Search results for: cellulosic-elastomeric material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6666

Search results for: cellulosic-elastomeric material

936 Analysis of Sickle Cell Disease and Maternal Mortality in United Kingdom

Authors: Basma Hassabo, Sarah Ahmed, Aisha Hameed

Abstract:

Aims and Objectives: To determine the incidence of maternal mortality amongst pregnant women with sickle cell disease (SCD) in the United Kingdom and to determine exact cause of death in these women. Background: SCD is caused by the ‘sickle’ gene and is characterized by episodes of severe bone pain and other complications like acute chest syndrome, chronic pulmonary hypertension, stroke, retinopathy, chronic renal failure, hepato-splenic crises, avascular bone necrosis, sepsis and leg ulcers. SCD is a continual cause of maternal mortality and fetal complications, and it comprises 1.5% of all Direct and Indirect deaths in the UK. Sepsis following premature rupture of membranes with ascending infection, post-partum infection and pre-labour overwhelming septic shock is one of its leading causes of death. Over the last fifty years of maternal mortality reports in UK, between 1 to 4 pregnant women died in each triennium. Material and Method: This is a retrospective study that involves pregnant women who died from SCD complications in the UK between 1952-2012. Data were collected from the UK Confidential Enquiries into Maternal Death and its causes between 1952–2012. Prior to 1985, exact cause of death in this cohort was not recorded. Results: 33 deaths reported between 1964 and 1984. 17 deaths were reported due to sickle cell disease between 1985 and 2012. Five women in this group died of sickle cell crisis, one woman had liver sequestration crisis, two women died of venous thromboembolism, two had myocardial fibrosis and three died of sepsis. Remaining women died of amniotic fluid embolism, SUDEP, myocardial ischemia and intracranial haemorrhage. Conclusion: The leading causes of death in sickle cell sick pregnant women are sickle cell crises, sepsis, venous thrombosis and thromboembolism. Prenatal care for women with SCD should be managed by a multidisciplinary team that includes an obstetrician, nutritionist, primary care physician, and haematologist. In every sick Sickle Cell woman Sickle Cell crises should be on the top of the list of differential diagnosis. Aggressive treatment of complications with low threshold to commence broad-spectrum antibiotics and LMWH contribute to better outcomes.

Keywords: incidence, maternal mortality, sickle cell disease (SCD), uk

Procedia PDF Downloads 237
935 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.

Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization

Procedia PDF Downloads 69
934 Non-Canonical Beclin-1-Independent Autophagy and Apoptosis in Cell Death Induced by Rhus coriaria in Human Colon HT-29 Cancer Cells

Authors: Rabah Iratni, Husain El Hasasna, Khawlah Athamneh, Halima Al Sameri, Nehla Benhalilou, Asma Al Rashedi

Abstract:

Background: Cancer therapies have witnessed great advances in the recent past, however, cancer continues to be a leading cause of death, with colorectal cancer being the fourth cause of cancer-related deaths. Colorectal cancer affects both sexes equally with poor survival rate once it metastasizes. Phytochemicals, which are plant derived compounds, have been on a steady rise as anti-cancer drugs due to the accumulation of evidences that support their potential. Here, we investigated the anticancer effect of Rhus coriaria on colon cancer cells. Material and Method: Human colon cancer HT-29 cell line was used. Protein expression and protein phosphorylation were examined using Western blotting. Transcription activity was measure using Quantitative RT-PCR. Human tumoral clonogenic assay was used to assess cell survival. Senescence was assessed by the senescence-associated beta-galactosidase assay. Results: Rhus coriaria extract (RCE) was found to significantly inhibit the viability and colony growth of human HT-29 colon cancer cells. RCE induced senescence and cell cycle arrest at G1 phase. These changes were concomitant with upregulation of p21, p16, downregulation of cyclin D1, p27, c-myc and expression of Senescence-associated-β-Galactosidase activity. Moreover, RCE induced non-canonical beclin-1independent autophagy and subsequent apoptotic cell death through activation of activation caspase 8 and caspase 7. The blocking of autophagy by 3-methyladenine (3-MA) or chloroquine (CQ) reduced RCE-induced cell death. Further, RCE induced DNA damage, reduced mutant p53 protein level and downregulated phospho-AKT and phospho-mTOR, events that preceded autophagy. Mechanistically, we found that RCE inhibited the AKT and mTOR pathway, a regulator of autophagy, by promoting the proteasome-dependent degradation of both AKT and mTOR proteins. Conclusion: Our findings provide strong evidence that Rhus coriaria possesses strong anti-colon cancer activity through induction of senescence and autophagic cell death, making it a promising alternative or adjunct therapeutic candidate against colon cancer.

Keywords: autophagy, proteasome degradation, senescence, mTOR, apoptosis, Beclin-1

Procedia PDF Downloads 262
933 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.

Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves

Procedia PDF Downloads 88
932 Advanced Compound Coating for Delaying Corrosion of Fast-Dissolving Alloy in High Temperature and Corrosive Environment

Authors: Lei Zhao, Yi Song, Tim Dunne, Jiaxiang (Jason) Ren, Wenhan Yue, Lei Yang, Li Wen, Yu Liu

Abstract:

Fasting dissolving magnesium (DM) alloy technology has contributed significantly to the “Shale Revolution” in oil and gas industry. This application requires DM downhole tools dissolving initially at a slow rate, rapidly accelerating to a high rate after certain period of operation time (typically 8 h to 2 days), a contradicting requirement that can hardly be addressed by traditional Mg alloying or processing itself. Premature disintegration has been broadly reported in downhole DM tool from field trials. To address this issue, “temporary” thin polymers of various formulations are currently coated onto DM surface to delay its initial dissolving. Due to conveying parts, harsh downhole condition, and high dissolving rate of the base material, the current delay coatings relying on pure polymers are found to perform well only at low temperature (typical < 100 ℃) and parts without sharp edges or corners, as severe geometries prevent high quality thin film coatings from forming effectively. In this study, a coating technology combining Plasma Electrolytic Oxide (PEO) coatings with advanced thin film deposition has been developed, which can delay DM complex parts (with sharp corners) in corrosive fluid at 150 ℃ for over 2 days. Synergistic effects between porous hard PEO coating and chemical inert elastic-polymer sealing leads to its delaying dissolution improvement, and strong chemical/physical bonding between these two layers has been found to play essential role. Microstructure of this advanced coating and compatibility between PEO and various polymer selections has been thoroughly investigated and a model is also proposed to explain its delaying performance. This study could not only benefit oil and gas industry to unplug their High Temperature High Pressure (HTHP) unconventional resources inaccessible before, but also potentially provides a technical route for other industries (e.g., bio-medical, automobile, aerospace) where primer anti-corrosive protection on light Mg alloy is highly demanded.

Keywords: dissolvable magnesium, coating, plasma electrolytic oxide, sealer

Procedia PDF Downloads 111
931 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials

Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó

Abstract:

Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.

Keywords: morphology, PE, roughness, titanium

Procedia PDF Downloads 126
930 A Comparison of Antibiotic Resistant Enterobacteriaceae: Diabetic versus Non-Diabetic Infections

Authors: Zainab Dashti, Leila Vali

Abstract:

Background: The Middle East, in particular Kuwait, contains one of the highest rates of patients with Diabetes in the world. Generally, infections resistant to antibiotics among the diabetic population has been shown to be on the rise. This is the first study in Kuwait to compare the antibiotic resistance profiles and genotypic differences between the resistant isolates of Enterobacteriaceae obtained from diabetic and non-diabetic patients. Material/Methods: In total, 65 isolates were collected from diabetic patients consisting of 34 E. coli, 15 K. pneumoniae and 16 other Enterobacteriaceae species (including Salmonella spp. Serratia spp and Proteus spp.). In our control group, a total of 49 isolates consisting of 37 E. coli, 7 K. pneumoniae and 5 other species (including Salmonella spp. Serratia spp and Proteus spp.) were included. Isolates were identified at the species level and antibiotic resistance profiles, including Colistin, were determined using initially the Vitek system followed by double dilution MIC and E-test assays. Multi drug resistance (MDR) was defined as isolates resistant to a minimum of three antibiotics from three different classes. PCR was performed to detect ESBL genes (blaCTX-M, blaTEM & blaSHV), flouroquinolone resistance genes (qnrA, qnrB, qnrS & aac(6’)-lb-cr) and carbapenem resistance genes (blaOXA, blaVIM, blaGIM, blaKPC, blaIMP, & blaNDM) in both groups. Pulse field gel electrophoresis (PFGE) was performed to compare clonal relatedness of both E. coli and K.pneumonaie isolates. Results: Colistin resistance was determined in three isolates with MICs of 32-128 mg/L. A significant difference in resistance to ampicillin (Diabetes 93.8% vs control 72.5%, P value <0.002), augmentin (80% vs 52.5%, p value < 0.003), cefuroxime (69.2% vs 45%, p value < 0.0014), ceftazadime (73.8% vs 42.5%, p value <0.001) and ciprofloxacin (67.6% vs 40%, p value < 0.005) were determined. Also, a significant difference in MDR rates between the two groups (Diabetes 76.9%, control 57.5%, p value <0.036 were found. All antibiotic resistance genes showed a higher prevalence among the diabetic group, except for blaCTX-M, which was higher among the control group. PFGE showed a high rate of diversity between each group of isolates. Conclusions: Our results suggested an alarming rate of antibiotic resistance, in particular Colistin resistance (1.8%) among K. pneumoniea isolated from diabetic patients in Kuwait. MDR among Enterobacteriaceae infections also seems to be a worrying issue among the diabetics of Kuwait. More efforts are required to limit the issue of antibiotic resistance in Kuwait, especially among patients with diabetes mellitus.

Keywords: antibiotic resistance, diabetes, enterobacreriacae, multi antibiotic resistance

Procedia PDF Downloads 365
929 Fabrication and Characterisation of Additive Manufactured Ti-6Al-4V Parts by Laser Powder Bed Fusion Technique

Authors: Norica Godja, Andreas Schindel, Luka Payrits, Zsolt Pasztor, Bálint Hegedüs, Petr Homola, Jan Horňas, Jiří Běhal, Roman Ruzek, Martin Holzleitner, Sascha Senck

Abstract:

In order to reduce fuel consumption and CO₂ emissions in the aviation sector, innovative solutions are being sought to reduce the weight of aircraft, including additive manufacturing (AM). Of particular importance are the excellent mechanical properties that are required for aircraft structures. Ti6Al4V alloys, with their high mechanical properties in relation to weight, can reduce the weight of aircraft structures compared to structures made of steel and aluminium. Currently, conventional processes such as casting and CNC machining are used to obtain the desired structures, resulting in high raw material removal, which in turn leads to higher costs and impacts the environment. Additive manufacturing (AM) offers advantages in terms of weight, lead time, design, and functionality and enables the realisation of alternative geometric shapes with high mechanical properties. However, there are currently technological shortcomings that have led to AM not being approved for structural components with high safety requirements. An assessment of damage tolerance for AM parts is required, and quality control needs to be improved. Pores and other defects cannot be completely avoided at present, but they should be kept to a minimum during manufacture. The mechanical properties of the manufactured parts can be further improved by various treatments. The influence of different treatment methods (heat treatment, CNC milling, electropolishing, chemical polishing) and operating parameters were investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and measurements with a focused ion beam (FIB), taking into account surface roughness, possible anomalies in the chemical composition of the surface and possible cracks. The results of the characterisation of the constructed and treated samples are discussed and presented in this paper. These results were generated within the framework of the 3TANIUM project, which is financed by EU with the contract number 101007830.

Keywords: Ti6Al4V alloys, laser powder bed fusion, damage tolerance, heat treatment, electropolishing, potential cracking

Procedia PDF Downloads 85
928 The Efficacy of Albendazole against Soil-Transmitted Helminths and the Impact of Mass Drug Administration of Albendazole and Ivermectin on Health Status

Authors: Mike Yaw Osei-Atweneboana, John Asiedu Larbi, Edward Jenner Tettevi

Abstract:

Background: The lymphatic filariasis (LF) control programme has been on-going in Ghana since 2000. This community-wide approach involves the use of ivermectin (IVM) and albendazole (ALB). Soil-transmitted helminth (STH) infections control is augmented within this programme; however, in areas where LF is not prevalent, albendazole alone is administered to school children. The purpose of this study was therefore, to determine the efficacy of albendazole against soils transmitted helminths and the impact of mass drug administration of albendazole and ivermectin on the health status of children of school going age and pregnant women. Material/Methods: This was a twelve months longitudinal study. A total of 412 subjects including school children (between the ages of 2-17 years) and pregnant women were randomly selected from four endemic communities in Kpandai district of the Northern region. Coprological assessment for parasites was based on the Kato–Katz technique in both dry and rainy seasons at baseline, 21 days and 3 months post-treatment. Single-dose albendazole treatment was administered to all patients at baseline. Preserved samples are currently under molecular studies to identify possible single nucleotide polymorphism (SNP) within the beta tubulin gene which is associated with benzimidazole resistance. Results: Of all the parasites found (hookworm, Trichuris trichiura, Hymenolepis nana, and Taenia sp.); hookworm was the most prevalent. In the dry season, the overall STHs prevalence at pre-treatment was 29%, while 9% and 13% prevalence was recorded at 21 days, and three months after treatment respectively. However, in the rainy season, the overall STHs prevalence was 8%, while 4% and 12% was recorded at 21 days and three months respectively after ALB treatment. In general, ALB treatment resulted in an overall hookworm egg count reduction rate of 89% in the dry season and 93% in the rainy season, while the T. trichiura egg count reduction rate was 100% in both seasons. Conclusions: STH infections still remains a significant public health burden in Ghana. Hookworm infection seems to respond poorly or sub-optimally to ALB, raising concerns of possible emergence of resistance which may lead to a major setback for the control and elimination of STH infections, especially hookworm infections.

Keywords: hookworm, sub-optimal response, albendazole, trichuriasis, soil-transmitted helminths

Procedia PDF Downloads 290
927 Experimental Quantification of the Intra-Tow Resin Storage Evolution during RTM Injection

Authors: Mathieu Imbert, Sebastien Comas-Cardona, Emmanuelle Abisset-Chavanne, David Prono

Abstract:

Short cycle time Resin Transfer Molding (RTM) applications appear to be of great interest for the mass production of automotive or aeronautical lightweight structural parts. During the RTM process, the two components of a resin are mixed on-line and injected into the cavity of a mold where a fibrous preform has been placed. Injection and polymerization occur simultaneously in the preform inducing evolutions of temperature, degree of cure and viscosity that furthermore affect flow and curing. In order to adjust the processing conditions to reduce the cycle time, it is, therefore, essential to understand and quantify the physical mechanisms occurring in the part during injection. In a previous study, a dual-scale simulation tool has been developed to help determining the optimum injection parameters. This tool allows tracking finely the repartition of the resin and the evolution of its properties during reactive injections with on-line mixing. Tows and channels of the fibrous material are considered separately to deal with the consequences of the dual-scale morphology of the continuous fiber textiles. The simulation tool reproduces the unsaturated area at the flow front, generated by the tow/channel difference of permeability. Resin “storage” in the tows after saturation is also taken into account as it may significantly affect the repartition and evolution of the temperature, degree of cure and viscosity in the part during reactive injections. The aim of the current study is, thanks to experiments, to understand and quantify the “storage” evolution in the tows to adjust and validate the numerical tool. The presented study is based on four experimental repeats conducted on three different types of textiles: a unidirectional Non Crimp Fabric (NCF), a triaxial NCF and a satin weave. Model fluids, dyes and image analysis, are used to study quantitatively, the resin flow in the saturated area of the samples. Also, textiles characteristics affecting the resin “storage” evolution in the tows are analyzed. Finally, fully coupled on-line mixing reactive injections are conducted to validate the numerical model.

Keywords: experimental, on-line mixing, high-speed RTM process, dual-scale flow

Procedia PDF Downloads 165
926 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms

Authors: Habtamu Ayenew Asegie

Abstract:

Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.

Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction

Procedia PDF Downloads 38
925 Concepts of Creation and Destruction as Cognitive Instruments in World View Study

Authors: Perizat Balkhimbekova

Abstract:

Evolutionary changes in cognitive world view taking place in the last decades are followed by changes in perception of the key concepts which are related to the certain lingua-cultural sphere. Also, such concepts reflect the person’s attitude to essential processes in the sphere of concepts, e.g. the opposite operations like creation and destruction. These changes in people’s life and thinking are displayed in a language world view. In order to open the maintenance of mental structures and concepts we should use language means as observable results of people’s cognitive activity. Semantics of words, free phrases and idioms should be considered as an authoritative source of information concerning concepts. The regularized set of concepts in people consciousness forms the sphere of concepts. Cognitive linguistics widely discusses the sphere of concepts as its crucial category defining it as the field of knowledge which is made of concepts. It is considered that a sphere of concepts comprises the various types of association and forms conceptual fields. As a material for the given research, the data from Russian National Corpus and British National Corpus were used. In is necessary to point out that data provided by computational studies, are intrinsic and verifiable; so that we have used them in order to get the reliable results. The procedure of study was based on such techniques as extracting of the context containing concepts of creation|destruction from the Russian National Corpus (RNC), and British National Corpus (BNC); analyzing and interpreting of those context on the basis of cognitive approach; finding of correspondence between the given concepts in the Russian and English world view. The key problem of our study is to find the correspondence between the elements of world view represented by opposite concepts such as creation and destruction. Findings: The concept of "destruction" indicates a process which leads to full or partial destruction of an object. In other words, it is a loss of the object primary essence: structures, properties, distinctive signs and its initial integrity. The concept of "creation", on the contrary, comprises positive characteristics, represents the activity aimed at improvement of the certain object, at the creation of ideal models of the world. On the other hand, destruction is represented much more widely in RNC than creation (1254 cases of the first concept by comparison to 192 cases for the second one). Our hypothesis consists in the antinomy represented by the aforementioned concepts. Being opposite both in respect of semantics and pragmatics, and from the point of view of axiology, they are at the same time complementary and interrelated concepts.

Keywords: creation, destruction, concept, world view

Procedia PDF Downloads 346
924 Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)

Authors: Tai Chen, Caihuan Tian, Xiuxia Ren, Jingqi Xue, Xiuxin Zhang

Abstract:

The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually.

Keywords: cut peony, melatonin, vase life, oxidation reaction, energy supply, differentially expressed genes

Procedia PDF Downloads 50
923 Sensory Ethnography and Interaction Design in Immersive Higher Education

Authors: Anna-Kaisa Sjolund

Abstract:

The doctoral thesis examines interaction design and sensory ethnography as tools to create immersive education environments. In recent years, there has been increasing interest and discussions among researchers and educators on immersive education like augmented reality tools, virtual glasses and the possibilities to utilize them in education at all levels. Using virtual devices as learning environments it is possible to create multisensory learning environments. Sensory ethnography in this study refers to the way of the senses consider the impact on the information dynamics in immersive learning environments. The past decade has seen the rapid development of virtual world research and virtual ethnography. Christine Hine's Virtual Ethnography offers an anthropological explanation of net behavior and communication change. Despite her groundbreaking work, time has changed the users’ communication style and brought new solutions to do ethnographical research. The virtual reality with all its new potential has come to the fore and considering all the senses. Movie and image have played an important role in cultural research for centuries, only the focus has changed in different times and in a different field of research. According to Karin Becker, the role of image in our society is information flow and she found two meanings what the research of visual culture is. The images and pictures are the artifacts of visual culture. Images can be viewed as a symbolic language that allows digital storytelling. Combining the sense of sight, but also the other senses, such as hear, touch, taste, smell, balance, the use of a virtual learning environment offers students a way to more easily absorb large amounts of information. It offers also for teachers’ different ways to produce study material. In this article using sensory ethnography as research tool approaches the core question. Sensory ethnography is used to describe information dynamics in immersive environment through interaction design. Immersive education environment is understood as three-dimensional, interactive learning environment, where the audiovisual aspects are central, but all senses can be taken into consideration. When designing learning environments or any digital service, interaction design is always needed. The question what is interaction design is justified, because there is no simple or consistent idea of what is the interaction design or how it can be used as a research method or whether it is only a description of practical actions. When discussing immersive learning environments or their construction, consideration should be given to interaction design and sensory ethnography.

Keywords: immersive education, sensory ethnography, interaction design, information dynamics

Procedia PDF Downloads 137
922 Embodied Communication - Examining Multimodal Actions in a Digital Primary School Project

Authors: Anne Öman

Abstract:

Today in Sweden and in other countries, a variety of digital artefacts, such as laptops, tablets, interactive whiteboards, are being used at all school levels. From an educational perspective, digital artefacts challenge traditional teaching because they provide a range of modes for expression and communication and are not limited to the traditional medium of paper. Digital technologies offer new opportunities for representations and physical interactions with objects, which put forward the role of the body in interaction and learning. From a multimodal perspective the emphasis is on the use of multiple semiotic resources for meaning- making and the study presented here has examined the differential use of semiotic resources by pupils interacting in a digitally designed task in a primary school context. The instances analyzed in this paper come from a case study where the learning task was to create an advertising film in a film-software. The study in focus involves the analysis of a single case with the emphasis on the examination of the classroom setting. The research design used in this paper was based on a micro ethnographic perspective and the empirical material was collected through video recordings of small-group work in order to explore pupils’ communication within the group activity. The designed task described here allowed students to build, share, collaborate upon and publish the redesigned products. The analysis illustrates the variety of communicative modes such as body position, gestures, visualizations, speech and the interaction between these modes and the representations made by the pupils. The findings pointed out the importance of embodied communication during the small- group processes from a learning perspective as well as a pedagogical understanding of pupils’ representations, which were similar from a cultural literacy perspective. These findings open up for discussions with further implications for the school practice concerning the small- group processes as well as the redesigned products. Wider, the findings could point out how multimodal interactions shape the learning experience in the meaning-making processes taking into account that language in a globalized society is more than reading and writing skills.

Keywords: communicative learning, interactive learning environments, pedagogical issues, primary school education

Procedia PDF Downloads 408
921 Opto-Thermal Frequency Modulation of Phase Change Micro-Electro-Mechanical Systems

Authors: Syed A. Bukhari, Ankur Goswmai, Dale Hume, Thomas Thundat

Abstract:

Here we demonstrate mechanical detection of photo-induced Insulator to metal transition (MIT) in ultra-thin vanadium dioxide (VO₂) micro strings by using < 100 µW of optical power. Highly focused laser beam heated the string locally resulting in through plane and along axial heat diffusion. Localized temperature increase can cause temperature rise > 60 ºC. The heated region of VO₂ can transform from insulating (monoclinic) to conducting (rutile) phase leading to lattice compressions and stiffness increase in the resonator. The mechanical frequency of the resonator can be tuned by changing optical power and wavelength. The first mode resonance frequency was tuned in three different ways. A decrease in frequency below a critical optical power, a large increase between 50-120 µW followed by a large decrease in frequency for optical powers greater than 120 µW. The dynamic mechanical response was studied as a function of incident optical power and gas pressure. The resonance frequency and amplitude of vibration were found to be decreased with increasing laser power from 25-38 µW and increased by1-2 % when the laser power was further increased to 52 µW. The transition in films was induced and detected by a single pump and probe source and by employing external optical sources of different wavelengths. This trend in dynamic parameters of the strings can be co-related with reversible Insulator to metal transition in VO₂ films which creates change in density of the material and hence the overall stiffness of the strings leading to changes in string dynamics. The increase in frequency at a particular optical power manifests a transition to a more ordered metallic phase which tensile stress onto the string. The decrease in frequency at higher optical powers can be correlated with poor phonon thermal conductivity of VO₂ in conducting phase. Poor thermal conductivity of VO₂ can force in-plane penetration of heat causing the underneath SiN supporting VO₂ which can result as a decrease in resonance frequency. This noninvasive, non-contact laser-based excitation and detection of Insulator to metal transition using micro strings resonators at room temperature and with laser power in few µWs is important for low power electronics, and optical switching applications.

Keywords: thermal conductivity, vanadium dioxide, MEMS, frequency tuning

Procedia PDF Downloads 120
920 A Comprehensive Review on Structural Properties and Erection Benefits of Large Span Stressed-Arch Steel Truss Industrial Buildings

Authors: Anoush Saadatmehr

Abstract:

Design and build of large clear span structures have always been demanding in the construction industry targeting industrial and commercial buildings around the world. The function of these spectacular structures encompasses distinguished types of building such as aircraft and airship hangars, warehouses, bulk storage buildings, sports and recreation facilities. From an engineering point of view, there are various types of steel structure systems that are often adopted in large-span buildings like conventional trusses, space frames and cable-supported roofs. However, this paper intends to investigate and review an innovative light, economic and quickly erected large span steel structure renowned as “Stressed-Arch,” which has several advantages over the other common types of structures. This patented system integrates the use of cold-formed hollow section steel material with high-strength pre-stressing strands and concrete grout to establish an arch shape truss frame anywhere there is a requirement to construct a cost-effective column-free space for spans within the range of 60m to 180m. In this study and firstly, the main structural properties of the stressed-arch system and its components are discussed technically. These features include nonlinear behavior of truss chords during stress-erection, the effect of erection method on member’s compressive strength, the rigidity of pre-stressed trusses to overcome strict deflection criteria for cases with roof suspended cranes or specialized front doors and more importantly, the prominent lightness of steel structure. Then, the effects of utilizing pre-stressing strands to safeguard a smooth process of installation of main steel members and roof components and cladding are investigated. In conclusion, it is shown that the Stressed-Arch system not only provides an optimized light steel structure up to 30% lighter than its conventional competitors but also streamlines the process of building erection and minimizes the construction time while preventing the risks of working at height.

Keywords: large span structure, pre-stressed steel truss, stressed-arch building, stress-erection, steel structure

Procedia PDF Downloads 163
919 Loss of Control Eating as a Key Factor of the Psychological Symptomatology Related to Childhood Obesity

Authors: L. Beltran, S. Solano, T. Lacruz, M. Blanco, M. Rojo, M. Graell, A. R. Sepulveda

Abstract:

Introduction and Objective: Given the difficulties of assessing Binge Eating Disorder during childhood, episodes of Loss of Control (LOC) eating can be a key symptom. The objective is to know the prevalence of food psychopathology depending on the type of evaluation and find out which psychological characteristics differentiate overweight or obese children who present LOC from those who do not. Material and Methods: 170 children from 8 to 12 years of age with overweight or obesity (P > 85) were evaluated through the Primary Care Centers of Madrid. Sociodemographic data and psychological measures were collected through the Kiddie-Schedule for Affective Disorders & Schizophrenia, Present & Lifetime Version (K-SADS-PL) diagnostic interview and self-applied questionnaires: Children's eating attitudes (ChEAT), depressive symptomatology (CDI), anxiety (STAIC), general self-esteem (LAWSEQ), body self-esteem (BES), perceived teasing (POTS) and perfectionism (CAPS). Results: 15.2% of the sample exceeded the ChEAT cut-off point, presenting a risk of pathological eating; 5.88% presented an Eating Disorder through the diagnostic interview (2.35% Binge Eating disorder), and 33.53% had LOC episodes. No relationship was found between the presence of LOC and clinical diagnosis of eating disorders according to DSM-V; however, the group with LOC presented a higher risk of eating psychopathology using the ChEAT (p < .02). Significant differences were found in the group with LOC (p < .02): higher z-BMI, lower body self-esteem, greater anxious symptomatology, greater frequency of teasing towards weight, and greater effect of teasing both towards weight and competitions; compared to their peers without LOC. Conclusion: According to previous studies in samples with overweight children, in this Spanish sample of children with obesity, we found a prevalence of moderate eating disorder and a high presence of LOC episodes, which is related to both eating and general psychopathology. These findings confirm that the exclusion of LOC episodes as a diagnostic criterion can underestimate the presence of eating psychopathology during this developmental stage. According to these results, it is highly recommended to promote school context programs that approach LOC episodes in order to reduce associated symptoms. This study is included in a Project funded by the Ministry of Innovation and Science (PSI2011-23127).

Keywords: childhood obesity, eating psychopathology, loss-of-control eating, psychological symptomatology

Procedia PDF Downloads 106
918 Prevalence of Hepatitis B Virus Infection and Its Determinants among Pregnant Women in East Africa: Systematic Review and Meta-Analysis

Authors: Bantie Getnet Yirsaw, Muluken Chanie Agimas, Gebrie Getu Alemu, Tigabu Kidie Tesfie, Nebiyu Mekonnen Derseh, Habtamu Wagnew Abuhay, Meron Asmamaw Alemayehu, Getaneh Awoke Yismaw

Abstract:

Introduction: Hepatitis B virus (HBV) is one of the major public health problems globally and needs an urgent response. It is one of the most responsible causes of mortality among the five hepatitis viruses, and it affects almost every class of individuals. Thus, the main objective of this study was to determine the pooled prevalence and its determinants among pregnant women in East Africa. Methods: We searched studies using PubMed, Scopus, Embase, ScienceDirect, Google Scholar, and grey literature that were published between January 01/2020 to January 30/2024. The studies were assessed using the Newcastle Ottawa Scale (NOS) quality assessment scale. The random-effect (DerSimonian) model was used to determine the pooled prevalence and associated factors of HBV among pregnant women. Heterogeneity was assessed by I² statistic, sub-group analysis, and sensitivity analysis. Publication bias was assessed by the Egger test, and the analysis was done using STATA version 17. Result: A total of 45 studies with 35639 pregnant women were included in this systematic review and meta-analysis. The overall pooled prevalence of HBV among pregnant women in East Africa was 6.0% (95% CI: 6.0%−7.0%, I² = 89.7%). The highest prevalence of 8% ((95% CI: 6%, 10%), I² = 91.08%) was seen in 2021, and the lowest prevalence of 5% ((95% CI: 4%, 6%) I² = 52.52%) was observed in 2022. A pooled meta-analysis showed that history of surgical procedure (OR = 2.14 (95% CI: 1.27, 3.61)), having multiple sexual partners (OR = 3.87 (95% CI: 2.52, 5.95), history of body tattooing (OR = 2.55 (95% CI: 1.62, 4.01)), history of tooth extraction (OR = 2.09 (95% CI: 1.29, 3.39)), abortion history(OR = 2.20(95% CI: 1.38, 3.50)), history of sharing sharp material (OR = 1.88 (95% CI: 1.07, 3.31)), blood transfusion (OR = 2.41 (95% CI: 1.62, 3.57)), family history of HBV (OR = 4.87 (95% CI: 2.95, 8.05)) and history needle injury (OR = 2.62 (95% CI: 1.20, 5.72)) were significant risk factors associated with HBV infection among pregnant women. Conclusions: The pooled prevalence of HBV infection among pregnant women in East Africa was at an intermediate level and different across countries, ranging from 1.5% to 22.2%. The result of this pooled prevalence was an indication of the need for screening, prevention, and control of HBV infection among pregnant women in the region. Therefore, early identification of risk factors, awareness creation of the mode of transmission of HBV, and implementation of preventive measures are essential in reducing the burden of HBV infection among pregnant women.

Keywords: hepatitis B virus, prevalence, determinants, pregnant women, meta-analysis, East Africa

Procedia PDF Downloads 39
917 Application of Ground-Penetrating Radar in Environmental Hazards

Authors: Kambiz Teimour Najad

Abstract:

The basic methodology of GPR involves the use of a transmitting antenna to send electromagnetic waves into the subsurface, which then bounce back to the surface and are detected by a receiving antenna. The transmitter and receiver antennas are typically placed on the ground surface and moved across the area of interest to create a profile of the subsurface. The GPR system consists of a control unit that powers the antennas and records the data, as well as a display unit that shows the results of the survey. The control unit sends a pulse of electromagnetic energy into the ground, which propagates through the soil or rock until it encounters a change in material or structure. When the electromagnetic wave encounters a buried object or structure, some of the energy is reflected back to the surface and detected by the receiving antenna. The GPR data is then processed using specialized software that analyzes the amplitude and travel time of the reflected waves. By interpreting the data, GPR can provide information on the depth, location, and nature of subsurface features and structures. GPR has several advantages over other geophysical survey methods, including its ability to provide high-resolution images of the subsurface and its non-invasive nature, which minimizes disruption to the site. However, the effectiveness of GPR depends on several factors, including the type of soil or rock, the depth of the features being investigated, and the frequency of the electromagnetic waves used. In environmental hazard assessments, GPR can be used to detect buried structures, such as underground storage tanks, pipelines, or utilities, which may pose a risk of contamination to the surrounding soil or groundwater. GPR can also be used to assess soil stability by identifying areas of subsurface voids or sinkholes, which can lead to the collapse of the surface. Additionally, GPR can be used to map the extent and movement of groundwater contamination, which is critical in designing effective remediation strategies. the methodology of GPR in environmental hazard assessments involves the use of electromagnetic waves to create high of the subsurface, which are then analyzed to provide information on the depth, location, and nature of subsurface features and structures. This information is critical in identifying and mitigating environmental hazards, and the non-invasive nature of GPR makes it a valuable tool in this field.

Keywords: GPR, hazard, landslide, rock fall, contamination

Procedia PDF Downloads 82
916 Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization

Authors: Ane Escobar, Paula Angelomé, Mihaela Delcea, Marek Grzelczak, Sergio Enrique Moya

Abstract:

The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement.

Keywords: antibacterial, biocompatibility, bone morphogenetic protein-2, cell proliferation, gentamicin, implants, mesoporous titania films, osteoblasts

Procedia PDF Downloads 163
915 Enhancing the Quality of Silage Bales Produced by a Commercial Scale Silage Producer in Northern province, Sri Lanka: A Step Toward Supporting Smallholder Dairy Farmers in the Northern Province Sri Lanka

Authors: Harithas Aruchchunan

Abstract:

Silage production is an essential aspect of dairy farming, used to provide high-quality feed to ruminants. However, dairy farmers in Northern Province Sri Lanka are facing multiple challenges that compromise the quality and quantity of silage produced. To tackle these challenges, promoting silage feeding has become an essential component of sustainable dairy farming practices. In this study, silage bale samples were collected from a newly started silage baling factory in Jaffna, Northern province and their quality was analysed at the Veterinary Research Institute laboratory in Kandy in March 2023. The results show the nutritional composition of three Napier grass cultivars: Super Napier, CO6, and Indian Red Napier (BH18). The main parameters analysed were dry matter, pH, lactic acid, soluble carbohydrate, ammonia nitrogen, ash, crude protein, NDF, and ADF. The results indicate that Super Napier and CO6 have higher crude protein content and lower ADF levels, making them suitable for producing high-quality silage. The pH levels of all three cultivars were safe, and the ammonia nitrogen levels were considered appropriate. However, laboratory results indicate that the quality of silage bales produced can be further enhanced. Dairy farmers should be encouraged to adopt these cultivars to achieve better yields as they are high in protein and are better suited to Northern Province's soil and climate. Therefore, it is vital to educate small-scale fodder producers, who supply the raw material to silage factories, on the best practices of cultivating these new cultivars. To improve silage bale production and quality in Northern Province Sri Lanka, we recommend increasing public awareness about silage feeding, providing education and training to dairy farmers and small-scale fodder producers on modern silage production techniques and improving the availability of raw materials for silage production. Additionally, Napier grass cultivars need to be promoted among dairy farmers for better production and quality of silage bales. Failing to improve the quality and quantity of silage bale production could not only lead to the decline of dairy farming in Northern Province Sri Lanka but also the negative impact on the economy

Keywords: silage bales, dairy farming, economic crisis, Sri Lanka

Procedia PDF Downloads 92
914 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study

Authors: Jitendra Pratap, Jonathan Sivyer

Abstract:

Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.

Keywords: CT, iodine density, spectral, dual-energy

Procedia PDF Downloads 119
913 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials

Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik

Abstract:

Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.

Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes

Procedia PDF Downloads 61
912 Femoral Neck Anteversion and Neck-Shaft Angles: Determination and Their Clinical Implications in Fetuses of Different Gestational Ages

Authors: Vrinda Hari Ankolekar, Anne D. Souza, Mamatha Hosapatna

Abstract:

Introduction: Precise anatomical assessment of femoral neck anteversion (FNA) and the neck shaft angles (NSA) would be essential in diagnosing the pathological conditions involving hip joint and its ligaments. FNA of greater than 20 degrees is considered excessive femoral anteversion, whereas a torsion angle of fewer than 10 degrees is considered femoral retroversion. Excessive femoral torsion is not uncommon and has been associated with certain neurologic and orthopedic conditions. The enlargement and maturation of the hip joint increases at the 20th week of gestation and the NSA ranges from 135- 140◦ at birth. Material and methods: 48 femurs were tagged according to the GA and two photographs for each femur were taken using Nikon digital camera. Each femur was kept on a horizontal hard desk and end on an image of the upper end was taken for the estimation of FNA and a photograph in a perpendicular plane was taken to calculate the NSA. The images were transferred to the computer and were stored in TIFF format. Microsoft Paint software was used to mark the points and Image J software was used to calculate the angles digitally. 1. Calculation of FNA: The midpoint of the femoral head and the neck were marked and a line was drawn joining these two points. The angle made by this line with the horizontal plane was measured as FNA. 2. Calculation of NSA: The midpoint of the femoral head and the neck were marked and a line was drawn joining these two points. A vertical line was drawn passing through the tip of the greater trochanter to the inter-condylar notch. The angle formed by these lines was calculated as NSA. Results: The paired t-test for the inter-observer variability showed no significant difference between the values of two observers. (FNA: t=-1.06 and p=0.31; NSA: t=-0.09 and p=0.9). The FNA ranged from 17.08º to 33.97 º on right and 17.32 º to 45.08 º on left. The NSA ranged from 139.33 º to 124.91 º on right and 143.98 º to 123.8 º on left. Unpaired t-test was applied to compare the mean angles between the second and third trimesters which did not show any statistical significance. This shows that the FNA and NSA of femur did not vary significantly during the third trimester. The FNA and NSA were correlated with the GA using Pearson’s correlation. FNA appeared to increase with the GA (r=0.5) but the increase was not statistically significant. A decrease in the NSA was also noted with the GA (r=-0.3) which was also statistically not significant. Conclusion: The present study evaluates the FNA and NSA of the femur in fetuses and correlates their development with the GA during second and third trimesters. The FNA and NSA did not vary significantly during the third trimester.

Keywords: anteversion, coxa antetorsa, femoral torsion, femur neck shaft angle

Procedia PDF Downloads 320
911 Optimizing the Field Emission Performance of SiNWs-Based Heterostructures: Controllable Synthesis, Core-Shell Structure, 3D ZnO/Si Nanotrees and Graphene/SiNWs

Authors: Shasha Lv, Zhengcao Li

Abstract:

Due to the CMOS compatibility, silicon-based field emission (FE) devices as potential electron sources have attracted much attention. The geometrical arrangement and dimensional features of aligned silicon nanowires (SiNWs) have a determining influence on the FE properties. We discuss a multistep template replication process of Ag-assisted chemical etching combined with polystyrene (PS) spheres to fabricate highly periodic and well-aligned silicon nanowires, then their diameter, aspect ratio and density were further controlled via dry oxidation and post chemical treatment. The FE properties related to proximity and aspect ratio were systematically studied. A remarkable improvement of FE propertiy was observed with the average nanowires tip interspace increasing from 80 to 820 nm. On the basis of adjusting SiNWs dimensions and morphology, addition of a secondary material whose properties complement the SiNWs could yield a combined characteristic. Three different nanoheterostructures were fabricated to control the FE performance, they are: NiSi/Si core-shell structures, ZnO/Si nanotrees, and Graphene/SiNWs. We successfully fabricated the high-quality NiSi/Si heterostructured nanowires with excellent conformality. First, nickle nanoparticles were deposited onto SiNWs, then rapid thermal annealing process were utilized to form NiSi shell. In addition, we demonstrate a new and simple method for creating 3D nanotree-like ZnO/Si nanocomposites with a spatially branched hierarchical structure. Compared with the as-prepared SiNRs and ZnO NWs, the high-density ZnO NWs on SiNRs have exhibited predominant FE characteristics, and the FE enhancement factors were attributed to band bending effect and geometrical morphology. The FE efficiency from flat sheet structure of graphene is low. We discussed an effective approach towards full control over the diameter of uniform SiNWs to adjust the protrusions of large-scale graphene sheet deposited on SiNWs. The FE performance regarding the uniformity and dimensional control of graphene protrusions supported on SiNWs was systematically clarified. Therefore, the hybrid SiNWs/graphene structures with protrusions provide a promising class of field emission cathodes.

Keywords: field emission, silicon nanowires, heterostructures, controllable synthesis

Procedia PDF Downloads 273
910 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag

Authors: L. Pu, C. Unluer

Abstract:

MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.

Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂

Procedia PDF Downloads 192
909 An Analysis of Emmanuel Macron's Campaign Discourse

Authors: Robin Turner

Abstract:

In the context of the strengthening conservative movements such as “Brexit” and the election of US President Donald Trump, the global political stage was shaken up by the election of Emmanuel Macron to the French presidency, defeating the far-right candidate Marine Le Pen. The election itself was a first for the Fifth Republic in which neither final candidate was from the traditional two major political parties: the left Parti Socialiste (PS) and the right Les Républicains (LR). Macron, who served as the Minister of Finance under his predecessor, founded the centrist liberal political party En Marche! in April 2016 before resigning from his post in August to launch his bid for the presidency. Between the time of the party’s creation to the first round of elections a year later, Emmanuel Macron and En Marche! had garnered enough support to make it to the run-off election, finishing far ahead of many seasoned national political figures. Now months into his presidency, the youngest President of the Republic shows no sign of losing fuel anytime soon. His unprecedented success raises a lot of questions with respect to international relations, economics, and the evolving relationship between the French government and its citizens. The effectiveness of Macron’s campaign, of course, relies on many factors, one of which is his manner of communicating his platform to French voters. Using data from oral discourse and primary material from Macron and En Marche! in sources such as party publications and Twitter, the study categorizes linguistic instruments – address, lexicon, tone, register, and syntax – to identify prevailing patterns of speech and communication. The linguistic analysis in this project is two-fold. In addition to these findings’ stand-alone value, these discourse patterns are contextualized by comparable discourse of other 2017 presidential candidates with high emphasis on that of Marine Le Pen. Secondly, to provide an alternative approach, the study contextualizes Macron’s discourse using those of two immediate predecessors representing the traditional stronghold political parties, François Hollande (PS) and Nicolas Sarkozy (LR). These comparative methods produce an analysis that gives insight to not only a contributing factor to Macron’s successful 2017 campaign but also provides insight into how Macron’s platform presents itself differently to previous presidential platforms. Furthermore, this study extends analysis to supply data that contributes to a wider analysis of the defeat of “traditional” French political parties by the “start-up” movement En Marche!.

Keywords: Emmanuel Macron, French, discourse analysis, political discourse

Procedia PDF Downloads 261
908 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 143
907 Assessing the Social Impacts of a Circular Economy in the Global South

Authors: Dolores Sucozhañay, Gustavo Pacheco, Paul Vanegas

Abstract:

In the context of sustainable development and the transition towards a sustainable circular economy (CE), evaluating the social dimension remains a challenge. Therefore, developing a respective methodology is highly important. First, the change of the economic model may cause significant social effects, which today remain unaddressed. Second, following the current level of globalization, CE implementation requires targeting global material cycles and causes social impacts on potentially vulnerable social groups. A promising methodology is the Social Life Cycle Assessment (SLCA), which embraces the philosophy of life cycle thinking and provides complementary information to environmental and economic assessments. In this context, the present work uses the updated Social Life Cycle Assessment (SLCA) Guidelines 2020 to assess the social performance of the recycling system of Cuenca, Ecuador, to exemplify a social assessment method. Like many other developing countries, Ecuador heavily depends on the work of informal waste pickers (recyclers), who, even contributing to a CE, face harsh socio-economic circumstances, including inappropriate working conditions, social exclusion, exploitation, etc. Under a Reference Scale approach (Type 1), 12 impact subcategories were assessed through 73 site-specific inventory indicators, using an ascending reference scale ranging from -2 to +2. Findings reveal a social performance below compliance levels with local and international laws, basic societal expectations, and practices in the recycling sector; only eight and five indicators present a positive score. In addition, a social hotspot analysis depicts collection as the most time-consuming lifecycle stage and the one with the most hotspots, mainly related to working hours and health and safety aspects. This study provides an integrated view of the recyclers’ contributions, challenges, and opportunities within the recycling system while highlighting the relevance of assessing the social dimension of CE practices. It also fosters an understanding of the social impact of CE operations in developing countries, highlights the need for a close north-south relationship in CE, and enables the connection among the environmental, economic, and social dimensions.

Keywords: SLCA, circular economy, recycling, social impact assessment

Procedia PDF Downloads 151