Search results for: failure mode analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29817

Search results for: failure mode analysis

29277 New Chances of Reforming Pedagogical Approach In Secondary English Class in China under the New English Curriculum and National College Entrance Examination Reform

Authors: Yue Wang

Abstract:

Five years passed since the newest English curriculum reform policy was published in China, hand-wringing spread among teachers who accused that this is another 'Wearing New Shoes to Walk the Old Road' policy. This paper provides a thoroughly philosophical policy analysis of serious efforts that had been made to support this reform and reveals the hindrances that bridled the reform to yield the desired effect. Blame could be easily put on teachers for their insufficient pedagogical content knowledge, conservative resistance, and the handicaps of large class sizes and limited teaching times, and so on. However, the underlying causes for this implementation failure are the interrelated factors in the NCEE-centred education system, such as the reluctant from students, the lack of school and education bureau support, and insufficient teacher training. A further discussion of 2017 to 2020’s NCEE reform on English prompt new possibilities for the authentic pedagogical approach reform in secondary English classes. In all, the pedagogical approach reform at the secondary level is heading towards a brighter future with the initiation of new NCEE reform.

Keywords: English curriculum, failure, NCEE, new possibilities, pedagogical, policy analysis, reform

Procedia PDF Downloads 132
29276 Mode Choice for School Trip of Children’s Independence Mobility: A Case Study of School Proximity to Mass Transit Stations in Bangkok, Thailand

Authors: Phannarithisen Ong

Abstract:

Children's independent mobility for school trips promotes physical and mental well-being, reduces parental chauffeuring and traffic congestion, and boosts children's public confidence. However, in Thailand, despite a decade of rail mass transit development in Bangkok City, cars still queue to drop students at schools near transit stations. This worsens congestion, urging better independent mobility among children in mass transit regions. The high reliance on the private vehicle will influence the private mode in the children's adulthood. This research emphasizes mass transit use among high school students near transit systems. Through a questionnaire survey, quantitative and qualitative methods reveal key factors impacting school trip mode choice. Preliminary findings highlight children's independence as crucial. The socioeconomic, demographic, trip, and transportation traits explain private car use, even schools near mass transit stations. The outcomes of this study will shed light on urban strategic policies for improvement, advocacy, and encouragement of students using mass transit for school trips, which will help normalize the use of mass transit for such trips.

Keywords: children's independence mobility, mode choice, school trips, TOD, extraneous variable, children's independency

Procedia PDF Downloads 122
29275 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 131
29274 Experimental Investigation of Performance and Emission Characteristics of Using Acetylene Gas in CI Engine

Authors: S. Sivakumar, Ashwin Bala, S. Prithviraj, K. Panthala Rajakumaran, R. Pradeep, J. Udhayakumar

Abstract:

Studies reveal that acetylene gas derived from hydrolysis of calcium carbide has similar properties to that of diesel. However, the self-ignition temperature of acetylene gas is higher than that of diesel. Early investigations reveal that acetylene gas could be used as alternative fuel mode. In the present work, acetylene gas of 31/min were inducted and diesel was injected into the combustion chamber of a single cylinder air cooled diesel engine. It was observed that the higher calorific value of acetylene gas improves the brake thermal efficiency at full load conditions. The CO and HC emissions were higher at part load conditions as compared to conventional diesel. The Nox emission level was higher and smoke emission was lower during dual fuel mode under all operating conditions. It is concluded that dual fuel mode of acetylene gas and diesel improves the brake thermal efficiency and reduces smoke in diesel engine.

Keywords: acetylene gas, diesel engine, Nox emission, CO emission, HC emission

Procedia PDF Downloads 355
29273 Analysis of Incidences of Collapsed Buildings in the City of Douala, Cameroon from 2011-2020

Authors: Theodore Gautier Le Jeune Bikoko, Jean Claude Tchamba, Sofiane Amziane

Abstract:

This study focuses on the problem of collapsed buildings within the city of Douala over the past ten years, and more precisely, within the period from 2011 to 2020. It was carried out in a bid to ascertain the real causes of this phenomenon, which has become recurrent in the leading economic city of Cameroon. To achieve this, it was first necessary to review some works dealing with construction materials and technology as well as some case histories of structural collapse within the city. Thereafter, a statistical study was carried out on the results obtained. It was found that the causes of building collapses in the city of Douala are: Neglect of administrative procedures, use of poor quality materials, poor composition and confectioning of concrete, lack of Geotechnical study, lack of structural analysis and design, corrosion of the reinforcement bars, poor maintenance in buildings, and other causes. Out of the 46 cases of structural failure of buildings within the city of Douala, 7 of these were identified to have had no geotechnical study carried out, giving a percentage of 15.22%. It was also observed that out of the 46 cases of structural failure, 6 were as a result of lack of proper structural analysis and design, giving a percentage of 13.04%. Subsequently, recommendations and suggestions are made in a bid to placing particular emphasis on the choice of materials, the manufacture and casting of concrete, as well as the placement of the required reinforcements. All this guarantees the stability of a building.

Keywords: collapse buildings, Douala, structural collapse, Cameroon

Procedia PDF Downloads 155
29272 Failure Probability Assessment of Concrete Spherical Domes Subjected to Ventilation Controlled Fires Using BIM Tools

Authors: A. T. Kassem

Abstract:

Fires areconsidered a common hazardous action that any building may face. Most buildings’ structural elements are designed, taking into consideration precautions for fire safety, using deterministic design approaches. Public and highly important buildings are commonly designed considering standard fire rating and, in many cases, contain large compartments with central domes. Real fire scenarios are not commonly brought into action in structural design of buildings because of complexities in both scenarios and analysis tools. This paper presents a modern approach towards analysis of spherical domes in real fire condition via implementation of building information modelling, and adopting a probabilistic approach. BIMhas been implemented to bridge the gap between various software packages enabling them to function interactively to model both real fire and corresponding structural response. Ventilation controlled fires scenarios have been modeled using both “Revit” and “Pyrosim”. Monte Carlo simulation has been adopted to engage the probabilistic analysis approach in dealing with various parameters. Conclusions regarding failure probability and fire endurance, in addition to the effects of various parameters, have been extracted.

Keywords: concrete, spherical domes, ventilation controlled fires, BIM, monte carlo simulation, pyrosim, revit

Procedia PDF Downloads 86
29271 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 224
29270 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams

Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fare

Abstract:

In the present work, the structural responses of 12 ultrahigh-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.

Keywords: ultrahigh-performance concrete, moment capacity, RC beams, hybrid fiber, ductility

Procedia PDF Downloads 58
29269 Experimental and Simulation Analysis of an Innovative Steel Shear Wall with Semi-Rigid Beam-to-Column Connections

Authors: E. Faizan, Wahab Abdul Ghafar, Tao Zhong

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study

Procedia PDF Downloads 65
29268 Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection

Authors: A. S. Grewal, R. S. Sangwan, Dharambir, Vikas Dhanda

Abstract:

The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case.

Keywords: non-identical firearms, inspection, priority to repair, semi-Markov process, regenerative point

Procedia PDF Downloads 416
29267 Dynamic Test for Stability of Columns in Sway Mode

Authors: Elia Efraim, Boris Blostotsky

Abstract:

Testing of columns in sway mode is performed in order to determine the maximal allowable load limited by plastic deformations or their end connections and a critical load limited by columns stability. Motivation to determine accurate value of critical force is caused by its using as follow: - critical load is maximal allowable load for given column configuration and can be used as criterion of perfection; - it is used in calculation prescribed by standards for design of structural elements under combined action of compression and bending; - it is used for verification of theoretical analysis of stability at various end conditions of columns. In the present work a new non-destructive method for determination of columns critical buckling load in sway mode is proposed. The method allows performing measurements during the tests under loads that exceeds the columns critical load without losing its stability. The possibility of such loading is achieved by structure of the loading system. The system is performed as frame with rigid girder, one of the columns is the tested column and the other is additional two-hinged strut. Loading of the frame is carried out by the flexible traction element attached to the girder. The load applied on the tested column can achieve values that exceed the critical load by choice of parameters of the traction element and the additional strut. The system lateral stiffness and the column critical load are obtained by the dynamic method. The experiment planning and the comparison between the experimental and theoretical values were performed based on the developed dependency of lateral stiffness of the system on vertical load, taking into account semi-rigid connections of the column's ends. The agreement between the obtained results was established. The method can be used for testing of real full-size columns in industrial conditions.

Keywords: buckling, columns, dynamic method, end-fixity factor, sway mode

Procedia PDF Downloads 343
29266 Behavior of Cold Formed Steel in Trusses

Authors: Reinhard Hermawan Lasut, Henki Wibowo Ashadi

Abstract:

The use of materials in Indonesia's construction sector requires engineers and practitioners to develop efficient construction technology, one of the materials used in cold-formed steel. Generally, the use of cold-formed steel is used in the construction of roof trusses found in houses or factories. The failure of the roof truss structure causes errors in the calculation analysis in the form of cross-sectional dimensions or frame configuration. The roof truss structure, vertical distance effect to the span length at the edge of the frame carries the compressive load. If the span is too long, local buckling will occur which causes problems in the frame strength. The model analysis uses various shapes of roof trusses, span lengths and angles with analysis of the structural stiffness matrix method. Model trusses with one-fifth shortened span and one-sixth shortened span also The trusses model is reviewed with increasing angles. It can be concluded that the trusses model by shortening the span in the compression area can reduce deflection and the model by increasing the angle does not get good results because the higher the roof, the heavier the load carried by the roof so that the force is not channeled properly. The shape of the truss must be calculated correctly so the truss is able to withstand the working load so that there is no structural failure.

Keywords: cold-formed, trusses, deflection, stiffness matrix method

Procedia PDF Downloads 156
29265 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali

Abstract:

This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.

Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics

Procedia PDF Downloads 141
29264 Evaluation of Neighbourhood Characteristics and Active Transport Mode Choice

Authors: Tayebeh Saghapour, Sara Moridpour, Russell George Thompson

Abstract:

One of the common aims of transport policy makers is to switch people’s travel to active transport. For this purpose, a variety of transport goals and investments should be programmed to increase the propensity towards active transport mode choice. This paper aims to investigate whether built environment features in neighbourhoods could enhance the odds of active transportation. The present study introduces an index measuring public transport accessibility (PTAI), and a walkability index along with socioeconomic variables to investigate mode choice behaviour. Using travel behaviour data, an ordered logit regression model is applied to examine the impacts of explanatory variables on walking trips. The findings indicated that high rates of active travel are consistently associated with higher levels of walking and public transport accessibility.

Keywords: active transport, public transport accessibility, walkability, ordered logit model

Procedia PDF Downloads 337
29263 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control

Procedia PDF Downloads 374
29262 Use of Life Cycle Data for State-Oriented Maintenance

Authors: Maximilian Winkens, Matthias Goerke

Abstract:

The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data.

Keywords: state-oriented maintenance, life-cycle data, gentelligent component, preventive intervention

Procedia PDF Downloads 485
29261 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System

Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan

Abstract:

Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.

Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle

Procedia PDF Downloads 281
29260 Bending and Shear Characteristics of Hollowcore Slab with Polystyrene Forms

Authors: Kang Kun Lee

Abstract:

New I-slab system with polystyrene forms and precast concrete deck is proposed to reduce the construction period and the self-weight of the slab. This paper presents experimental works on the bending and shear of the I-slabs. Five specimens were tested. The main parameters of experiments are diameters of the holes made by polystyrene form and the thickness of slab. Structural performance of I-slab is evaluated on the basis of failure mode, load-displacement curve, and ultimate strengths. Based on the test results, it is found that the critical punching shear sections are changed as the test variables are different, hence resulting in the varied punching shear strengths. Test results indicate that the developed I-slab is very effective to increase the strength due to self-weight reduction.

Keywords: hollowcore slab, section force-deformation response, precast concrete deck

Procedia PDF Downloads 374
29259 Investigating Anti-bacterial and Anti-Covid-19 Virus Properties and Mode of Action of Mg(Oh)₂ and Copper-Infused Mg(Oh)₂ Nanoparticles on Coated Polypropylene Surfaces

Authors: Saleh Alkarri, Melinda Frame, Dimple Sharma, John Cairney, Lee Maddan, Jin H. Kim, Jonathan O. Rayner, Teresa M. Bergholz, Muhammad Rabnawaz

Abstract:

Reported herein is an investigation of anti-bacterial and anti-virus properties, mode of action of Mg(OH)₂ and copper-infused Mg(OH)₂ nanoplatelets (NPs) on melt-compounded and thermally embossed polypropylene (PP) surfaces. The anti-viral activity for the NPs was studied in aqueous liquid suspensions against SARS-CoV-2, and the mode of action was investigated on neat NPs and PP samples that were thermally embossed with NPs. Anti-bacterial studies for melt-compounded NPs in PP confirmed approximately 1 log reduction of E. coli populations in 24 h, while for thermally embossed NPs, an 8 log reduction of E. coli populations was observed. In addition, the NPs exhibit anti-viral activity against SARS-CoV-2. Fluorescence microscopy revealed that reactive oxygen species (ROS) is the main mode of action through which Mg(OH)₂ and Cu-Infused Mg(OH)₂act against microbes. Plastics with anti-microbial surfaces from where biocides are non-leachable are highly desirable. This work provides a general fabrication strategy for developing anti-microbial plastic surfaces.

Keywords: anti-microbial activity, E. coli K-12 MG1655, anti-viral activity, SARS-CoV-2, copper-infused magnesium hydroxide, non-leachable, ROS, compounding, surface embossing, dyes

Procedia PDF Downloads 56
29258 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode

Procedia PDF Downloads 430
29257 Studies on the Recovery of Calcium and Magnesium from Red Seawater by Nanofiltration Membrane

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Mahmoud A. El-Toukhy

Abstract:

This paper reports the results of nanofiltration (NF) polymeric membrane for the recovery of divalent ions (calcium and magnesium) from Red Seawater. Pilot plant experiments have been carried out using Alfa-Laval (NF 2517/48) membrane module. System was operated in both total recirculation mode (permeate and brine) and brine recirculation mode under hydraulic pressure of 15 bar. Impacts of some chelating agents on both flux and rejection have been also investigated. Results indicated that pure water permeability ranges from 17 to 85.5 L/m²h at 2-15 bar. Comparison with seawater permeability under the same operating pressure values reveals lower values of 8.9-31 L/m²h manifesting the effect of the osmotic pressure of seawater. Overall total dissolved solids (TDS) reduction was almost constant without incorporation of chelating agents. On the contrary of expectations, the use of chelating agents N-(2-hydroxyethyl) ethylene diamine-N,N´,N´-triacetic acid (HEDTA) and ethylene glycol bis (2-aminoethyl ether)-N,N,N´,N´-tetraacetic acid (EGTA) showed flux decline of about 3-15%. Analysis of rejection data of total recirculation mode showed reasonable rejection values of 35%, 59% and 90% for Ca, Mg and SO₄, respectively. Operating under brine recirculation mode only showed a decrease of rejection to 33%, 56% and 86% for Ca, Mg and SO₄, respectively. The use of chelating agents has no substantial effect on NF membrane performance except for increasing the total Ca rejection to 48 and 65% for EGTA and HEDTA, respectively. Results, in general, confirmed the powerful separation of NF technology for softening and recovery of divalent ions from seawater. It is anticipated that increasing operating pressure beyond the limits of our investigations would improve the rejection and flux values. A trade-off should be considered between operating cost (due to higher pressure and marginal benefits as manifested by expected improved performance). The experimental results fit well with the formulated rejection empirical correlations and the published ones.

Keywords: nanofiltration, seawater, recovery, calcium, magnesium

Procedia PDF Downloads 154
29256 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors

Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung

Abstract:

The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.

Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling

Procedia PDF Downloads 553
29255 An Approximate Formula for Calculating the Fundamental Mode Period of Vibration of Practical Building

Authors: Abdul Hakim Chikho

Abstract:

Most international codes allow the use of an equivalent lateral load method for designing practical buildings to withstand earthquake actions. This method requires calculating an approximation to the fundamental mode period of vibrations of these buildings. Several empirical equations have been suggested to calculate approximations to the fundamental periods of different types of structures. Most of these equations are knowing to provide an only crude approximation to the required fundamental periods and repeating the calculation utilizing a more accurate formula is usually required. In this paper, a new formula to calculate a satisfactory approximation of the fundamental period of a practical building is proposed. This formula takes into account the mass and the stiffness of the building therefore, it is more logical than the conventional empirical equations. In order to verify the accuracy of the proposed formula, several examples have been solved. In these examples, calculating the fundamental mode periods of several farmed buildings utilizing the proposed formula and the conventional empirical equations has been accomplished. Comparing the obtained results with those obtained from a dynamic computer has shown that the proposed formula provides a more accurate estimation of the fundamental periods of practical buildings. Since the proposed method is still simple to use and requires only a minimum computing effort, it is believed to be ideally suited for design purposes.

Keywords: earthquake, fundamental mode period, design, building

Procedia PDF Downloads 274
29254 Optimization and Design of Current-Mode Multiplier Circuits with Applications in Analog Signal Processing for Gas Industrial Package Systems

Authors: Mohamad Baqer Heidari, Hefzollah.Mohammadian

Abstract:

This brief presents two original implementations of improved accuracy current-mode multiplier/divider circuits. Besides the advantage of their simplicity, these original multiplier/divider structures present the advantage of very small linearity errors that can be obtained as a result of the proposed design techniques (0.75% and 0.9%, respectively, for an extended range of the input currents). The original multiplier/divider circuits permit a facile reconfiguration, the presented structures representing the functional basis for implementing complex function synthesizer circuits. The proposed computational structures are designed for implementing in 0.18-µm CMOS technology, with a low-voltage operation (a supply voltage of 1.2 V). The circuits’ power consumptions are 60 and 75 µW, respectively, while their frequency bandwidths are 79.6 and 59.7 MHz, respectively.

Keywords: analog signal processing, current-mode operation, functional core, multiplier, reconfigurable circuits, industrial package systems

Procedia PDF Downloads 362
29253 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin

Authors: Mikhail O. Eremin

Abstract:

Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.

Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression

Procedia PDF Downloads 163
29252 Dynamic Test for Sway-Mode Buckling of Columns

Authors: Boris Blostotsky, Elia Efraim

Abstract:

Testing of columns in sway mode is performed in order to determine the maximal allowable load limited by plastic deformations or their end connections and a critical load limited by columns stability. Motivation to determine accurate value of critical force is caused by its using as follow: - critical load is maximal allowable load for given column configuration and can be used as criterion of perfection; - it is used in calculation prescribed by standards for design of structural elements under combined action of compression and bending; - it is used for verification of theoretical analysis of stability at various end conditions of columns. In the present work a new non-destructive method for determination of columns critical buckling load in sway mode is proposed. The method allows performing measurements during the tests under loads that exceeds the columns critical load without losing its stability. The possibility of such loading is achieved by structure of the loading system. The system is performed as frame with rigid girder, one of the columns is the tested column and the other is additional two-hinged strut. Loading of the frame is carried out by the flexible traction element attached to the girder. The load applied on the tested column can achieve a values that exceed the critical load by choice of parameters of the traction element and the additional strut. The system lateral stiffness and the column critical load are obtained by the dynamic method. The experiment planning and the comparison between the experimental and theoretical values were performed based on the developed dependency of lateral stiffness of the system on vertical load, taking into account a semi-rigid connections of the column's ends. The agreement between the obtained results was established. The method can be used for testing of real full-size columns in industrial conditions.

Keywords: buckling, columns, dynamic method, semi-rigid connections, sway mode

Procedia PDF Downloads 303
29251 Reliability Analysis of Dam under Quicksand Condition

Authors: Manthan Patel, Vinit Ahlawat, Anshh Singh Claire, Pijush Samui

Abstract:

This paper focuses on the analysis of quicksand condition for a dam foundation. The quicksand condition occurs in cohesion less soil when effective stress of soil becomes zero. In a dam, the saturated sediment may appear quite solid until a sudden change in pressure or shock initiates liquefaction. This causes the sand to form a suspension and lose strength hence resulting in failure of dam. A soil profile shows different properties at different points and the values obtained are uncertain thus reliability analysis is performed. The reliability is defined as probability of safety of a system in a given environment and loading condition and it is assessed as Reliability Index. The reliability analysis of dams under quicksand condition is carried by Gaussian Process Regression (GPR). Reliability index and factor of safety relating to liquefaction of soil is analysed using GPR. The results of reliability analysis by GPR is compared to that of conventional method and it is demonstrated that on applying GPR the probabilistic analysis reduces the computational time and efforts.

Keywords: factor of safety, GPR, reliability index, quicksand

Procedia PDF Downloads 470
29250 Influence of P-Y Curves on Buckling Capacity of Pile Foundation

Authors: Praveen Huded, Suresh Dash

Abstract:

Pile foundations are one of the most preferred deep foundation system for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Recent centrifuge and shake table experiments on two layered soil system have credibly shown that failure of pile foundation can occur because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However the buckling capacity depends on largely on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient method to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, different author have proposed different types of p-y curves for the liquefiable soil. In the present paper the influence two such p-y curves on the buckling capacity of pile foundation is studied considering initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. Significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile diameter, pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on buckling capacity of pile foundation.

Keywords: Pile foundation , Liquefaction, Buckling load, non-linear py curve, Opensees

Procedia PDF Downloads 153
29249 The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall

Authors: A. Arabzadeh, H. R. Kazemi Nia Korrani

Abstract:

Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency.

Keywords: composite shear wall, opening, finite element method, modal analysis

Procedia PDF Downloads 521
29248 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations

Authors: N. Abbas, S. Lagomarsino, S. Cattari

Abstract:

Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic ‎response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation ‎limit and iso-uplift limits are constructed inside this domain. These limits give a prediction ‎of the mechanisms activated for each combination of loads applied to the ‎foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.

Keywords: foundation uplift, iso-uplift curves, resistance domain, soil yield

Procedia PDF Downloads 374