microorganism. In this context, the aim of this work was the development and validation of a microbiological method for quantitative analysis of CEF in powder lyophilized for injectable solution by turbidimetric assay. Method: For performing the method, Staphylococcus aureus ATCC 6538 IAL 2082 was used as the test microorganism and the culture medium chosen was the Casoy broth. The test was performed using temperature control (35.0 °C ± 2.0 °C) and incubated for 4 hours in shaker. The readings of the results were made at a wavelength of 530 nm through a spectrophotometer. The turbidimetric microbiological method was validated by determining the following parameters: linearity, precision (repeatability and intermediate precision), accuracy and robustness, according to ICH guidelines. Results and discussion: Among the parameters evaluated for method validation, the linearity showed results suitable for both statistical analyses as the correlation coefficients (r) that went 0.9990 for CEF reference standard and 0.9997 for CEF sample. The precision presented the following values 1.86% (intraday), 0.84% (interday) and 0.71% (between analyst). The accuracy of the method has been proven through the recovery test where the mean value obtained was 99.92%. The robustness was verified by the parameters changing volume of culture medium, brand of culture medium, incubation time in shaker and wavelength. The potency of CEF present in the samples of lyophilized powder for injectable solution was 102.46%. Conclusion: The turbidimetric microbiological method proposed for quantification of CEF in lyophilized powder for solution for injectable showed being fast, linear, precise, accurate and robust, being in accordance with all the requirements, which can be used in routine analysis of quality control in the pharmaceutical industry as an option for microbiological analysis.Keywords: cefepime hydrochloride, quality control, turbidimetric assay, validation
Procedia PDF Downloads 36415500 Effects of Education Equity Policy on Housing Prices: Evidence from Simultaneous Admission to Public and Private Schools Policy in Shanghai
Authors: Tianyu Chen
Abstract:
China's school district education policy has encouraged parents to purchase properties in school districts with high-quality education resources. Shanghai has implemented "Simultaneous Admission to Public and Private Schools" (SAPPS) since 2018, which has covered all nine-year compulsory education by 2020. This study examines the impact of SAPPS on the housing market, specifically the premium effect of houses located in dual-school districts. Based on the Hedonic Pricing Model and the Signaling Theory, data is collected from 585 second-hand house transactions in Pudong New Area, Shanghai, and it is analyzed with the Difference-in-Differences (DID) model. The results indicate that the implementation of SAPPS has exacerbated the premium of dual school district housing and weakened the effect of the policy to a certain degree. To ensure equal access to education for all students, the government should work both on the supply and demand sides of the education resource equation.Keywords: simultaneous admission to public and private schools, housing prices, education policy, education equity
Procedia PDF Downloads 8315499 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite
Authors: Nadir Atayev, Mehman Hasanov
Abstract:
Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.Keywords: cubesat, free space optics, nano satellite, optical laser communication.
Procedia PDF Downloads 9415498 Critical Factors for Successful Adoption of Land Value Capture Mechanisms – An Exploratory Study Applied to Indian Metro Rail Context
Authors: Anjula Negi, Sanjay Gupta
Abstract:
Paradigms studied inform inadequacies of financial resources, be it to finance metro rails for construction or to meet operational revenues or to derive profits in the long term. Funding sustainability is far and wide for much-needed public transport modes, like urban rail or metro rails, to be successfully operated. India embarks upon a sustainable transport journey and has proposed metro rail systems countrywide. As an emerging economic leader, its fiscal constraints are paramount, and the land value capture (LVC) mechanism provides necessary support and innovation toward development. India’s metro rail policy promotes multiple methods of financing, including private-sector investments and public-private-partnership. The critical question that remains to be addressed is what factors can make such mechanisms work. Globally, urban rail is a revolution noted by many researchers as future mobility. Researchers in this study deep dive by way of literature review and empirical assessments into factors that can lead to the adoption of LVC mechanisms. It is understood that the adoption of LVC methods is in the nascent stages in India. Research posits numerous challenges being faced by metro rail agencies in raising funding and for incremental value capture. A few issues pertaining to land-based financing, inter alia: are long-term financing, inter-institutional coordination, economic/ market suitability, dedicated metro funds, land ownership issues, piecemeal approach to real estate development, property development legal frameworks, etc. The question under probe is what are the parameters that can lead to success in the adoption of land value capture (LVC) as a financing mechanism. This research provides insights into key parameters crucial to the adoption of LVC in the context of Indian metro rails. Researchers have studied current forms of LVC mechanisms at various metro rails of the country. This study is significant as little research is available on the adoption of LVC, which is applicable to the Indian context. Transit agencies, State Government, Urban Local Bodies, Policy makers and think tanks, Academia, Developers, Funders, Researchers and Multi-lateral agencies may benefit from this research to take ahead LVC mechanisms in practice. The study deems it imperative to explore and understand key parameters that impact the adoption of LVC. Extensive literature review and ratification by experts working in the metro rails arena were undertaken to arrive at parameters for the study. Stakeholder consultations in the exploratory factor analysis (EFA) process were undertaken for principal component extraction. 43 seasoned and specialized experts participated in a semi-structured questionnaire to scale the maximum likelihood on each parameter, represented by various types of stakeholders. Empirical data was collected on chosen eighteen parameters, and significant correlation was extracted for output descriptives and inferential statistics. Study findings reveal these principal components as institutional governance framework, spatial planning features, legal frameworks, funding sustainability features and fiscal policy measures. In particular, funding sustainability features highlight sub-variables of beneficiaries to pay and use of multiple revenue options towards success in LVC adoption. Researchers recommend incorporation of these variables during early stage in design and project structuring for success in adoption of LVC. In turn leading to improvements in revenue sustainability of a public transport asset and help in undertaking informed transport policy decisions.Keywords: Exploratory factor analysis, land value capture mechanism, financing metro rails, revenue sustainability, transport policy
Procedia PDF Downloads 8715497 Improvement of Activity of β-galactosidase from Kluyveromyces lactis via Immobilization on Polyethylenimine-Chitosan
Authors: Carlos A. C. G. Neto, Natan C. G. e Silva , Thaís de O. Costa, Luciana R. B. Gonçalves, Maria V. P. Rocha
Abstract:
β-galactosidases (E.C. 3.2.1.23) are enzymes that have attracted by catalyzing the hydrolysis of lactose and in producing galacto-oligosaccharides by favoring transgalactosylation reactions. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers is a promising alternative to enhance the stability of the biocatalysts, among which polyethylenimine (PEI) stands out. PEI has certain properties, such as being a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases. Besides that, protects them from environmental variations. The use of chitosan support coated with PEI could improve the catalytic efficiency of β-galactosidase from Kluyveromyces lactis in the transgalactosylation reaction for the production of prebiotics, such as lactulose since this strain is more effective in the hydrolysis reaction. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from K. lactis immobilized on chitosan-coated with PEI, determining the immobilization parameters, its operational and thermal stability, and then to apply it in hydrolysis and transgalactolisation reactions to produce lactulose using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% (v/v) glutaraldehyde and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg protein per gram support. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey supplemented with fructose at a ratio of 1:2 lactose/fructose, totaling 200 g/L. Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6 with 0.1 mM MnCl2. The biocatalyst whose support was coated was named CHI_GLU_PEI_GAL, and the one that was not coated was named CHI_GLU_GAL. The coating of the support with PEI considerably improved the parameters of immobilization. The immobilization yield increased from 56.53% to 97.45%, biocatalyst activity from 38.93 U/g to 95.26 U/g and the efficiency from 3.51% to 6.0% for uncoated and coated support, respectively. The biocatalyst CHI_GLU_PEI_GAL was better than CHI_GLU_GAL in the hydrolysis of lactose and production of lactulose, converting 97.05% of lactose at 5 min of reaction and producing 7.60 g/L lactulose in the same time interval. QUI_GLU_PEI_GAL biocatalyst was stable in the hydrolysis reactions of lactose during the 10 cycles evaluated, converting 73.45% lactose even after the tenth cycle, and in the lactulose production was stable until the fifth cycle evaluated, producing 10.95 g/L lactulose. However, the thermal stability of CHI_GLU_GAL biocatalyst was superior, with a half-life time 6 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (CHI_GLU_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as, the catalytic action of the enzyme. Besides that, this process can be economically viable due to the use of an industrial residue as a substrate.Keywords: β-galactosidase, immobilization, kluyveromyces lactis, lactulose, polyethylenimine, transgalactosylation reaction, whey
Procedia PDF Downloads 11515496 Simulation and Control of the Flywheel System in the Rotor of a Wind Turbine Using Simulink and OpenFAST for Assessing the Effect on the Mechanical Loads
Authors: Chinazo Onyeka Eziuzo
Abstract:
This work presents the simulation and control of the flywheel system in the rotor of a wind turbine using Simulink and OpenFAST for assessing the effect on the mechanical loads. This concept allows the flywheel system to serve two main tasks: supporting the power system and mitigating the mechanical loads in the wind turbine. These tasks are grouped into four control scenarios; scenario 1 represents steadying the power infeed in the Flywheel, scenario 2 represents steadying power with FW and grid loss, scenario 3 represents mitigating excitations from gravity, and scenario 4 represents damping in-plane blade vibrations. The s-function of the OpenFAST model was used to substitute the given 1st Eigen mode model of the WT. After that, the simulations were run for the above-listed scenarios. Additionally, the effects of the control options on the mechanical loads were assessed, and it was established that the FW system assists in steadying infeed power and mechanical load mitigation.Keywords: simulation, control, wind turbine, OpenFAST
Procedia PDF Downloads 13315495 Comparison of Carcass Weight of Pure and Mixed Races Namebar 30-Day Squabs
Authors: Sepehr Moradi, Mehdi Asadi Rad
Abstract:
The aim of this study is to evaluate and compare carcass weight of pure and mixed races Namebar 30-day pigeons to investigate about their sex, race, and some auxiliary variables. In this paper, 68 pieces of pigeons as 34 male and female pairs with equal age are studied randomly. A natural incubation was done from each pair. All produced chickens were slaughtered at 30 days age after 12 hours hunger. Then their carcasses were weighted by a scale with one gram precision. A covariance analysis was used since there were many auxiliary variables and unequal observations. SAS software was used for statistical analysis. Mean weight of carcass in pure race (Namebar-Namebar) with 8 records, 219.5±61.3 gr and mixed races of Kabood-Namebar, Parvazy-Namebar, Tizpar-Namebar, Namebar-Kabood, Namebar-Tizpar, and Namebar-Parvazy with 8, 10, 8, 12, 12, and 10 records were 369.9±54.6, 338.3±52.7, 224.5±73.6, 142.3±67.8, 155.6±56.2, and 170.2±55 gr, respectively.. Difference carcass weight of 30-day of Namebar-Namebar race with Namebar-Kabood, Namebar-Parvazy, Namebar-Tizpar, Parvazy-Namebar and Tizpar-Namebar mixed races was not significant, and was significant in level 5% with Kabood- Namebar (P < 0.05). Effect of sex and age were also significant in 1% level (P < 0.01), but mutual effect of sex and race was not significant. The results showed that most and least weights of carcass belonged to Kabood-Namebar and Namebar-Kabood.Keywords: squab, Namebar race, 30-day carcass weight, pigeons
Procedia PDF Downloads 18215494 Effect of Planting Date on Quantitative and Qualitative Characteristics of Different Bread Wheat and Durum Cultivars
Authors: Mahdi Nasiri Tabrizi, A. Dadkhah, M. Khirkhah
Abstract:
In order to study the effect of planting on yield, yield components and quality traits in bread and durum wheat varieties, a field split-plot experiment based on complete randomized design with three replications was conducted in Agricultural and Natural Resources Research Center of Razavi Khorasan located in city of Mashhad during 2013-2014. Main factor were consisted of five sowing dates (first October, fifteenth December, first March, tenth March, twentieth March) and as sub-factors consisted of different bread wheat (Bahar, Pishgam, Pishtaz, Mihan, Falat and Karim) and two durum wheat (Dena and Dehdasht). According to results of analysis variance the effect of planting date was significant on all examined traits (grain yield, biological yield, harvest index, number of grain per spike, thousands kernel weight, number of spike per square meter, plant height, the number of days to heading, the number of days to maturity, during the grain filling period, percentage of wet gluten, percentage of dry gluten, gluten index, percentage of protein). By delay in planting, majority of traits significantly decreased, except quality traits (percentage of wet gluten, percentage of dry gluten and percentage of protein). Results of means comparison showed, among planting date the highest grain yield and biological yield were related to first planting date (Octobr) with mean of production of 5/6 and 1/17 tons per hectare respectively and the highest bread quality (gluten index) with mean of 85 and percentage of protein with mean of 13% to fifth planting date also the effect of genotype was significant on all traits. The highest grain yield among of studied wheat genotypes was related to Dehdasht cultivar with an average production of 4.4 tons per hectare. The highest protein percentage and bread quality (gluten index) were related to Dehdasht cultivar with 13.4% and Falat cultivar with number of 90 respectively. The interaction between cultivar and planting date was significant on all traits and different varieties had different trend for these traits. The highest grain yield was related to first planting date (October) and Falat cultivar with an average of production of 6/7 tons per hectare while in grain yield did not show a significant different with Pishtas and Mihan cultivars also the most of gluten index (bread quality index) and protein percentage was belonged to the third planting date and Karim cultivar with 7.98 and Dena cultivar with 7.14% respectively.Keywords: yield component, yield, planting date, cultivar, quality traits, wheat
Procedia PDF Downloads 43515493 Risk Factors Associated with Ectoprotozoa Infestation of Wild and Farmed Cyprinids
Authors: M. A. Peribanez, G. Illan, I. De Blas, A. Muniesa, I. Ruiz-Zarzuela
Abstract:
Intensive aquaculture is commonly associated with increased incidence of parasites. However, in Spain, the recent intensification of cyprinid production has not led to knowledge of the parasites that develop in the aquaculture facilities, the factors that affect their development and spread and the transmission between wild and cultivated fish species. The present study focuses on the knowledge of environmental factors, as well as host dependent factors, and their possible influence as risk factors in the incidence and intensity of parasitic infections. This work was conducted in the Duero River Basin, NW Spain. A total of 114 tenches (Tinca tinca) were caught in a fish farm and 667 specimens belonging to six species of cyprinid, not tench, in five rivers. An exhaustive search and microscopic identification of protozoa on skin and gills were carried out. Physical, chemical, and biological parameters of water samples from the capture points were determined. Only two ectoprotozoa were identified, Ichthyophthirius multifiliis and Tripartiella sp. In I. multifiliis, a high intensity of infection (more than 40 parasites on the body surface and more than 80 on gills) was determined in farmed tench (14%) and in Iberian barbel (Luciobarbus bocagei) (91%) and Duero nase (Pseudochondrostoma duriense) (71%) of middle stretches of rivers. The prevalence was similar between farmed tenches and cyprinids of middle courses. Tripartiella sp. was only found in barbels (prevalence in middle stretches, 0.7%) and in farmed tenches (63%), this species resulting in a high risk factor (odds ratio, OR= 1143) in the presence of the ciliate. There were no differences between the two species relative to the intensity of parasitization. Some of the physical, chemical and microbiological water quality parameters appear to be risk factors in the presence of I. multifiliis, with maximum OR of 8. Nevertheless, in Tripartiella sp., the risk is multiplied by 720 when the pH value exceeds 8.4, if we consider the total of the data, and it is increased more than 500 times if we only consider the values recorded in the fish farm (529 by nitrates > 3 mg/l; 530 by total coliforms > 100 CFU/100 ml). However, the high prevalence and risk of infection by I. multifiliis and Tripartiella sp. in fish farms should be related to environmental factors that dependent upon sampling point rather than in direct influence of the physical-chemical and biological parameters of the water. The high pH value recorded in the fish farm (9.62 ± 0.76) is the only parameter that we consider may have a substantial direct influence. Chronic exposure to alkaline pH levels can be a chronic stress generator, predisposing to parasitization by Tripartiella sp. In conclusion, often minor changes in ecosystem conditions, both natural and man-made, can modify the host-parasite relationship, resulting in an increase in the prevalence and intensity of parasitic infections in populations of cyprinids, sometimes causing disease outbreaks.Keywords: cyprinids, fish, parasites, protozoa, risk factors
Procedia PDF Downloads 11815492 Intercropping Immature Oil Palm (Elaeisguineensis) with Banana, Ginger and Turmeric in Galle District, Sri Lanka
Authors: S. M. Dissanayake, I. R. Palihakkara , K. G. Premathilaka
Abstract:
Oil palm (Elaeisguineensis) is the world’s leading vegetable oil-producing plant and is well established as a perennial plantation crop in tropical countries. Oil palm in Sri Lanka has spread over 10,000 hectares in the wet zone of the Island. In immature plantations, land productivity can be increased with some selected intercrops. At the immature stage of the plantations (age up to 3-5 years), there is a large amount of free space available inside the plantations. This study attempts to determine the suitability of different intercrops during the immature phase of the oil palm. A field experiment is being conducted at Thalgaswella estate (WL2a) in Galle district, Sri Lanka. The objectives of the study are to evaluate and recommend a suitable immature oil palm-based intercropping system/s. This experiment was established with randomized complete block design (RCBD) with four treatments, including control in three replicates. Banana, ginger, and turmeric were selected as intercrops. Growth parameters of intercrops (plant height, length, width of D-leaf, and yield of intercrops) and girth, length, and number of leaflets of 17th frond in oil palms were taken at two months intervals. In addition to this, chlorophyll content was also measured in both intercrops and oil palm trees. Soil chemical parameters were measured annually. Results were statistically analyzed with SAS software. Results revealed that intercropped banana, turmeric, and ginger had given yields of 7.61Mt/ha, 4.92Mt/ha, and 4.53Mt/ha, respectively. When comparing these yields with mono-crop, banana, turmeric, and ginger intercrop yields as percentages of 16.9%, 24.6%, and 30.2%, respectively. The results of this study could be used to make appropriate policies to increase the unit land productivity in oil palm plantations in a low country wet zone (WL2a) of Sri Lanka.Keywords: inter-cropping, oil palm, policies, mono-crop, land productivity
Procedia PDF Downloads 16315491 Biodiesel Production from Yellow Oleander Seed Oil
Authors: S. Rashmi, Devashish Das, N. Spoorthi, H. V. Manasa
Abstract:
Energy is essential and plays an important role for overall development of a nation. The global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment, renewable and carbon neutral biodiesel are necessary for environment and economic sustainability. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. Fossil fuels remain the dominant source of primary energy, accounting for 84% of the overall increase in demand. Today biodiesel has come to mean a very specific chemical modification of natural oils. Objectives: To produce biodiesel from yellow oleander seed oil, to test the yield of biodiesel using different types of catalyst (KOH & NaOH). Methodology: Oil is extracted from dried yellow oleander seeds using Soxhlet extractor and oil expeller (bulk). The FFA content of the oil is checked and depending on the FFA value either two steps or single step process is followed to produce biodiesel. Two step processes includes esterfication and transesterification, single step includes only transesterification. The properties of biodiesel are checked. Engine test is done for biodiesel produced. Result: It is concluded that biodiesel quality parameters such as yield(85% & 90%), flash point(1710C & 1760C),fire point(1950C & 1980C), viscosity(4.9991 and 5.21 mm2/s) for the biodiesel from seed oil of Thevetiaperuviana produced by using KOH & NaOH respectively. Thus the seed oil of Thevetiaperuviana is a viable feedstock for good quality fuel.The outcomes of our project are a substitute for conventional fuel, to reduce petro diesel requirement,improved performance in terms of emissions. Future prospects: Optimization of biodiesel production using response surface method.Keywords: yellow oleander seeds, biodiesel, quality parameters, renewable sources
Procedia PDF Downloads 44915490 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture
Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho
Abstract:
Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.Keywords: bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer
Procedia PDF Downloads 26415489 Botulinum Toxin type A for Lower Limb Lengthening and Deformity Correction: A Systematic Review and Meta-analysis
Authors: Jawaher F. Alsharef, Abdullah A. Ghaddaf, Mohammed S. Alomari, Abdullah A. Al Qurashi, Ahmed S. Abdulhamid, Mohammed S. Alshehri, Majed Alosaimi
Abstract:
Botulinum toxin type A (BTX-A) is the most popular therapeutic agent for muscle relaxation and pain control. Lately, BTX-A injection received great interest as a part of multimodal pain management for lower limb lengthening and deformity correction. This systematic review aimed to determine the role of BTX-A injection in pain management for during lower limb lengthening and/or deformity correction. We searched Medline, Embase, and CENTRAL. We included randomized controlled trials (RCTs) that compared the BTX-A injection to placebo for individuals undergoing lower limb lengthening and/or deformity correction. We sought to evaluate the following outcomes: pain on visual analogue scale (VAS), range of motion parameters, average opioid consumption, and adverse events. The standardized mean difference (SMD) was used to represent continuous outcomes while risk ratio (RR) was used to represent dichotomous outcomes. A total of 4 RCTs that enrolled 257 participants (337 limbs) deemed eligible. Adjuvant BTX-A injection showed a significant reduction in post-operative pain compared to placebo (SMD=–0.28, 95% CI –0.53 to –0.04). No difference was found between BTX-A injection and placebo in terms of range of motion parameters, average opioid consumption, or adverse events after surgical limb lengthening and/or deformity correction (RR= 0.77, 95% CI –0.58 to 1.03). Conclusions: Adjuvant BTX-A injection conferred a discernible reduction in post-operative pain during surgical limb lengthening and/or deformity without increasing the risk of adverse events.Keywords: botulinum toxin type A, limb lengthening, distraction osteogenesis, deformity correction, pain management
Procedia PDF Downloads 14815488 Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine
Authors: Ali Javaid, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy.Keywords: cavitation, HEM model, nozzle flow, open foam, turbulence
Procedia PDF Downloads 29315487 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process
Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single and double bubbles, electric field, boiling, rising
Procedia PDF Downloads 22915486 Antibacterial Effect of Silver Diamine Fluoride Incorporated in Fissure Sealants
Authors: Nélio Veiga, Paula Ferreira, Tiago Correia, Maria J. Correia, Carlos Pereira, Odete Amaral, Ilídio J. Correia
Abstract:
Introduction: The application of fissure sealants is considered to be an important primary prevention method used in dental medicine. However, the formation of microleakage gaps between tooth enamel and the fissure sealant applied is one of the most common reasons of dental caries development in teeth with fissure sealants. The association between various dental biomaterials may limit the major disadvantages and limitations of biomaterials functioning in a complementary manner. The present study consists in the incorporation of a cariostatic agent – silver diamine fluoride (SDF) – in a resin-based fissure sealant followed by the study of release kinetics by spectrophotometry analysis of the association between both biomaterials and assessment of the inhibitory effect on the growth of the reference bacterial strain Streptococcus mutans (S. mutans) in an in vitro study. Materials and Methods: An experimental in vitro study was designed consisting in the entrapment of SDF (Cariestop® 12% and 30%) into a commercially available fissure sealant (Fissurit®), by photopolymerization and photocrosslinking. The same sealant, without SDF was used as a negative control. The effect of the sealants on the growth of S. mutans was determined by the presence of bacterial inhibitory halos in the cultures at the end of the incubation period. In order to confirm the absence of bacteria in the surface of the materials, Scanning Electron Microscopy (SEM) characterization was performed. Also, to analyze the release profile of SDF along time, spectrophotometry technique was applied. Results: The obtained results indicate that the association of SDF to a resin-based fissure sealant may be able to increase the inhibition of S. mutans growth. However, no SDF release was noticed during the in vitro release studies and no statistical significant difference was verified when comparing the inhibitory halo sizes obtained for test and control group. Conclusions: In this study, the entrapment of SDF in the resin-based fissure sealant did not potentiate the antibacterial effect of the fissure sealant or avoid the immediate development of dental caries. The development of more laboratorial research and, afterwards, long-term clinical data are necessary in order to verify if this association between these biomaterials is effective and can be considered for being used in oral health management. Also, other methodologies for associating cariostatic agents and sealant should be addressed.Keywords: biomaterial, fissure sealant, primary prevention, silver diamine fluoride
Procedia PDF Downloads 26215485 Possible Neuroprotective Mechanism of Remote Limb Ischemic Post Conditioning against Global Cerebral Ischemic Injury
Authors: Sruthi Ramagiri, Rajeev Taliyan
Abstract:
Background and purpose: Recent investigations on ischemia and reperfusion injury postulate that transient ischemia of remote organs after a prolonged ischemic insult confers neuroprotection. However, the molecular mechanisms of the remote limb ischemic post-conditioning (RIPOC) are yet to be elucidated. The current study was designed to investigate the protective mechanism of RIPOC against cerebral ischemic injury using global model of stroke. Materials and methods: Global ischemic reperfusion injury (IR) was achieved by 30 minutes ischemia of cerebral artery, followed by reperfusion for 24 hours. Induction of global ischemia was followed by 4 brief episodes (30 seconds each) of ischemia and reperfusion of femoral artery to accomplish RIPOC. 5-Hydroxy Decanoic acid (5-HD), a KATP channel blocker (20 mg/kg) was administered after induction of global ischemia and RIPOC intervention. Results: IR injury ensue significant behavioural deficits as manifested by rotarod performance and spontaneous locomotor activity when compared to sham control. Furthermore, IR injury significantly increased oxidonitrative stress and infarct volume as evidenced by biochemical parameters (MDA, GSH, Nitrite, SOD) and 2,3,5-triphenyltetrazolium chloride (TTC) staining respectively. Moreover, RIPOC intervention ameliorated the behavioural performance, attenuated the oxidative stress and infarct volume when compared to IR injury group. However, administration of 5-HD increased the oxidative stress and infarct size while deteriorating the behavioural parameters when compared to RIPOC group. Conclusions: In a nutshell, cerebral IR injury has significantly induced the neuronal damage, whereas RIPOC intervention decreased the neuronal injury. Moreover, 5-HD abolished the neuroprotection offered by RIPOC indicating the putative role of KATP channel opening in RIPOC against cerebral ischemic injury.Keywords: RIPOC, cerebral injury, KATP channel, neuroprotection
Procedia PDF Downloads 47315484 Direct Electrophoretic Deposition of Hierarchical Structured Electrode Supercapacitor Application
Authors: Jhen-Ting Huang, Chia-Chia Chang, Hu-Cheng Weng, An-Ya Lo
Abstract:
In this study, Co3O4-CNT-Graphene composite electrode was deposited by electrophoretic deposition (EPD) method, where micro polystyrene spheres (PSs) were added for co-deposition. Applied with heat treatment, a hierarchical porosity is left in the electrode which is beneficial for supercapacitor application. In terms of charge and discharge performance, we discussed the optimal CNT/Graphene ratio, macroporous ratio, and the effect of Co3O4 addition on electrode capacitance. For materials characterization, scanning electron microscope (SEM), X-ray diffraction, and BET were applied, while cyclic voltammetry (CV) and chronopotentiometry (CP) measurements, and Ragone plot were applied as in-situ analyses. Based on this, the effects of PS amount on the structure, porosity and their effect on capacitance of the electrodes were investigated. Finally, the full device performance was examined with charge-discharge and electron impedance spectrum (EIS) methods. The results show that the EPD coating with hierarchical porosity was successfully demonstrated in this study. As a result, the capacitance was greatly enhanced by 2.6 times with the hierarchical structure.Keywords: supercapacitor, nanocarbon tub, graphene, metal oxide
Procedia PDF Downloads 14515483 Seedling Emergence and Initial Growth of Different Plants after Trichoderma sp. Inoculation
Authors: Simonida S. Djuric, Timea I. Hajnal Jafari, Dragana R. Stamenov
Abstract:
The use of plant growth promoting fungi (PGPF) has significantly increased in the last decade mostly due to their multi-level properties, and their expected success as biofertilizers in agriculture. Beneficial fungi with broad-host range undergo long-term interactions with a large variety of plants thereby playing a significant role in managed ecosystems and in the adaptation of crops to global climate changes. Trichoderma spp. are promising fungi toward the development of sustainable agriculture. The aim of our experiment was to investigate the effect of seed inoculation of sunflower, maize, soybean, paprika, melon, and watermelon seeds with Trichoderma sp. on early seed germination energy and initial growth of the plant. The seed inoculation with Trichoderma sp. increased the seedling emergence from 7, 85% in melon to 156,70% in watermelon. The inoculation had the best effect on initial growth of maize shoot (+23,80%) and soybean root (+106,30%). The different response of seed and young plants on Trichoderma sp. inoculation implicate the need for future investigations of successful inoculation systems and modes of their integration in sustainable agriculture production systems.Keywords: initial growth, inoculation, seedling, Trichoderma sp.
Procedia PDF Downloads 24215482 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis
Authors: Patria Yunita
Abstract:
Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development
Procedia PDF Downloads 5015481 Effect of the Magnetite Nanoparticles Concentration on Biogas and Methane Production from Chicken Litter
Authors: Guadalupe Stefanny Aguilar-Moreno, Miguel Angel Aguilar-Mendez, Teodoro Espinosa-Solares
Abstract:
In the agricultural sector, one of the main emitters of greenhouse gases is manure management, which has been increased considerably in recent years. Biogas is an energy source that can be produced from different organic materials through anaerobic digestion (AD); however, production efficiency is still low. Several techniques have been studied to increase its performance, such as co-digestion, the variation of digestion conditions, and nanomaterials used. Therefore, the aim of this investigation was to evaluate the effect of magnetite nanoparticles (NPs) concentration, synthesized by co-precipitation, on the biogas and methane production in AD using chicken litter as a substrate. Synthesis of NPs was performed according to the co-precipitation method, for which a fractional factorial experimental design 25⁻² with two replications was used. The study factors were concentrations (precursors and passivating), time of sonication and dissolution temperatures, and the response variables were size, hydrodynamic diameter (HD) and zeta potential. Subsequently, the treatment that presented the smallest NPs was chosen for their use on AD. The AD was established in serological bottles with a working volume of 250 mL, incubated at 36 ± 1 °C for 80 days. The treatments consisted of the addition of different concentrations of NPs in the microcosms: chicken litter only (control), 20 mg∙L⁻¹ of NPs + chicken litter, 40 mg∙L⁻¹ of NPs + chicken litter and 60 mg∙L⁻¹ of NPs + chicken litter, all by triplicate. Methane and biogas production were evaluated daily. The smallest HD (49.5 nm) and the most stable NPs (21.22 mV) were obtained with the highest passivating concentration and the lower precursors dissolution temperature, which were the only factors that had a significant effect on the HD. In the transmission electron microscopy performed to these NPs, an average size of 4.2 ± 0.73 nm was observed. The highest biogas and methane production was obtained with the treatment that had 20 mg∙L⁻¹ of NPs, being 29.5 and 73.9%, respectively, higher than the control, while the treatment with the highest concentration of NPs was not statistically different from the control. From the above, it can be concluded that the magnetite NPs promote the biogas and methane production in AD; however, high concentrations may cause inhibitory effects among methanogenic microorganisms.Keywords: agricultural sector, anaerobic digestion, nanotechnology, waste management
Procedia PDF Downloads 14115480 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modelling in Frustum Confining Vessel
Authors: Seyed Abolhasan Naeini, M. Mortezaee
Abstract:
Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vesel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firoozkooh. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method
Procedia PDF Downloads 15515479 The Effect of 15 Minutes of Hugging a Stuffed Toy on the Level of Cortisol Hormones of Stressed Government Employees in Davao City
Authors: Karen Detoya
Abstract:
Decreasing cortisol usually leads to good psychological health. This is done in various ways, such as by hugging. Although hugging may decrease a person’s cortisol, it is not advisable during pandemics. Besides that, non-contact cultures and histories of molestation may elicit negative feelings in a person when hugged; thus, hugging a stuffed toy is an option. This research explored the effect of 15 minutes of hugging a stuffed toy among stressed government employees. There are two groups in the study and 15 participants per group. Cortisol was measured before and after the intervention. The first group hugged a stuffed toy for 15 minutes, while the second group stayed in the room without hugging anything. For data analysis, t-tests for dependent samples and t-tests for independent samples were utilized. Results showed no significant differences in the cortisol levels of the two groups before and after the experiment. It also showed no significant difference between the cortisol levels of the two groups after the experiment. Comparing the experimental group by age (18-41 years old and 42-65 years old) and gender (male and female), results showed no significant difference in their cortisol hormones after the intervention.Keywords: hugging, cortisol, stuffed toy, stressed government employees
Procedia PDF Downloads 24615478 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport
Authors: Dominic Wentworth-Linton, Shian Gao
Abstract:
This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.Keywords: CFD simulation, Internal combustion engine, Intake system, Dynamometer test
Procedia PDF Downloads 28915477 Experimental Study of Sand-Silt Mixtures with Torsional and Flexural Resonant Column Tests
Authors: Meghdad Payan, Kostas Senetakis, Arman Khoshghalb, Nasser Khalili
Abstract:
Dynamic properties of soils, especially at the range of very small strains, are of particular interest in geotechnical engineering practice for characterization of the behavior of geo-structures subjected to a variety of stress states. This study reports on the small-strain dynamic properties of sand-silt mixtures with particular emphasis on the effect of non-plastic fines content on the small strain shear modulus (Gmax), Young’s Modulus (Emax), material damping (Ds,min) and Poisson’s Ratio (v). Several clean sands with a wide range of grain size characteristics and particle shape are mixed with variable percentages of a silica non-plastic silt as fines content. Prepared specimens of sand-silt mixtures at different initial void ratios are subjected to sequential torsional and flexural resonant column tests with elastic dynamic properties measured along an isotropic stress path up to 800 kPa. It is shown that while at low percentages of fines content, there is a significant difference between the dynamic properties of the various samples due to the different characteristics of the sand portion of the mixtures, this variance diminishes as the fines content increases and the soil behavior becomes mainly silt-dominant, rendering no significant influence of sand properties on the elastic dynamic parameters. Indeed, beyond a specific portion of fines content, around 20% to 30% typically denoted as threshold fines content, silt is controlling the behavior of the mixture. Using the experimental results, new expressions for the prediction of small-strain dynamic properties of sand-silt mixtures are developed accounting for the percentage of silt and the characteristics of the sand portion. These expressions are general in nature and are capable of evaluating the elastic dynamic properties of sand-silt mixtures with any types of parent sand in the whole range of silt percentage. The inefficiency of skeleton void ratio concept in the estimation of small-strain stiffness of sand-silt mixtures is also illustrated.Keywords: damping ratio, Poisson’s ratio, resonant column, sand-silt mixture, shear modulus, Young’s modulus
Procedia PDF Downloads 254