Search results for: legal artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4181

Search results for: legal artificial intelligence

3641 Massive Deployments of Insurgent Intelligence by Violent Non-state Actors (VNSAs) in the 21st Century and Threats to Global Security

Authors: Temitope Francis Abiodun

Abstract:

The practice of intelligence is not limited to the machinery of a nation state alone, yet not much research or analysis has been directed towards the spy-crafts and tradecrafts engaged in by violent non-state actors (VNSAs) in the international community. The rise of 'private sector intelligence' in more recent years has only just begun to be interrogated by practitioners and academics. However, the use of intelligence by insurgents and other groups assembled to achieve varied forms of politico-military outcomes has often been overlooked. This paper examined the factors and conditions that gave rise to an increase in violent non-state actors (VNSAs), strategies aiding their deployment of insurgent intelligence, and as well the implications of their activities on global security. The failed state theory was adopted, while a descriptive research design served as the framework for the study. Data were collected from primary and secondary sources. The paper, however, revealed there were massive deployments of insurgent intelligence by violent non-state actors in contrast to a faulty pre-conception that insurgents were not as highly trained in deployment of intelligence as state actors, having assumed that the VNSAs lacked the sophistication to produce intelligence. However, the strategic objectives of insurgents (VNSAs) were revealed to depend on well-organized information gathering operations that feed into the tactical executions of their insurgency. The paper recommends, therefore, there is a need for adequate training on the part of security personnel in the states to be alive to their responsibilities; and there is also a need to ensure adequate border control and management to checkmate the influx of the various violent or deadly movements across global frontiers.

Keywords: terrorism, non-violent state actors, private sector intelligence, security

Procedia PDF Downloads 138
3640 Artificial Intelligence Techniques for Enhancing Supply Chain Resilience: A Systematic Literature Review, Holistic Framework, and Future Research

Authors: Adane Kassa Shikur

Abstract:

Today’s supply chains (SC) have become vulnerable to unexpected and ever-intensifying disruptions from myriad sources. Consequently, the concept of supply chain resilience (SCRes) has become crucial to complement the conventional risk management paradigm, which has failed to cope with unexpected SC disruptions, resulting in severe consequences affecting SC performances and making business continuity questionable. Advancements in cutting-edge technologies like artificial intelligence (AI) and their potential to enhance SCRes by improving critical antecedents in the different phases have attracted the attention of scholars and practitioners. The research from academia and the practical interest of the industry have yielded significant publications at the nexus of AI and SCRes during the last two decades. However, the applications and examinations have been primarily conducted independently, and the extant literature is dispersed into research streams despite the complex nature of SCRes. To close this research gap, this study conducts a systematic literature review of 106 peer-reviewed articles by curating, synthesizing, and consolidating up-to-date literature and presents the state-of-the-art development from 2010 to 2022. Bayesian networks are the most topical ones among the 13 AI techniques evaluated. Concerning the critical antecedents, visibility is the first ranking to be realized by the techniques. The study revealed that AI techniques support only the first 3 phases of SCRes (readiness, response, and recovery), and readiness is the most popular one, while no evidence has been found for the growth phase. The study proposed an AI-SCRes framework to inform research and practice to approach SCRes holistically. It also provided implications for practice, policy, and theory as well as gaps for impactful future research.

Keywords: ANNs, risk, Bauesian networks, vulnerability, resilience

Procedia PDF Downloads 101
3639 Artificial Intelligence Based Online Monitoring System for Cardiac Patient

Authors: Syed Qasim Gilani, Muhammad Umair, Muhammad Noman, Syed Bilawal Shah, Aqib Abbasi, Muhammad Waheed

Abstract:

Cardiovascular Diseases(CVD's) are the major cause of death in the world. The main reason for these deaths is the unavailability of first aid for heart failure. In many cases, patients die before reaching the hospital. We in this paper are presenting innovative online health service for Cardiac Patients. The proposed online health system has two ends. Users through device developed by us can communicate with their doctor through a mobile application. This interface provides them with first aid.Also by using this service, they have an easy interface with their doctors for attaining medical advice. According to the proposed system, we developed a device called Cardiac Care. Cardiac Care is a portable device which a patient can use at their home for monitoring heart condition. When a patient checks his/her heart condition, Electrocardiogram (ECG), Blood Pressure(BP), Temperature are sent to the central database. The severity of patients condition is checked using Artificial Intelligence Algorithm at the database. If the patient is suffering from the minor problem, our algorithm will suggest a prescription for patients. But if patient's condition is severe, patients record is sent to doctor through the mobile Android application. Doctor after reviewing patients condition suggests next step. If a doctor identifies the patient condition as critical, then the message is sent to the central database for sending an ambulance for the patient. Ambulance starts moving towards patient for bringing him/her to hospital. We have implemented this model at prototype level. This model will be life-saving for millions of people around the globe. According to this proposed model patients will be in contact with their doctors all the time.

Keywords: cardiovascular disease, classification, electrocardiogram, blood pressure

Procedia PDF Downloads 185
3638 The Role of the Indonesian Armed Forces to Combat Terrorism Acts During the COVID 19 Pandemic Era

Authors: Aulia Rosa Nasution

Abstract:

This research aims to analyze the involvement of the Indonesian Armed Forces in overcoming terrorism acts under legal perspectives based on Acts No. 34 of 2004, which regulates the role and mechanism of the Indonesian Armed Forces in combating terrorism. The main question of this research is, firstly, the military authority in combating terrorism acts, secondly, the implementation of Acts Number 34/2000, and thirdly, law enforcement to combat terrorism under national and international law. The methodology of this research is juridical normative based on the legal instruments and legal principles, and international norms. The result of this study explains the involvement of the Indonesian Army in combating terrorism as a part of the nonmilitary operation which has been implemented in Indonesia as part of national defence and security.

Keywords: acts of terrorism, Indonesian armed forces, legal protection

Procedia PDF Downloads 117
3637 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 36
3636 Harnessing the Power of Large Language Models in Orthodontics: AI-Generated Insights on Class II and Class III Orthopedic Appliances: A Cross-Sectional Study

Authors: Laiba Amin, Rashna H. Sukhia, Mubassar Fida

Abstract:

Introduction: This study evaluates the accuracy of responses from ChatGPT, Google Bard, and Microsoft Copilot regarding dentofacial orthopedic appliances. As artificial intelligence (AI) increasingly enhances various fields, including healthcare, understanding its reliability in specialized domains like orthodontics becomes crucial. By comparing the accuracy of different AI models, this study aims to shed light on their effectiveness and potential limitations in providing technical insights. Materials and Methods: A total of 110 questions focused on dentofacial orthopedic appliances were posed to each AI model. The responses were then evaluated by five experienced orthodontists using a modified 5-point Likert scale to ensure a thorough assessment of accuracy. This structured approach allowed for consistent and objective rating, facilitating a meaningful comparison between the AI systems. Results: The results revealed that Google Bard demonstrated the highest accuracy at 74%, followed by Microsoft Copilot, with an accuracy of 72.2%. In contrast, ChatGPT was found to be the least accurate, achieving only 52.2%. These results highlight significant differences in the performance of the AI models when addressing orthodontic queries. Conclusions: Our study highlights the need for caution in relying on AI for orthodontic insights. The overall accuracy of the three chatbots was 66%, with Google Bard performing best for removable Class II appliances. Microsoft Copilot was more accurate than ChatGPT, which, despite its popularity, was the least accurate. This variability emphasizes the importance of human expertise in interpreting AI-generated information. Further research is necessary to improve the reliability of AI models in specialized healthcare settings.

Keywords: artificial intelligence, large language models, orthodontics, dentofacial orthopaedic appliances, accuracy assessment.

Procedia PDF Downloads 14
3635 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 150
3634 Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers

Authors: L. Edirisinghe, P. Mukherjee, H. Edirisinghe

Abstract:

Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process.

Keywords: virtual container yard, legal, maritime law, inventory

Procedia PDF Downloads 165
3633 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: artificial neural network, back-propagation, tide data, training algorithm

Procedia PDF Downloads 485
3632 Design Architecture Anti-Corruption Commission (KPK) According to KPK Law: Strong or Weak?

Authors: Moh Rizaldi, Ali Abdurachman, Indra Perwira

Abstract:

The biggest demonstration after the 1998 reforms that took place in Indonesia for several days at the end of 2019 did not eliminate the intention of the People’s Representative Council (Dewan Perwakilan Rakyat or DPR) and the President to enact the law 19 of 2019 (KPK law). There is a central issue to be highlighted, namely whether the change is intended to strengthen or even weaken the KPK. To achieve this goal, the Analysis focuses on two agency principles namely the independent principle and the control principle as seen from three things namely the legal substance, legal structure, and legal culture. The research method is normative with conceptual, historical and statute approaches. The argument from this writing is that KPK Law has cut most of the KPK's authority as a result the KPK has become symbolic or toothless in combating corruption.

Keywords: control, independent, KPK, law no. 19 of 2019

Procedia PDF Downloads 125
3631 A Study on Legal Regimes Alternatives from the Aspect of Shenzhen Global Ocean Central City Construction

Authors: Jinsong Zhao, Lin Zhao

Abstract:

Shenzhen, one of the fastest growing cities in the world, has been building a global ocean central city since 2017, facing many challenges, especially how to innovate new legal regimes to meet the future demands of the development of global shipping. First, the current legal regime of bills of lading as a document of title was established by English law in the 18th century but limited to the period of marine transportation from port of loading to port of discharge (namely, port to port). The e-commerce era is asking for such a function to be extended from port to port to door to door. Secondly, the function of the port has also been upgraded from the traditional loading and unloading of goods to a much wider area, such as being custody of warehousing goods for its mortgage bank, and therefore its legal status is changing, so it is necessary to amend the law of ports and harbours and innovate the rights and responsibilities of the port under its new role as the custody. Thirdly, the development of new marine energy has made more and more offshore floating wind power and floating photovoltaic devices face new legal issues such as legal status, nationality and ownership registration, mortgage, maritime lien, and possessory lien. Fourthly, the jurisdiction of the above issues, as well as conflicts of law and the applicable law, are also questions pending answers. This paper will discuss these issues of private international law, especially the innovation of new legal regimes with an aim to solve the above problems.

Keywords: maritime law, bills of lading, e-commerce, port law, marine clean energy

Procedia PDF Downloads 42
3630 Palliative Care: Optimizing the Quality of Life through Strengthening the Legal Regime of Bangladesh

Authors: Sonia Mannan, M. Jobair Alam

Abstract:

The concept of palliative care in Bangladesh largely remained limited to the sympathetic caring of patients with a life-limiting illness. Quality of Life (QoL) issues are rarely practiced in Bangladesh. Furthermore, palliative medicine, in the perspective of holistic palliative care service, does not have its proper recognition in Bangladesh. Apart from those socio-medical aspects, palliative care patients face legal issues that impact their quality of life, including access to health services and social benefits and dealing with other life-transactions of the patients and their families (such as disposing of property; planning for children). This paper is an attempt to articulate these legal dimensions of the right to palliative care in the context of Bangladesh. The major focus of this paper will be founded on the doctrinal analysis of the constitutional provisions and other relevant legislation on the right to health and their judicial interpretation, which is argued to offer a meaningful space for the right to palliative care. This paper will also investigate the gaps in the said legal framework to better secure such care. In conclusion, a few recommendations are made so that the palliative care practices in Bangladesh are better aligned with international standards, and it can respond more humanely to the patients who need palliative care.

Keywords: Bangladesh, constitution, legal regime, palliative care, quality of life

Procedia PDF Downloads 143
3629 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence

Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello

Abstract:

Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.

Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care

Procedia PDF Downloads 77
3628 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 138
3627 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests

Authors: Rose Shayeghi, Pejman Hosseinioun

Abstract:

The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learner-centered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.

Keywords: multiple intelligence, grammar, ELT, EFL, TIMI

Procedia PDF Downloads 494
3626 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 155
3625 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 445
3624 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective

Authors: Pardis Moslemzadeh Tehrani

Abstract:

Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.

Keywords: blockchain, supply chain, IoT, smart contract

Procedia PDF Downloads 130
3623 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies

Authors: Monica Lia

Abstract:

This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.

Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes

Procedia PDF Downloads 434
3622 Effects of Artificial Sweeteners on the Quality Parameters of Yogurt during Storage

Authors: Hafiz Arbab Sakandar, Sabahat Yaqub, Ayesha Sameen, Muhammad Imran, Sarfraz Ahmad

Abstract:

Yoghurt is one of the famous nutritious fermented milk products which have myriad of positive health effects on human beings and curable against different intestinal diseases. This research was conducted to observe effects of different artificial sweeteners on the quality parameters of yoghurt with relation to storage. Some people are allergic to natural sweeteners so artificial sweetener will be helpful for them. Physical-chemical, Microbiology and various sensory evaluation tests were carried out with the interval of 7, 14, 21, and 28 days. It was outcome from this study that addition of artificial sweeteners in yoghurt has shown much harmful effects on the yoghurt microorganisms and other physicochemical parameters from quality point of view. Best results for acceptance were obtained when aspartame was added in yoghurt at level of 0.022 percent. In addition, growth of beneficial microorganisms in yoghurt was also improved as well as other sensory attributes were enhanced by the addition of aspartame.

Keywords: yoghurt, artificial sweetener, storage, quality parameters

Procedia PDF Downloads 478
3621 Rights-Based Approach to Artificial Intelligence Design: Addressing Harm through Participatory ex ante Impact Assessment

Authors: Vanja Skoric

Abstract:

The paper examines whether the impacts of artificial intelligence (AI) can be meaningfully addressed through the rights-based approach to AI design, investigating in particular how the inclusive, participatory process of assessing the AI impact would make this viable. There is a significant gap between envisioning rights-based AI systems and their practical application. Plausibly, internalizing human rights approach within AI design process might be achieved through identifying and assessing implications of AI features human rights, especially considering the case of vulnerable individuals and communities. However, there is no clarity or consensus on how such an instrument should be operationalised to usefully identify the impact, mitigate harms and meaningfully ensure relevant stakeholders’ participation. In practice, ensuring the meaningful inclusion of those individuals, groups, or entire communities who are affected by the use of the AI system is a prerequisite for a process seeking to assess human rights impacts and risks. Engagement in the entire process of the impact assessment should enable those affected and interested to access information and better understand the technology, product, or service and resulting impacts, but also to learn about their rights and the respective obligations and responsibilities of developers and deployers to protect and/or respect these rights. This paper will provide an overview of the study and practice of the participatory design process for AI, including inclusive impact assessment, its main elements, propose a framework, and discuss the lessons learned from the existing theory. In addition, it will explore pathways for enhancing and promoting individual and group rights through such engagement by discussing when, how, and whom to include, at which stage of the process, and what are the pre-requisites for meaningful and engaging. The overall aim is to ensure using the technology that works for the benefit of society, individuals, and particular (historically marginalised) groups.

Keywords: rights-based design, AI impact assessment, inclusion, harm mitigation

Procedia PDF Downloads 151
3620 Diplomatic Assurances in International Law

Authors: William Thomas Worster

Abstract:

Diplomatic assurances issued by states declaring that they will not mistreat individuals returned to them occupy a strange middle ground between being legal and non-legal obligations. States assert that they are non-binding, yet at other times that they are binding. However, this assertion may not be the end of the discussion. The International Court of Justice and other tribunals have concluded that similar instruments were binding, states have disagreed that certain similar instruments were binding, and the Vienna Convention on the Law of Treaties and its travaux prépératoires do not appear to contemplate non-binding instruments. This paper is a case study of diplomatic assurances but, by necessity, touches on the delicate question of whether certain texts are treaties, promises, or non-binding political statements. International law, and law in general, requires a binary approach to obligation. All communications must be binding or not, even if the fit is not precise. Through this study, we will find that some of the obligations in certain assurances can be understood as legal and some not. We will attempt to state the current methodology for determining which obligations are legal under the law of treaties and law on binding unilateral promises. The paper begins with some background of the legal environment of diplomatic assurances and their use in cases of expulsion. The paper then turns to discuss the legal nature of diplomatic assurances, proceeding to address various possibilities for legal value as treaties and as binding unilateral statements. This paper will not examine the legal value of diplomatic assurances solely under customary international law other than the way in which customary international law might further refine the treaty definition. In order to identify whether any assurances are contained in legal acts, this study identifies a pool of relevant assurances and qualitatively analyzes whether any of those are contained in treaties or binding unilateral statements. To the author’s best knowledge, this study is the first large-scale, qualitative qualitative analysis of assurances as a group of instruments that accounts for their heterogenous nature. It is also the first study to identify the indicators of whether an instrument is a treaty or promise.

Keywords: diplomatic assurances, deportation, extradition, expulsion, non-refoulement, torture, persecution, death penalty, human rights, memorandum of understanding, promises, secret, monitoring, compliance, enforcement

Procedia PDF Downloads 90
3619 The Relation between Spiritual Intelligence and Organizational Health and Job Satisfaction among the Female Staff in Islamic Azad University of Marvdasht

Authors: Reza Zarei

Abstract:

The result of the present study is to determine the relation between spiritual intelligence and organizational health and job satisfaction among the female staff in Islamic Azad University of Marvdasht. The population of the study includes the female staff and the faculty of Islamic Azad University of Marvdasht. The method is correlational and the instrument in the research is three questionnaires namely the spiritual intelligence by (ISIS), Amraam and Dryer, organizational health by Fieldman and Job satisfaction questionnaire. In order to test the hypotheses we used interpretive statistics, Pearson and regression correlation coefficient. The findings show that there is a significant relation between the spiritual intelligence and organizational health among the female staff of this unit. In addition, the organizational health has a significant relation with the elements of self-consciousness and social skills and on the other hand, job satisfaction is in significant relation with the elements of self-consciousness, self-control, self-provocation, sympathy and social skills in the whole sample regardless of the participants' gender. Finally, the results of multiple regression and variance analysis showed that using the variables of the spiritual intelligence of the female staff could predict the organizational health and their job satisfaction.

Keywords: job satisfaction, spiritual intelligence, organizational health, Islamic Azad University

Procedia PDF Downloads 378
3618 Emotional Intelligence and Gender Role Attitudes of Married Individuals: Moderating Role of Gender and Work Status

Authors: Saima Kalsoom, Sobia Masood, Muhammad Faran

Abstract:

This study aimed to examine the association between emotional intelligence and gender role attitudes of married individuals. Another aim of this study was to test the moderating role of gender work status of married individuals for predicting gender role attitudes from emotional intelligence. A sample of (N = 500) married working men and women (both working & housewives) was approached through purposive convenience sampling technique. The data was collected employing cross-sectional research design. The indigenous versions of the Gender Role Attitudes Scale and perceived Emotional Intelligence Scale were used. The results of alpha coefficients for both the scales and subscales used in this study designated satisfactory evidence for internal consistency and reliability. Assessment of correlation coefficients showed significant positive correlation between gender role attitudes and emotional intelligence, subfactors of emotional intelligence i.e., emotional self-regulation, emotional self-awareness, and interpersonal skills with gender role attitudes. Results of model testing revealed that gender (the effect was significant for women) and work status (the effect was more significant for married working women than married working men and housewives) of the married individuals significantly moderated the relationship between emotional intelligence and gender role attitudes into the positive direction. Further, it was also found that gender and work status also moderated the relationship between emotional self-regulation (as sub factor of emotional intelligence) and gender role attitudes in a positive direction. In conclusion, this empirical evidence is vital contribution derived from the traditional and collectivistic socio-cultural background of Pakistan.

Keywords: gender role attitudes, emotional intelligence, emotional self-regulation, gender, work status, married working women

Procedia PDF Downloads 112
3617 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens

Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang

Abstract:

The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.

Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen

Procedia PDF Downloads 70
3616 Evaluation of the Causes of Exposure to Mobbing of Employees in the Public Sector in Turkey

Authors: Taner Cindik, Ferya Tas Ciftci

Abstract:

Mobbing in the public sector and specific issues (i.e., the demand for non-pecuniary damages) regarding mobbing have become very important in the light of the precedents constituted by the Turkish Council of State in 2010. The legal scope of mobbing is not able to be determined since the concept of mobbing is not defined in Turkish law system. This study aims to reveal three major problems caused by the lack of laws related to mobbing in the Turkish legal system. First, the absence of an arrangement for disciplinary penalties leads that general provisions in the disciplinary law are implemented. This situation, therefore, causes difficulties in practice. Second, not being drawn of the lines in the topic concerning mobbing in public sector leads confusions in being direction of hostility. Third, the fact that there is a legal gap on seeking non-pecuniary compensation when employees in public sector are exposed to mobbing might make it difficult to obtain non-pecuniary compensation. Within the context of these major problems, civil servants in Turkey do not have enough protection mechanism. However, some possible legal arrangements will help civil servants to protect against mobbing. This study may be considered important because of the fact that mobbing in the public sector is at a significant level and has not been evaluated in this context before. This research is mainly a study of Turkish legal system and evaluates critically law case to determine legal problems. As a result of this study, three main problems might be identified because there is legal gap regarding mobbing in the public sector. In conclusion, the introduction of the major problems related to mobbing in this study might shed light on making the proper regulations of this subject in Turkish law system. In this respect, the plaintiff will be provided convenience in the point of non-pecuniary damages and this study will guide the assessment of legal liability of those who implement mobbing.

Keywords: human rights violations, mobbing, public sector, direction of hostility, non-pecuniary compensation, disciplinary law

Procedia PDF Downloads 242
3615 The Legal Regulation of Direct-to-Consumer Genetic Testing In South Africa

Authors: Amy Gooden

Abstract:

Despite its prevalence, direct-to-consumer genetic testing (DTC-GT) remains under-investigated in South Africa (SA), and the issue of regulation is yet to be examined. Therefore, this research maps the current legal landscape relating to DTC-GT in SA through a legal analysis of the extant law relevant to the industry and the issues associated therewith – with the intention of determining if and how DTC-GT is legally governed. This research analyses: whether consumers are legally permitted to collect their saliva; whether DTC-GT are medical devices; licensing, registering, and advertising; importing and exporting; and genetic research conducted by companies.

Keywords: direct-to-consumer genetic testing, genetic testing, health, law, regulation, South Africa

Procedia PDF Downloads 140
3614 Response Development of larvae Portunus pelagicus to Artificial Feeding Predigest

Authors: Siti Aslamyah, Yushinta Fujaya, Okto Rimaldi

Abstract:

One of the problems faced in the crab hatchery operations is the reliance on the use of natural feed. This study aims to analyze the response of larval development and determine the initial stages crab larvae begin to fully able to accept artificial feeding predigest with the help of probiotic Bacillus sp. The experiment was conducted in June 2014 through July 2014 at the location of the scale backyard hatcheries, Bojo village Mallusettasi sub-district, district Barru. This study was conducted in two stages larval rearing. The first stage is designed in a completely randomized design with 5 treatments and each with 3 repetitions, ie, without the use of artificial feeding; predigest feed given from zoea 1 - megalopa; predigest feed given since zoea 2 - megalopa; predigest feed given from zoea 3 - megalopa; and feed predigest given since zoea 4 - megalopa. The second stage of the two treatments, i.e. comparing artificial feeding without and with predigest. The results showed that the artificial feeding predigest able to replace the use of natural feed started zoea 3 generated based on the survival rate. Artificial feeding predigest provide a higher survival rate (16%) compared to artificial diets without predigest only 10.8%. However, feed predigest not give a different effect on the rate of development of stadia. Cell activity in larvae that received artificial feed predigest higher with RNA-DNA ratio of 8.88 compared with no predigest only 5:36. This research is very valuable information for crab hatchery hatchery scale households have limitations in preparing natural food.

Keywords: artificial feeding, development of stadia, larvae Portunus pelagicus, predigest

Procedia PDF Downloads 534
3613 Perceptions of Doctors and Nurses About Euthanasia in Indian Scenario

Authors: B. Unnikrishnan, Tanuj Kanchan, Ramesh Holla, Nithin Kumar

Abstract:

Euthanasia has been debated for the ethical, legal, social, and religious implications associated with it. The present research was conducted to study the perceptions of doctors and nurses about ethical and legal aspects of Euthanasia in Indian scenario. The study was carried out at three tertiary care hospitals of Kasturba Medical College (KMC), Mangalore, India. Practicing doctors and nurses working in the hospitals associated with KMC were included in the study after taking written informed consent from the participants. The data was analyzed using SPSS version 11.5. Mann-Whitney U test was used to compare the responses of doctors and nurses. P-value of <0.05 was taken as statistically significant. A total of 144 doctors and nurses participated in the study. Both doctors and nurses agreed that if a terminally ill patient wishes to die, the wish cannot be honored ethically and legally. A significantly larger number of nurses agreed that patient’s wish for euthanasia cannot be honored ethically and legally when compared to the doctors. Though the doctors and nurses were broadly in agreement with the existing legal and ethical views on the issue, their knowledge on the issue with regard to the legal status of euthanasia in India and ethical aspects relating to it needs to be strengthened.

Keywords: euthanasia, ethical aspects, legal aspects, India

Procedia PDF Downloads 286
3612 Penalization of Transnational Crimes in the Domestic Legal Order: The Case of Poland

Authors: Magda Olesiuk-Okomska

Abstract:

The degree of international interdependence has grown significantly. Poland is a party to nearly 1000 binding multilateral treaties, including international legal instruments devoted to criminal matters and obliging the state to penalize certain crimes. The paper presents results of a theoretical research conducted as a part of doctoral research. The main hypothesis assumed that there was a separate category of crimes to penalization of which Poland was obliged under international legal instruments; that a catalogue of such crimes and a catalogue of international legal instruments providing for Poland’s international obligations had never been compiled in the domestic doctrine, thus there was no mechanism for monitoring implementation of such obligations. In the course of the research, a definition of transnational crimes was discussed and confronted with notions of international crimes, treaty crimes, as well as cross-border crimes. A list of transnational crimes penalized in the Polish Penal Code as well as in non-code criminal law regulations was compiled; international legal instruments, obliging Poland to criminalize and penalize specific conduct, were enumerated and catalogued. It enabled the determination whether Poland’s international obligations were implemented in domestic legislation, as well as the formulation of de lege lata and de lege ferenda postulates. Implemented research methods included inter alia a dogmatic and legal method, an analytical method and desk research.

Keywords: international criminal law, transnational crimes, transnational criminal law, treaty crimes

Procedia PDF Downloads 223