Search results for: overton database
1097 Integration of Internet-Accessible Resources in the Field of Mobile Robots
Authors: B. Madhevan, R. Sakkaravarthi, R. Diya
Abstract:
The number and variety of mobile robot applications are increasing day by day, both in an industry and in our daily lives. First developed as a tool, nowadays mobile robots can be integrated as an entity in Internet-accessible resources. The present work is organized around four potential resources such as cloud computing, Internet of things, Big data analysis and Co-simulation. Further, the focus relies on integrating, analyzing and discussing the need for integrating Internet-accessible resources and the challenges deriving from such integration, and how these issues have been tackled. Hence, the research work investigates the concepts of the Internet-accessible resources from the aspect of the autonomous mobile robots with an overview of the performances of the currently available database systems. IaR is a world-wide network of interconnected objects, can be considered an evolutionary process in mobile robots. IaR constitutes an integral part of future Internet with data analysis, consisting of both physical and virtual things.Keywords: internet-accessible resources, cloud computing, big data analysis, internet of things, mobile robot
Procedia PDF Downloads 3881096 Wireless Sensor Anomaly Detection Using Soft Computing
Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh
Abstract:
We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.Keywords: IDS, Machine learning, WSN, ZigBee technology
Procedia PDF Downloads 5431095 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation.Keywords: stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties
Procedia PDF Downloads 4001094 How to Perform Proper Indexing?
Authors: Watheq Mansour, Waleed Bin Owais, Mohammad Basheer Kotit, Khaled Khan
Abstract:
Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements.Keywords: indexing, hashing, latent semantic indexing, B-tree
Procedia PDF Downloads 1561093 PRISM: An Analytical Tool for Forest Plan Development
Authors: Dung Nguyen, Yu Wei, Eric Henderson
Abstract:
Analytical tools have been used for decades to assist in the development of forest plans. In 2016, a new decision support system, PRISM, was jointly developed by United States Forest Service (USFS) Northern Region and Colorado State University to support the forest planning process. Prism has a friendly user interface with functionality for database management, model development, data visualization, and sensitivity analysis. The software is tailored for USFS planning, but it is flexible enough to support planning efforts by other forestland owners and managers. Here, the core capability of PRISM and its applications in developing plans for several United States national forests are presented. The strengths of PRISM are also discussed to show its potential of being a preferable tool for managers and experts in the domain of forest management and planning.Keywords: decision support, forest management, forest plan, graphical user interface, software
Procedia PDF Downloads 1111092 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 4981091 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction
Authors: Zhengrong Wu, Haibo Yang
Abstract:
In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.Keywords: large language model, knowledge graph, disaster, deep learning
Procedia PDF Downloads 561090 The Potential for Recycling Household Wastes Generated from the Residential Areas of Obafemi Awolowo University, Ile-Ife
Authors: Asaolu Olugbenga Stephen, Afolabi Olusegun Temitope
Abstract:
Lack of proper solid waste management is one of the main causes of environmental pollution and degradation in many cities, especially in developing countries. The aim of this study was to estimate the quantity of waste generated per capita per day, determine the composition and identify the potentials for recycling of waste generated. Characterization of wastes from selected households in the residential areas was done for over a 7 day period. The weight of each sorted category of waste was recorded in a structured database that calculated the proportion of each waste component. The results indicated that 85.4% of the sampled waste characterized was found to be recyclable; with an estimated average waste generated of 1.82kg/capita/day. The various solid waste fractions were organic (64.6%), plastics (15.6%), metals (9.2%), glass materials (1.6%) and unclassified (8.9%). It was concluded from this study that a large proportion of the waste generated from OAU campus residential area was recyclable and that there is a need to enact policy on waste recycling within the university campus.Keywords: recycling, household wastes, residential, solid waste management
Procedia PDF Downloads 4011089 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 981088 Relationship between Growth of Non-Performing Assets and Credit Risk Management Practices in Indian Banks
Authors: Sirus Sharifi, Arunima Haldar, S. V. D. Nageswara Rao
Abstract:
The study attempts to analyze the impact of credit risk management practices of Indian scheduled commercial banks on their non-performing assets (NPAs). The data on credit risk practices was collected by administering a questionnaire to risk managers/executives at different banks. The data on NPAs (from 2012 to 2016) is sourced from Prowess, a database compiled by the Centre for Monitoring Indian Economy (CMIE). The model was estimated using cross-sectional regression method. As expected, the findings suggest that there is a negative relationship between credit risk management and NPA growth in Indian banks. The study has implications for Indian banks given the high level of losses, and the implementation of Basel III norms by the central bank, i.e. Reserve Bank of India (RBI). Evidence on credit risk management in Indian banks, and their relationship with non-performing assets held by them.Keywords: credit risk, identification, Indian Banks, NPAs, ownership
Procedia PDF Downloads 4081087 iCCS: Development of a Mobile Web-Based Student Integrated Information System using Hill Climbing Algorithm
Authors: Maria Cecilia G. Cantos, Lorena W. Rabago, Bartolome T. Tanguilig III
Abstract:
This paper describes a conducive and structured information exchange environment for the students of the College of Computer Studies in Manuel S. Enverga University Foundation in. The system was developed to help the students to check their academic result, manage profile, make self-enlistment and assist the students to manage their academic status that can be viewed also in mobile phones. Developing class schedules in a traditional way is a long process that involves making many numbers of choices. With Hill Climbing Algorithm, however, the process of class scheduling, particularly with regards to courses to be taken by the student aligned with the curriculum, can perform these processes and end up with an optimum solution. The proponent used Rapid Application Development (RAD) for the system development method. The proponent also used the PHP as the programming language and MySQL as the database.Keywords: hill climbing algorithm, integrated system, mobile web-based, student information system
Procedia PDF Downloads 3841086 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.Keywords: settlement, Subway Line, FLAC3D, ANFIS Method
Procedia PDF Downloads 2331085 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 2861084 Blockchain Technology in Supply Chain Management: A Systematic Review And Meta-Analysis
Authors: Mohammad Yousuf Khan, Bhavya Alankar
Abstract:
Blockchain is a promising technology with its features such as immutability and decentralized database. It has applications in various fields such as pharmaceutical, finance, & the food industry. At the core of its heart lies its feature, traceability which is the most desired key in supply chains. However, supply chains have always been hit rock bottom by scandals and controversies. In this review paper, we have explored the advancement and research gaps of blockchain technology (BT) in supply chain management (SCM). We have used the Prisma framework for systematic literature review (SLR) and included a minuscule amount of grey literature to reduce publication bias. We found that supply chain traceability and transparency is the most researched objective in SCM. There was hardly any research in supply chain resilience. Further, we found that 40 % of the papers were application based. Most articles have focused on the advantages of BT, rather than analyzing it critically. This study will help identify gaps and suitable actions to be followed for an efficient implementation of BT in SCM.Keywords: blockchain technology, supply chain management, supply chain transparency, supply chain resilience
Procedia PDF Downloads 1611083 Scientometrics Analysis of Food Supply Chain Risk Assessment Literature: Based On Web of Science Record 1996-2014
Authors: Mohsen Shirani, Shadi Asadzandi, Micaela Demichela
Abstract:
This paper presents the results of a study to assess crucial aspects and the strength of the scientific basis of a typically interdisciplinary, applied field: food supply chain risk assessment research. Our approach is based on an advanced scientometrics analysis with novel elements to assess the influence and dissemination of research results and to measure interdisciplinary. This paper aims to describe the quantity and quality of the publication trends in food supply chain risk assessment. The population under study was composed of 266 articles from database web of science. The results were analyzed based on date of publication, type of document, language of the documents, source of publications, subject areas, authors and their affiliations, and the countries involved in developing the articles.Keywords: food supply chain, risk assessment, scientometrics, web of science
Procedia PDF Downloads 4951082 Generating Real-Time Visual Summaries from Located Sensor-Based Data with Chorems
Authors: Z. Bouattou, R. Laurini, H. Belbachir
Abstract:
This paper describes a new approach for the automatic generation of the visual summaries dealing with cartographic visualization methods and sensors real time data modeling. Hence, the concept of chorems seems an interesting candidate to visualize real time geographic database summaries. Chorems have been defined by Roger Brunet (1980) as schematized visual representations of territories. However, the time information is not yet handled in existing chorematic map approaches, issue has been discussed in this paper. Our approach is based on spatial analysis by interpolating the values recorded at the same time, by sensors available, so we have a number of distributed observations on study areas and used spatial interpolation methods to find the concentration fields, from these fields and by using some spatial data mining procedures on the fly, it is possible to extract important patterns as geographic rules. Then, those patterns are visualized as chorems.Keywords: geovisualization, spatial analytics, real-time, geographic data streams, sensors, chorems
Procedia PDF Downloads 4001081 The Efficacy of Open Educational Resources in Students’ Performance and Engagement
Authors: Huda Al-Shuaily, E. M. Lacap
Abstract:
Higher Education is one of the most essential fundamentals for the advancement and progress of a country. It demands to be as accessible as possible and as comprehensive as it can be reached. In this paper, we succeeded to expand the accessibility and delivery of higher education using an Open Educational Resources (OER), a freely accessible, openly licensed documents, and media for teaching and learning. This study creates a comparative design of student’s academic performance on the course Introduction to Database and student engagement to the virtual learning environment (VLE). The study was done in two successive semesters - one without using the OER and the other is using OER. In the study, we established that there is a significant increase in student’s engagement in VLE in the latter semester compared to the former. By using the latter semester’s data, we manage to show that the student’s engagement has a positive impact on students’ academic performance. Moreso, after clustering their academic performance, the impact is seen higher for students who are low performing. The results show that these engagements can be used to potentially predict the learning styles of the student with a high degree of precision.Keywords: EDM, learning analytics, moodle, OER, student-engagement
Procedia PDF Downloads 3391080 A Context-Sensitive Algorithm for Media Similarity Search
Authors: Guang-Ho Cha
Abstract:
This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.Keywords: context-sensitive search, image search, similarity ranking, similarity search
Procedia PDF Downloads 3651079 Simulation of Gamma Rays Attenuation Coefficient for Some common Shielding Materials Using Monte Carlo Program
Authors: Cherief Houria, Fouka Mourad
Abstract:
In this work, the simulation of the radiation attenuation is carried out in a photon detector consisting of different common shielding material using a Monte Carlo program called PTM. The aim of the study is to investigate the effect of atomic weight and the thickness of shielding materials on the gamma radiation attenuation ability. The linear attenuation coefficients of Aluminum (Al), Iron (Fe), and lead (Pb) elements were evaluated at photons energy of 661:7KeV that are considered to be emitted from a standard radioactive point source Cs 137. The experimental measurements have been performed for three materials to obtain these linear attenuation coefficients, using a Gamma NaI(Tl) scintillation detector. Our results have been compared with the simulation results of the linear attenuation coefficient using the XCOM database and Geant4 codes and reveal that they are well agreed with both simulation data.Keywords: gamma photon, Monte Carlo program, radiation attenuation, shielding material, the linear attenuation coefficient
Procedia PDF Downloads 2031078 Journals' Productivity in the Literature on Malaria in Africa
Authors: Yahya Ibrahim Harande
Abstract:
The purpose of this study was to identify the journals that published articles on malaria disease in Africa and to determine the core of productive journals from the identified journals. The data for the study were culled out from African Index Medicus (AIM) database. A total of 529 articles was gathered from 115 journal titles from 1979-2011. In order to obtain the core of productive journals, Bradford`s law was applied to the collected data. Five journal titles were identified and determined as core journals. The data used for the study was analyzed and that, the subject matter used, Malaria was in conformity with the Bradford`s law. On the aspect dispersion of the literature, English was found to be the dominant language of the journals. (80.9%) followed by French (16.5%). Followed by Portuguese (1.7%) and German (0.9%). Recommendation is hereby proposed for the medical libraries to acquire these five journals that constitute the core in malaria literature for the use of their clients. It could also help in streamlining their acquision and selection exercises. More researches in the subject area using Bibliometrics approaches are hereby recommended.Keywords: productive journals, malaria disease literature, Bradford`s law, core journals, African scholars
Procedia PDF Downloads 3451077 Corporate Social Responsibility Practices and Financial Performance: The Case of French Unlisted SMEs
Authors: Zineb Abidi, Marc-Arthur Diaye
Abstract:
There exists a large empirical literature concerning the relationship between corporate social responsibility (CSR) and corporate financial performance. This literature, however, applies mainly to large corporations and/or listed firms. To the best of our knowledge, the question of whether meeting CSR requirements impacts the financial performance of small and medium-sized unlisted SMEs has not so far been analyzed. This paper aims to analyze, for the first time, the effect of CSR on the financial performance of SMEs. Using an original database including 5,257 French SMEs, we show that adopting CSR practices has a positive but weak effect on a firm’s financial performance. To develop this further, we analyzed CSR practices interactions assessing the best combination of CSR components that positively influence SME financial performance. Our results show that French SMEs benefit more from their pro-social behavior when they choose a combination of CSR components best adapted to their individual characteristics.Keywords: corporate social responsibility, financial performance, unlisted firms, SMEs
Procedia PDF Downloads 1721076 Geospatial Data Complexity in Electronic Airport Layout Plan
Authors: Shyam Parhi
Abstract:
Airports GIS program collects Airports data, validate and verify it, and stores it in specific database. Airports GIS allows authorized users to submit changes to airport data. The verified data is used to develop several engineering applications. One of these applications is electronic Airport Layout Plan (eALP) whose primary aim is to move from paper to digital form of ALP. The first phase of development of eALP was completed recently and it was tested for a few pilot program airports across different regions. We conducted gap analysis and noticed that a lot of development work is needed to fine tune at least six mandatory sheets of eALP. It is important to note that significant amount of programming is needed to move from out-of-box ArcGIS to a much customized ArcGIS which will be discussed. The ArcGIS viewer capability to display essential features like runway or taxiway or the perpendicular distance between them will be discussed. An enterprise level workflow which incorporates coordination process among different lines of business will be highlighted.Keywords: geospatial data, geology, geographic information systems, aviation
Procedia PDF Downloads 4161075 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery
Procedia PDF Downloads 5861074 Associated Factors of Hypercholesterolemia, Hyperuricemia and Double Burden of Hypercuricémia-Hypercholesterolemia in Gout Patients: Hospital Based Study
Authors: Pierre Mintom, Armel Assiene Agamou, Leslie Toukem, William Dakam, Christine Fernande Nyangono Biyegue
Abstract:
Context: Hyperuricemia, the presence of high levels of uric acid in the blood, is a known precursor to the development of gout. Recent studies have suggested a strong association between hyperuricemia and disorders of lipoprotein metabolism, specifically hypercholesterolemia. Understanding the factors associated with these conditions in gout patients is essential for effective treatment and management. Research Aim: The objective of this study was to determine the prevalence of hyperuricemia, hypercholesterolemia, and the double burden of hyperuricemia-hypercholesterolemia in the gouty population. Additionally, the study aimed to identify the factors associated with these conditions. Methodology: The study utilized a database from a survey of 150 gouty patients recruited at the Laquintinie Hospital in Douala between August 2017 and February 2018. The database contained information on anthropometric parameters, biochemical markers, and the food and drugs consumed by the patients. Hyperuricemia and hypercholesterolemia were defined based on specific serum uric acid and total cholesterol thresholds, and the double burden was defined as the co-occurrence of hyperuricemia and hypercholesterolemia. Findings: The study found that the prevalence rates for hyperuricemia, hypercholesterolemia, and the double burden were 61.3%, 76%, and 50.7% respectively. Factors associated with these conditions included hypertriglyceridemia, atherogenicity index TC/HDL ratio, atherogenicity index LDL/HDL ratio, family history, and the consumption of specific foods and drinks. Theoretical Importance: The study highlights the strong association between hyperuricemia and dyslipidemia, providing important insights for guiding treatment strategies in gout patients. Additionally, it emphasizes the significance of nutritional education in managing these metabolic disorders, suggesting the need to address eating habits in gout patients. Data Collection and Analysis Procedures: Data was collected through surveys and medical records of gouty patients. Information on anthropometric parameters, biochemical markers, and dietary habits was recorded. Prevalence rates and associated factors were determined through statistical analysis, employing odds ratios to assess the risks. Question Addressed: The study aimed to address the prevalence rates and associated factors of hyperuricemia, hypercholesterolemia, and the double burden in gouty patients. It sought to understand the relationships between these conditions and determine their implications for treatment and nutritional education. Conclusion: Findings show that it’s exists an association between hyperuricemia and hypercholesterolemia in gout patients, thus creating a double burden. The findings underscore the importance of considering family history and eating habits in addressing the double burden of hyperuricemia-hypercholesterolemia. This study provides valuable insights for guiding treatment approaches and emphasizes the need for nutritional education in gout patients. This study specifically focussed on the sick population. A case–control study between gouty and non-gouty populations would be interesting to better compare and explain the results observed.Keywords: gout, hyperuricemia, hypercholesterolemia, double burden
Procedia PDF Downloads 611073 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1981072 An E-Assessment Website to Implement Hierarchical Aggregate Assessment
Authors: M. Lesage, G. Raîche, M. Riopel, F. Fortin, D. Sebkhi
Abstract:
This paper describes a Web server implementation of the hierarchical aggregate assessment process in the field of education. This process describes itself as a field of teamwork assessment where teams can have multiple levels of hierarchy and supervision. This process is applied everywhere and is part of the management, education, assessment and computer science fields. The E-Assessment website named “Cluster” records in its database the students, the course material, the teams and the hierarchical relationships between the students. For the present research, the hierarchical relationships are team member, team leader and group administrator appointments. The group administrators have the responsibility to supervise team leaders. The experimentation of the application has been performed by high school students in geology courses and Canadian army cadets for navigation patrols in teams. This research extends the work of Nance that uses a hierarchical aggregation process similar as the one implemented in the “Cluster” application.Keywords: e-learning, e-assessment, teamwork assessment, hierarchical aggregate assessment
Procedia PDF Downloads 3691071 Optimization of Vertical Axis Wind Turbine Based on Artificial Neural Network
Authors: Mohammed Affanuddin H. Siddique, Jayesh S. Shukla, Chetan B. Meshram
Abstract:
The neural networks are one of the power tools of machine learning. After the invention of perceptron in early 1980's, the neural networks and its application have grown rapidly. Neural networks are a technique originally developed for pattern investigation. The structure of a neural network consists of neurons connected through synapse. Here, we have investigated the different algorithms and cost function reduction techniques for optimization of vertical axis wind turbine (VAWT) rotor blades. The aerodynamic force coefficients corresponding to the airfoils are stored in a database along with the airfoil coordinates. A forward propagation neural network is created with the input as aerodynamic coefficients and output as the airfoil co-ordinates. In the proposed algorithm, the hidden layer is incorporated into cost function having linear and non-linear error terms. In this article, it is observed that the ANNs (Artificial Neural Network) can be used for the VAWT’s optimization.Keywords: VAWT, ANN, optimization, inverse design
Procedia PDF Downloads 3231070 Data Collection Based on the Questionnaire Survey In-Hospital Emergencies
Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala
Abstract:
The methods identified in data collection are diverse: electronic media, focus group interviews and short-answer questionnaires [1]. The collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses [2]. In this context, we opted to collect good quality data by doing a sizeable questionnaire-based survey on hospital emergencies to improve emergency services and alleviate the problems encountered. At the level of this paper, we will present our study, and we will detail the steps followed to achieve the collection of relevant, consistent and practical data.Keywords: data collection, survey, questionnaire, database, data analysis, hospital emergencies
Procedia PDF Downloads 1081069 Part of Geomatics Technology in the Capability to Implement an on Demand Transport in Oran Wilaya (the Northwestern of Algeria)
Authors: N. Brahmia
Abstract:
The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transport systems (ODT) are very efficient; they rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible of the advance reservation, planning and organization, and studying the different ODT criteria. As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This communication presents the study of an ODT implementation in the west of Algeria, by developing the Geomatics side of the study. This part requires the use of specific systems such as Geographic Information System (GIS), Road Database Management System (RDBMS)… so we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.Keywords: geomatics, GIS, ODT, transport systems
Procedia PDF Downloads 5991068 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.Keywords: model tree, CART, logistic regression, soil shear strength
Procedia PDF Downloads 197