Search results for: switched beam
548 Automation of Savitsky's Method for Power Calculation of High Speed Vessel and Generating Empirical Formula
Authors: M. Towhidur Rahman, Nasim Zaman Piyas, M. Sadiqul Baree, Shahnewaz Ahmed
Abstract:
The design of high-speed craft has recently become one of the most active areas of naval architecture. Speed increase makes these vehicles more efficient and useful for military, economic or leisure purpose. The planing hull is designed specifically to achieve relatively high speed on the surface of the water. Speed on the water surface is closely related to the size of the vessel and the installed power. The Savitsky method was first presented in 1964 for application to non-monohedric hulls and for application to stepped hulls. This method is well known as a reliable comparative to CFD analysis of hull resistance. A computer program based on Savitsky’s method has been developed using MATLAB. The power of high-speed vessels has been computed in this research. At first, the program reads some principal parameters such as displacement, LCG, Speed, Deadrise angle, inclination of thrust line with respect to keel line etc. and calculates the resistance of the hull using empirical planning equations of Savitsky. However, some functions used in the empirical equations are available only in the graphical form, which is not suitable for the automatic computation. We use digital plotting system to extract data from nomogram. As a result, value of wetted length-beam ratio and trim angle can be determined directly from the input of initial variables, which makes the power calculation automated without manually plotting of secondary variables such as p/b and other coefficients and the regression equations of those functions are derived by using data from different charts. Finally, the trim angle, mean wetted length-beam ratio, frictional coefficient, resistance, and power are computed and compared with the results of Savitsky and good agreement has been observed.Keywords: nomogram, planing hull, principal parameters, regression
Procedia PDF Downloads 403547 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams
Authors: Sergo Esadze
Abstract:
Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.Keywords: cantilever, random process, seismic load, vertical acceleration
Procedia PDF Downloads 188546 Precise Spatially Selective Photothermolysis Skin Treatment by Multiphoton Absorption
Authors: Yimei Huang, Harvey Lui, Jianhua Zhao, Zhenguo Wu, Haishan Zeng
Abstract:
Conventional laser treatment of skin diseases and cosmetic surgery is based on the principle of one-photon absorption selective photothermolysis which relies strongly on the difference in the light absorption between the therapeutic target and its surrounding tissue. However, when the difference in one-photon absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To overcome this problem, we developed a spatially selective photothermolysis method based on multiphoton absorption in which the heat generation is restricted to the focal point of a tightly focused near-infrared femtosecond laser beam aligned with the target of interest. A multimodal optical microscope with co-registered reflectance confocal imaging (RCM), two-photon fluorescence imaging (TPF), and second harmonic generation imaging (SHG) capabilities was used to perform and monitor the spatially selective photothermolysis. Skin samples excised from the shaved backs of euthanized NODSCID mice were used in this study. Treatments were performed by focusing and scaning the laser beam in the dermis with a 50µm×50µm target area. Treatment power levels of 200 mW to 400 mW and modulated pulse trains of different duration and period were experimented. Different treatment parameters achieved different degrees of spatial confinement of tissue alterations as visualized by 3-D RCM/TPF/SHG imaging. At 200 mW power level, 0.1 s pulse train duration, 4.1 s pulse train period, the tissue damage was found to be restricted precisely to the 50µm×50µm×10µm volume, where the laser focus spot had scanned through. The overlying epidermis/dermis tissue and the underneath dermis tissue were intact although there was light passing through these regions.Keywords: multiphoton absorption photothermolysis, reflectance confocal microscopy, second harmonic generation microscopy, spatially selective photothermolysis, two-photon fluorescence microscopy
Procedia PDF Downloads 513545 The Impact of Using Flattening Filter-Free Energies on Treatment Efficiency for Prostate SBRT
Authors: T. Al-Alawi, N. Shorbaji, E. Rashaidi, M.Alidrisi
Abstract:
Purpose/Objective(s): The main purpose of this study is to analyze the planning of SBRT treatments for localized prostate cancer with 6FFF and 10FFF energies to see if there is a dosimetric difference between the two energies and how we can increase the plan efficiency and reduce its complexity. Also, to introduce a planning method in our department to treat prostate cancer by utilizing high energy photons without increasing patient toxicity and fulfilled all dosimetric constraints for OAR (an organ at risk). Then toevaluate the target 95% coverage PTV95, V5%, V2%, V1%, low dose volume for OAR (V1Gy, V2Gy, V5Gy), monitor unit (beam-on time), and estimate the values of homogeneity index HI, conformity index CI a Gradient index GI for each treatment plan.Materials/Methods: Two treatment plans were generated for15 patients with localized prostate cancer retrospectively using the CT planning image acquired for radiotherapy purposes. Each plan contains two/three complete arcs with two/three different collimator angle sets. The maximum dose rate available is 1400MU/min for the energy 6FFF and 2400MU/min for 10FFF. So in case, we need to avoid changing the gantry speed during the rotation, we tend to use the third arc in the plan with 6FFF to accommodate the high dose per fraction. The clinical target volume (CTV) consists of the entire prostate for organ-confined disease. The planning target volume (PTV) involves a margin of 5 mm. A 3-mm margin is favored posteriorly. Organs at risk identified and contoured include the rectum, bladder, penile bulb, femoral heads, and small bowel. The prescription dose is to deliver 35Gyin five fractions to the PTV and apply constraints for organ at risk (OAR) derived from those reported in references. Results: In terms of CI=0.99, HI=0.7, and GI= 4.1, it was observed that they are all thesame for both energies 6FFF and 10FFF with no differences, but the total delivered MUs are much less for the 10FFF plans (2907 for 6FFF vs.2468 for 10FFF) and the total delivery time is 124Sc for 6FFF vs. 61Sc for 10FFF beams. There were no dosimetric differences between 6FFF and 10FFF in terms of PTV coverage and mean doses; the mean doses for the bladder, rectum, femoral heads, penile bulb, and small bowel were collected, and they were in favor of the 10FFF. Also, we got lower V1Gy, V2Gy, and V5Gy doses for all OAR with 10FFF plans. Integral dosesID in (Gy. L) were recorded for all OAR, and they were lower with the 10FFF plans. Conclusion: High energy 10FFF has lower treatment time and lower delivered MUs; also, 10FFF showed lower integral and meant doses to organs at risk. In this study, we suggest usinga 10FFF beam for SBRTprostate treatment, which has the advantage of lowering the treatment time and that lead to lessplan complexity with respect to 6FFF beams.Keywords: FFF beam, SBRT prostate, VMAT, prostate cancer
Procedia PDF Downloads 83544 Enhancing Precision in Abdominal External Beam Radiation Therapy: Exhale Breath Hold Technique for Respiratory Motion Management
Authors: Stephanie P. Nigro
Abstract:
The Exhale Breath Hold (EBH) technique presents a promising approach to enhance the precision and efficacy of External Beam Radiation Therapy (EBRT) for abdominal tumours, which include liver, pancreas, kidney, and adrenal glands. These tumours are challenging to treat due to their proximity to organs at risk (OARs) and the significant motion induced by respiration and physiological variations, such as stomach filling. Respiratory motion can cause up to 40mm of displacement in abdominal organs, complicating accurate targeting. While current practices like limiting fasting help reduce motion related to digestive processes, they do not address respiratory motion. 4DCT scans are used to assess this motion, but they require extensive workflow time and expose patients to higher doses of radiation. The EBH technique, which involves holding the breath in an exhale with no air in the lungs, stabilizes internal organ motion, thereby reducing respiratory-induced motion. The primary benefit of EBH is the reduction in treatment volume sizes, specifically the Internal Target Volume (ITV) and Planning Target Volume (PTV), as demonstrated by smaller ITVs when gated in EBH. This reduction also improves the quality of 3D Cone Beam CT (CBCT) images by minimizing respiratory artifacts, facilitating soft tissue matching akin to stereotactic treatments. Patients suitable for EBH must meet criteria including the ability to hold their breath for at least 15 seconds and maintain a consistent breathing pattern. For those who do not qualify, the traditional 4DCT protocol will be used. The implementation involves an EBH planning scan and additional short EBH scans to ensure reproducibility and assist in contouring and volume expansions, with a Free Breathing (FB) scan used for setup purposes. Treatment planning on EBH scans leads to smaller PTVs, though intrafractional and interfractional breath hold variations must be accounted for in margins. The treatment decision process includes performing CBCT in EBH intervals, with careful matching and adjustment based on soft tissue and fiducial markers. Initial studies at two sites will evaluate the necessity of multiple CBCTs, assessing shifts and the benefits of initial versus mid-treatment CBCT. Considerations for successful implementation include thorough patient coaching, staff training, and verification of breath holds, despite potential disadvantages such as longer treatment times and patient exhaustion. Overall, the EBH technique offers significant improvements in the accuracy and quality of abdominal EBRT, paving the way for more effective and safer treatments for patients.Keywords: abdominal cancers, exhale breath hold, radiation therapy, respiratory motion
Procedia PDF Downloads 25543 Modeling of Cf-252 and PuBe Neutron Sources by Monte Carlo Method in Order to Develop Innovative BNCT Therapy
Authors: Marta Błażkiewicz, Adam Konefał
Abstract:
Currently, boron-neutron therapy is carried out mainly with the use of a neutron beam generated in research nuclear reactors. This fact limits the possibility of realization of a BNCT in centers distant from the above-mentioned reactors. Moreover, the number of active nuclear reactors in operation in the world is decreasing due to the limited lifetime of their operation and the lack of new installations. Therefore, the possibilities of carrying out boron-neutron therapy based on the neutron beam from the experimental reactor are shrinking. However, the use of nuclear power reactors for BNCT purposes is impossible due to the infrastructure not intended for radiotherapy. Therefore, a serious challenge is to find ways to perform boron-neutron therapy based on neutrons generated outside the research nuclear reactor. This work meets this challenge. Its goal is to develop a BNCT technique based on commonly available neutron sources such as Cf-252 and PuBe, which will enable the above-mentioned therapy in medical centers unrelated to nuclear research reactors. Advances in the field of neutron source fabrication make it possible to achieve strong neutron fluxes. The current stage of research focuses on the development of virtual models of the above-mentioned sources using the Monte Carlo simulation method. In this study, the GEANT4 tool was used, including the model for simulating neutron-matter interactions - High Precision Neutron. Models of neutron sources were developed on the basis of experimental verification based on the activation detectors method with the use of indium foil and the cadmium differentiation method allowing to separate the indium activation contribution from thermal and resonance neutrons. Due to the large number of factors affecting the result of the verification experiment, the 10% discrepancy between the simulation and experiment results was accepted.Keywords: BNCT, virtual models, neutron sources, monte carlo, GEANT4, neutron activation detectors, gamma spectroscopy
Procedia PDF Downloads 182542 Modification of Hexagonal Boron Nitride Induced by Focused Laser Beam
Authors: I. Wlasny, Z. Klusek, A. Wysmolek
Abstract:
Hexagonal boron nitride is a representative of a widely popular class of two-dimensional Van Der Waals materials. It finds its uses, among others, in construction of complexly layered heterostructures. Hexagonal boron nitride attracts great interest because of its properties characteristic for wide-gap semiconductors as well as an ultra-flat surface.Van Der Waals heterostructures composed of two-dimensional layered materials, such as transition metal dichalcogenides or graphene give hope for miniaturization of various electronic and optoelectronic elements. In our presentation, we will show the results of our investigations of the not previously reported modification of the hexagonal boron nitride layers with focused laser beam. The electrostatic force microscopy (EFM) images reveal that the irradiation leads to changes of the local electric fields for a wide range of laser wavelengths (from 442 to 785 nm). These changes are also accompanied by alterations of crystallographic structure of the material, as reflected by Raman spectra. They exhibit high stability and remain visible after at least five months. This behavior can be explained in terms of photoionization of the defect centers in h-BN which influence non-uniform electrostatic field screening by the photo-excited charge carriers. Analyzed changes influence local defect structure, and thus the interatomic distances within the lattice. These effects can be amplified by the piezoelectric character of hexagonal boron nitride, similar to that found in nitrides (e.g., GaN, AlN). Our results shed new light on the optical properties of the hexagonal boron nitride, in particular, those associated with electron-phonon coupling. Our study also opens new possibilities for h-BN applications in layered heterostructures where electrostatic fields can be used in tailoring of the local properties of the structures for use in micro- and nanoelectronics or field-controlled memory storage. This work is supported by National Science Centre project granted on the basis of the decision number DEC-2015/16/S/ST3/00451.Keywords: atomic force microscopy, hexagonal boron nitride, optical properties, raman spectroscopy
Procedia PDF Downloads 171541 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding
Authors: Indunil Jayatilake, Warna Karunasena
Abstract:
Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.Keywords: debonding, dynamic response, finite element modelling, novel FRP beams
Procedia PDF Downloads 116540 Performance of Reinforced Concrete Beams under Different Fire Durations
Authors: Arifuzzaman Nayeem, Tafannum Torsha, Tanvir Manzur, Shaurav Alam
Abstract:
Performance evaluation of reinforced concrete (RC) beams subjected to accidental fire is significant for post-fire capacity measurement. Mechanical properties of any RC beam degrade due to heating since the strength and modulus of concrete and reinforcement suffer considerable reduction under elevated temperatures. Moreover, fire-induced thermal dilation and shrinkage cause internal stresses within the concrete and eventually result in cracking, spalling, and loss of stiffness, which ultimately leads to lower service life. However, conducting full-scale comprehensive experimental investigation for RC beams exposed to fire is difficult and cost-intensive, where the finite element (FE) based numerical study can provide an economical alternative for evaluating the post-fire capacity of RC beams. In this study, an attempt has been made to study the fire behavior of RC beams using FE software package ABAQUS under different durations of fire. The damaged plasticity model of concrete in ABAQUS was used to simulate behavior RC beams. The effect of temperature on strength and modulus of concrete and steel was simulated following relevant Eurocodes. Initially, the result of FE models was validated using several experimental results from available scholarly articles. It was found that the response of the developed FE models matched quite well with the experimental outcome for beams without heat. The FE analysis of beams subjected to fire showed some deviation from the experimental results, particularly in terms of stiffness degradation. However, the ultimate strength and deflection of FE models were similar to that of experimental values. The developed FE models, thus, exhibited the good potential to predict the fire behavior of RC beams. Once validated, FE models were then used to analyze several RC beams having different strengths (ranged between 20 MPa and 50 MPa) exposed to the standard fire curve (ASTM E119) for different durations. The post-fire performance of RC beams was investigated in terms of load-deflection behavior, flexural strength, and deflection characteristics.Keywords: fire durations, flexural strength, post fire capacity, reinforced concrete beam, standard fire
Procedia PDF Downloads 137539 Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data
Authors: M. R. Akbari , H. Yousefnia, E. Mirrezaei
Abstract:
Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy.Keywords: water equivalent ratio, dosimetric materials, proton therapy, Monte Carlo simulations
Procedia PDF Downloads 321538 Factors Affecting the Wages of Native Workers in Thailand's Construction Industry
Authors: C. Noknoi, W. Boripunt, K. Boomid, S. Suwitphanwong
Abstract:
This research studies the factors influencing the wages of native workers in Thailand's construction industry. The sample used comprised some 156 native construction workers from Songkhla Province, Thailand. The utilized research instrument was a questionnaire, with the data being analyzed according to frequency, percentage, and regression analysis. The results revealed that in general, native Thai construction workers are generally married males aged between 26 and 37 years old. They typically have four to six years of education, are employed as laborers with an average salary of 4,000–9,200 baht per month, and have fewer than five years of work experience. Most Thai workers work five days a week. Each establishment typically has 10–30 employees, with fewer than 10 of these being migrant workers in general. Most Thai workers are at a 20% to 40% risk from work, and they have never changed employer. The average wage of Thai workers was found to be 10,843.03 baht per month with a standard deviation of 4,898.31 baht per month. Hypothesis testing revealed that position, work experience, and the number of times they had switched employer were the factors most affecting the wages of native Thai construction workers. These three factors alone explain the salaries of Thai construction workers at 51.9%.Keywords: construction industry, native workers, Thailand, wages
Procedia PDF Downloads 232537 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain
Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper
Abstract:
Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.Keywords: additive manufacturing, lean production, reproducibility, work safety
Procedia PDF Downloads 183536 The Effect of Artificial Intelligence on Decoration
Authors: Ashraf Fayz Bekhet Abaskron
Abstract:
This research is done to create new compositions for designs, finding inspiration from watercolor artworks displayed in SuanSunandha Palace. The researcher made a study in the history of the landmark, its importance, the paintings in the Palace, the types and characteristics of the flowers painted, as well as the artistic elements and principles of designs that went into the paintings. The information obtained led to the creation of six totally new designs. The designs incorporated standard international designs and artistic principles and still kept to the original style of the watercolor paintings in SuanSunandha Palace. Following the paintings, the designs are divided into three categories: Orchids, Roses, and Flowers from literature. The researcher used the components of the flowers including rounded-petal flowers, wavy-edged petals, flowers with pointed petals, leaves, vines, and branches. All of them are represented in the original paintings. Upon the original, the researcher switched these elements and their proportions around to create a more modern design. The original forms are used as references since they contain the characteristics of each flower species. The work created achieved an updated trait and simultaneously reflects the charms and timeless beauty of the watercolor paintings displayed in SuanSunandha Palace, which still exists in today’s world.Keywords: art, craft, design, Oman, weaving watercolor, painting, flower, Suan Sunandhagolden ratio, Fibonacci numbers, textile design, designs
Procedia PDF Downloads 33535 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor
Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo
Abstract:
The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.Keywords: automated equipment, management, multi-beam sensor, pothole
Procedia PDF Downloads 222534 Welding Technology Developments for Stringer-Skin Joints with Al-Li Alloys
Authors: Egoitz Aldanondo, Ekaitz Arruti, Amaia Iturrioz, Ivan Huarte, Fidel Zubiri
Abstract:
Manufacturing aeronautic structures joining extruded profiles or stringers to sheets or skins of aluminium is a typical manufacturing procedure in aeronautic structures. Although riveting is the conventional manufacturing technology to produce such joints, the Friction Stir Welding (FSW) and Laser Beam Welding (LBW) technologies have also demonstrated their potential for this kind of applications. Therefore, FSW and LBW technologies have the potential to continue their development as manufacturing processes for aeronautic structures showing benefits such as time-saving, light-weighting and overall cost reduction. In addition to that, new aluminium-lithium based alloy developments represent great opportunities for advanced aeronautic structure manufacturing with potential benefits such as lightweight construction or improved corrosion resistance. This work presents the main approaches by FSW and LBW to develop those technologies to produce stiffened panel structures such as fuselage by stringer-skin joints and using innovative aluminium-lithium alloys. Initial welding tests were performed in AA2198-T3S aluminium alloys for LBW technology and with AA2198-T851 for FSW. Later tests for both FSW and LBW have been carried out using AA2099-T83 alloy extrusions as stringers and AA2060-T8E30 as skin materials. The weld quality and properties have been examined by metallographic analysis and mechanical testing, including shear tensile tests and pull-out tests. The analysis of the results have shown the relationships between processing conditions, micro-macrostructural properties and the mechanical strength of the welded joints. The effects produced in the different alloys investigated have been observed and particular weld formation mechanics have been studied for each material and welding technology. Therefore, relationships between welding conditions and the obtained weld properties for each material combination and welding technology will be discussed in this presentation.Keywords: AA2060-T8E30, AA2099-T83, AA2198-T3S, AA2198-T851, friction stir welding, laser beam welding
Procedia PDF Downloads 196533 Experimental Research of Canine Mandibular Defect Construction with the Controlled Meshy Titanium Alloy Scaffold Fabricated by Electron Beam Melting Combined with BMSCs-Encapsulating Chitosan Hydrogel
Authors: Wang Hong, Liu Chang Kui, Zhao Bing Jing, Hu Min
Abstract:
Objection We observed the repairment effection of canine mandibular defect with meshy Ti6Al4V scaffold fabricated by electron beam melting (EBM) combined with bone marrow mesenchymal stem cells (BMMSCs) encapsulated in chitosan hydrogel. Method Meshy titanium scaffolds were prepared by EBM of commercial Ti6Al4V power. The length of scaffolds was 24 mm, the width was 5 mm and height was 8mm. The pore size and porosity were evaluated by scanning electron microscopy (SEM). Chitosan /Bio-Oss hydrogel was prepared by chitosan, β- sodium glycerophosphate and Bio-Oss power. BMMSCs were harvested from canine iliac crests. BMMSCs were seeded in titanium scaffolds and encapsulated in Chitosan /Bio-Oss hydrogel. The validity of BMMSCs was evaluated by cell count kit-8 (CCK-8). The osteogenic differentiation ability was evaluated by alkaline phosphatase (ALP) activity and gene expression of OC, OPN and CoⅠ. Combination were performed by injecting BMMSCs/ Chitosan /Bio-Oss hydrogel into the meshy Ti6Al4V scaffolds and solidified. 24 mm long box-shaped bone defects were made at the mid-portion of mandible of adult beagles. The defects were randomly filled with BMMSCs/ Chitosan/Bio-Oss + titanium, Chitosan /Bio-Oss+titanium, titanium alone. Autogenous iliac crests graft as control group in 3 beagles. Radionuclide bone imaging was used to monitor the new bone tissue at 2, 4, 8 and 12 weeks after surgery. CT examination was made on the surgery day and 4 weeks, 12 weeks and 24 weeks after surgery. The animals were sacrificed in 4, 12 and 24 weeks after surgery. The bone formation were evaluated by histology and micro-CT. Results: The pores of the scaffolds was interconnected, the pore size was about 1 mm, the average porosity was about 76%. The pore size of the hydrogel was 50-200μm and the average porosity was approximately 90%. The hydrogel were solidified under the condition of 37℃in 10 minutes. The validity and the osteogenic differentiation ability of BMSCs were not affected by titanium scaffolds and hydrogel. Radionuclide bone imaging shown an increasing tendency of the revascularization and bone regeneration was observed in all the groups at 2, 4, 8 weeks after operation, and there were no changes at 12weeks.The tendency was more obvious in the BMMSCs/ Chitosan/Bio-Oss +titanium group and autogenous group. CT, Micro-CT and histology shown that new bone formed increasingly with the time extend. There were more new bone regenerated in BMMSCs/ Chitosan /Bio-Oss + titanium group and autogenous group than the other two groups. At 24 weeks, the autogenous group was achieved bone union. The BMSCs/ Chitosan /Bio-Oss group was seen extensive new bone formed around the scaffolds and more new bone inside of the central pores of scaffolds than Chitosan /Bio-Oss + titanium group and titanium group. The difference was significantly. Conclusion: The titanium scaffolds fabricated by EBM had controlled porous structure, good bone conduction and biocompatibility. Chitosan /Bio-Oss hydrogel had injectable plasticity, thermosensitive property and good biocompatibility. The meshy Ti6Al4V scaffold produced by EBM combined BMSCs encapsulated in chitosan hydrogel had good capacity on mandibular bone defect repair.Keywords: mandibular reconstruction, tissue engineering, electron beam melting, titanium alloy
Procedia PDF Downloads 444532 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks
Authors: Heeba A. Gurku
Abstract:
Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.Keywords: CT images, CBCT images, cycle GAN, AGGAN
Procedia PDF Downloads 83531 A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC
Authors: Ga Ye Kim, Hee Sun Kim, Yeong Soo Shin
Abstract:
Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results.Keywords: retrofit material, polymer mortar, UHPFRC, nonlinear finite element analysis
Procedia PDF Downloads 416530 Comparison of Yb and Tm-Fiber Laser Cutting Processes of Fiber Reinforced Plastics
Authors: Oktay Celenk, Ugur Karanfil, Iskender Demir, Samir Lamrini, Jorg Neumann, Arif Demir
Abstract:
Due to its favourable material characteristics, fiber reinforced plastics are amongst the main topics of all actual lightweight construction megatrends. Especially in transportation trends ranging from aeronautics over the automotive industry to naval transportation (yachts, cruise liners) the expected economic and environmental impact is huge. In naval transportation components like yacht bodies, antenna masts, decorative structures like deck lamps, light houses and pool areas represent cheap and robust solutions. Commercially available laser tools like carbon dioxide gas lasers (CO₂), frequency tripled solid state UV lasers, and Neodymium-YAG (Nd:YAG) lasers can be used. These tools have emission wavelengths of 10 µm, 0.355 µm, and 1.064 µm, respectively. The scientific goal is first of all the generation of a parameter matrix for laser processing of each used material for a Tm-fiber laser system (wavelength 2 µm). These parameters are the heat affected zone, process gas pressure, work piece feed velocity, intensity, irradiation time etc. The results are compared with results obtained with well-known material processing lasers, such as a Yb-fiber lasers (wavelength 1 µm). Compared to the CO₂-laser, the Tm-laser offers essential advantages for future laser processes like cutting, welding, ablating for repair and drilling in composite part manufacturing (components of cruise liners, marine pipelines). Some of these are the possibility of beam delivery in a standard fused silica fiber which enables hand guided processing, eye safety which results from the wavelength, excellent beam quality and brilliance due to the fiber nature. There is one more feature that is economically absolutely important for boat, automotive and military projects manufacturing that the wavelength of 2 µm is highly absorbed by the plastic matrix and thus enables selective removal of it for repair procedures.Keywords: Thulium (Tm) fiber laser, laser processing of fiber-reinforced plastics (FRP), composite, heat affected zone
Procedia PDF Downloads 192529 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy
Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini
Abstract:
The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering
Procedia PDF Downloads 222528 Monte Carlo Simulations of LSO/YSO for Dose Evaluation in Photon Beam Radiotherapy
Authors: H. Donya
Abstract:
Monte Carlo (MC) techniques play a fundamental role in radiotherapy. A two non-water-equivalent of different media were used to evaluate the dose in water. For such purpose, Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates scintillators are chosen for MC simulation using Penelope code. To get higher efficiency in dose calculation, variance reduction techniques are discussed. Overall results of this investigation ensured that the LSO/YSO bi-media a good combination to tackle over-response issue in dynamic photon radiotherapy.Keywords: Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates, Monte Carlo, correlated sampling, radiotherapy
Procedia PDF Downloads 404527 Effect of Acute Dose of Mobile Phone Radiation on Life Cycle of the Mosquito, Culex univittatus
Authors: Fatma H. Galal, Alaaeddeen M. Seufi
Abstract:
Due to the increasing usage of mobile phone, experiments were designed to investigate the effect of acute dose exposure on the mosquito life cycle. 50 tubes (5 ml size) containing 3 ml water and a first instar larva of the mosquito, Culex univittatus were put between two mobile cell phones switched on talking mode for 4 continuous hours. A control group of tubes (unexposed to radiation) were used. Larval and pupal durations were calculated. Furthermore, adult emergence and sex ratio were observed for both treated and control larvae. Results indicated that the employed dose of radiation reduced total larval duration to about half the value of control. 1st, 2nd, 3rd and 4th larval durations were reduced significantly by mobile radiation when compared to controls. Meanwhile pupal duration was elongated significantly by mobile radiation when compared to control. Sex ratio was significantly shifted in favor of females in the case of radiated mosquitoes. Successful adult emergence was decreased significantly in the case of radiated insects when compared to controls. Molecular studies to investigate the effects of mobile radiation on insects and other model organisms are going on.Keywords: mosquito, mobilr radiation, larval and pupal durations, sex ratio
Procedia PDF Downloads 184526 Laser Light Bending via Lenses
Authors: Remzi Yildirim, Fatih V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin
Abstract:
This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.Keywords: laser, bending, lens, light, nonlinear optics
Procedia PDF Downloads 700525 Lateral Buckling of Nanoparticle Additive Composite Beams
Authors: Gürkan Şakar, Akgün Alsaran, Emrah E. Özbaldan
Abstract:
In this study, lateral buckling analysis of composite beams with particle additive was carried out experimentally and numerically. The effects of particle type, particle addition ratio on buckling loads of composite beams were determined. The numerical studies were performed with ANSYS package. In the analyses, clamped-free boundary condition was assumed. The load carrying capabilities of composite beams were influenced by different particle types and particle addition ratios.Keywords: lateral buckling, nanoparticle, composite beam, numeric analysis
Procedia PDF Downloads 472524 A Study of Social Media Users’ Switching Behavior
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.Keywords: social media, switching, social media fatigue, alternative attractiveness
Procedia PDF Downloads 140523 Protection of Patients and Staff in External Beam Radiotherapy Using Linac in Kenya
Authors: Calvince Okome Odeny
Abstract:
There is a current action to increase radiotherapy services in Kenya. The National government of Kenya, in collaboration with the county governments, has embarked on building radiotherapy centers in all 47 regions of the country. As these new centers are established in Kenya, it has to be ensured that minimum radiation safety standards are in place prior to operation. For full implementation of this, it is imperative that more Research and training for regulators are done on radiation protection, and safety and national regulatory infrastructure is geared towards ensuring radiation protection and safety in all aspects of the use of external radiotherapy practices. The present work aims at reviewing the level of protection and safety for patients and staff during external beam radiotherapy using Linac in Kenya and provides relevant guidance to improve protection and safety. A retrospective evaluation was done to verify whether those occupationally exposed workers and patients are adequately protected from the harmful effect of radiation exposure during the treatment procedures using Linac. The project was experimental Research, also including an analysis of resource documents obtained from the literature and international organizations. The critical findings of the work revealed that the key elements of protection of occupationally exposed workers and patients include a comprehensive quality Management system governing all planned activities from siting, safety, and design of the Facility, construction, acceptance testing, commissioning, operation, and decommissioning of the Facility; Government empowering the Regulatory Authority to license Medical Linear facilities and to enforce the applicable regulations to ensure adequate protection; A comprehensive Radiation Protection and Safety program must be established to ensure adequate safety and protection of workers and patients during treatment planning and treatment delivery of patients and categories of staff associated with the Facility must be well educated and trained to perform professionally with a commitment to sound safety culture. Relevant recommendations from the findings are shared with the Medical Linear Accelerator facilities and the regulatory authority to provide guidance and continuous improvement of protection and safety to improve regulatory oversight.Keywords: oncology, radiotherapy, protection, staff
Procedia PDF Downloads 75522 A Resistant-Based Comparative Study between Iranian Concrete Design Code and Some Worldwide Ones
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
The design in most counties should be inevitably carried out by their native code such as Iran. Since the Iranian concrete code does not exist in structural design software, most engineers in this country analyze the structures using commercial software but design the structural members manually. This point motivated us to make a communication between Iranian code and some other well-known ones to create facility for the engineers. Finally, this paper proposes the so-called interpretation charts which help specify the position of Iranian code in comparison of some worldwide ones.Keywords: beam, concrete code, strength, interpretation charts
Procedia PDF Downloads 523521 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers
Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta
Abstract:
The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation
Procedia PDF Downloads 60520 Effect of Strength Class of Concrete and Curing Conditions on Capillary Absorption of Self-Compacting and Conventional Concrete
Authors: Emine Ebru Demirci, Remzi Şahin
Abstract:
The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC), which are used in beams with dense reinforcement, in terms of their capillary absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. Beam dimensions were determined to be 200 x 250 x 3000 mm. Reinforcements of the beams were calculated and placed as 2ø12 for the top and 3ø12 for the bottom. Stirrups with dimension 8 mm were used as lateral rebar and stirrup distances were chosen as 10 cm in the confinement zone and 15 cm at the central zone. In this manner, densification of rebars in lateral cross-sections of beams and handling of SCC in real conditions were aimed. Concrete covers of the rebars were chosen to be equal in all directions as 25 mm. The capillary absorption measurements were performed on core samples taken from the beams. Core samples of ø8x16 cm were taken from the beginning (0-100 cm), middle (100-200 cm) and end (200-300 cm) region of the beams according to the casting direction of SCC. However core samples were taken from lateral surface of the beams. In the study, capillary absorption experiments were performed according to Turkish Standard TS EN 13057. It was observed that, for both curing environments and all strength classes of concrete, SCC’s had lower capillary absorption values than that of CC’s. The capillary absorption values of C25 class of SCC are 11% and 16% lower than that of C25 class of CC for air and moisture conditions, respectively. For C50 class, these decreases were 6% and 18%, while for C70 class, they were 16% and 9%, respectively. It was also detected that, for both SCC and CC, capillary absorption values of samples kept in moisture curing are significantly lower than that of samples stored in air curing. For CC’s; C25, C50 and C70 class moisture-cured samples were found to have 26%, 12% and 31% lower capillary absorption values, respectively, when compared to the air-cured ones. For SCC’s; these values were 30%, 23% and 24%, respectively. Apart from that, it was determined that capillary absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments. It was found that, for air cured CC, C50 and C70 class of concretes had 39% and 63% lower capillary absorption values compared to the C25 class of concrete. For the same type of concrete samples cured in the moisture environment, these values were found to be 27% and 66%. It was found that for SCC samples, capillary absorption value of C50 and C70 concretes, which were kept in air curing, were 35% and 65% lower than that of C25, while for moisture-cured samples these values were 29% and 63%, respectively. When standard deviations of the capillary absorption values are compared for core samples obtained from the beginning, middle and end of the CC and SCC beams, it was found that, in all three strength classes of concrete, the variation is much smaller for SCC than CC. This demonstrated that SCC’s had more uniform character than CC’s.Keywords: self compacting concrete, reinforced concrete beam, capillary absorption, strength class, curing condition
Procedia PDF Downloads 369519 Maresin Like 1 Treatment: Curbing the Pathogenesis of Behavioral Dysfunction and Neurodegeneration in Alzheimer's Disease Mouse Model
Authors: Yan Lu, Song Hong, Janakiraman Udaiyappan, Aarti Nagayach, Quoc-Viet A. Duong, Masao Morita, Shun Saito, Yuichi Kobayashi, Yuhai, Zhao, Hongying Peng, Nicholas B. Pham, Walter J Lukiw, Christopher A. Vuong, Nicolas G. Bazan
Abstract:
Aims: Neurodegeneration and behavior dysfunction occurs in patients with Alzheimer's Disease (AD), and as the disease progresses many patients develop cognitive impairment. 5XFAD mouse model of AD is widely used to study AD pathogenesis and treatment. This study aimed to investigate the effect of maresin like 1 (MaR-L1) treatment in AD pathology using 5XFAD mice. Methods: We tested 12-month-old male 5XFAD mice and wild type control mice treated with MaR-L1 in a battery of behavioral tasks. We performed open field test, beam walking test, clasping test, inverted grid test, acetone test, marble burring test, elevated plus maze test, cross maze test and novel object recognition test. We also studied neuronal loss, amyloid β burden, and inflammation in the brains of 5XFAD mice using immunohistology and Western blotting. Results: MaR-L1 treatment to the 5XFAD mice showed improved cognitive function of 5XFAD mice. MaR-L1 showed decreased anxiety behavior in open field test and marble burring test, increased muscular strength in the beam walking test, clasping test and inverted grid test. Cognitive function was improved in MaR-L1 treated 5XFAD mice in the novel object recognition test. MaR-L1 prevented neuronal loss and aberrant inflammation. Conclusion: Our finding suggests that behavioral abnormalities were normalized by the administration of MaR-L1 and the neuroprotective role of MaR-L1 in the AD. It also indicates that MaR-L1 treatment is able to prevent and or ameliorate neuronal loss and aberrant inflammation. Further experiments to validate the results are warranted using other AD models in the future.Keywords: Alzheimer's disease, motor and cognitive behavior, 5XFAD mice, Maresin Like 1, microglial cell, astrocyte, neurodegeneration, inflammation, resolution of inflammation
Procedia PDF Downloads 178