Search results for: deep brain stimulation (DBS)
2999 Exploring the Impact of Mobility-Related Treatments (Drug and Non-Pharmacological) on Independence and Wellbeing in Parkinson’s Disease - A Qualitative Synthesis
Authors: Cameron Wilson, Megan Hanrahan, Katie Brittain, Riona McArdle, Alison Keogh, Lynn Rochester
Abstract:
Background: The loss of mobility and functional dependence is a significant marker in the progression of neurodegenerative diseases such as Parkinson’s Disease (PD). Pharmacological, surgical, and therapeutic treatments are available that can help in the management and amelioration of PD symptoms; however, these only prolong more severe symptoms. Accordingly, ensuring people with PD can maintain independence and a healthy wellbeing are essential in establishing an effective treatment option for those afflicted. Existing literature reviews have examined experiences in engaging with PD treatment options and the impact of PD on independence and wellbeing. Although, the literature fails to explore the influence of treatment options on independence and wellbeing and therefore misses what people value in their treatment. This review is the first that synthesises the impact of mobility-related treatments on independence and wellbeing in people with PD and their carers, offering recommendations to clinical practice and provides a conceptual framework (in development) for future research and practice. Objectives: To explore the impact of mobility-related treatment (both pharmacological and non-pharmacological) on the independence and wellbeing of people with PD and their carers. To propose a conceptual framework to patients, carers and clinicians which captures the qualities people with PD value as part of their treatment. Methods: We performed a critical interpretive synthesis of qualitative evidence, searching six databases for reports that explored the impact of mobility-related treatments (both drug and non-pharmacological) on independence and wellbeing in Parkinson’s Disease. The types of treatments included medication (Levodopa and Amantadine), dance classes, Deep-Brain Stimulation, aquatic therapies, physical rehabilitation, balance training and foetal transplantation. Data was extracted, and quality was assessed using an adapted version of the NICE Quality Appraisal Tool Appendix H before being synthesised according to the critical interpretive synthesis framework and meta-ethnography process. Results: From 2301 records, 28 were eligible. Experiences and impact of treatment pathway on independence and wellbeing was similar across all types of treatments and are described by five inter-related themes: (i) desire to maintain independence, (ii) treatment as a social experience during and after, (iii) medication to strengthen emotional health, (iv) recognising physical capacity and (v) emphasising the personal journey of Parkinson’s treatments. Conclusion: There is a complex and inter-related experience and effect of PD treatments common across all types of treatment. The proposed conceptual framework (in development) provides patients, carers, and clinicians recommendations to personalise the delivery of PD treatment, thereby potentially improving adherence and effectiveness. This work is vital to disseminate as PD treatment transitions from subjective and clinically captured assessments to a more personalised process supplemented using wearable technology.Keywords: parkinson's disease, medication, treatment, dance, review, healthcare, delivery, levodopa, social, emotional, psychological, personalised healthcare
Procedia PDF Downloads 892998 Effect of Grayanotoxins on Skeletal Muscle Cell C2C12
Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto
Abstract:
Myopathy (muscles disease) treatment are expected in the field of regenerative medicine and applied research of cultured muscle to bio actuator is performed in Biomedical Engineering as applied research of cultured muscle. This study is about cultured myoblast C2C12 from mouse skeletal muscle and a mechanism of cultured muscle contraction by electric stimulation is investigated. Grayanotoxins (GTXs) belong to neurotoxins known to enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as a phytotoxin. We investigated the functional role of GTXs on muscle cells (C2C12) contraction and membrane potential. A change in membrane potential is measured using a micro glass tube electrode contraction of myotubes is induced by applying an external electrical stimulation. The contraction and membrane potential change induced by injection of current using the micro glass electrode are also measured. From the result, contraction and membrane potential of muscle cells was affected by GTXs treatment, suggesting that the diverse chemical structures of GTXs are responsible for contraction and membrane potential of muscle cells.Keywords: skeletal muscle, C2C12, myoblast, myotubes, contraction, Grayanotoxins, membrane potential, neurotoxins, phytotoxin
Procedia PDF Downloads 4682997 Offering a Model for Selecting the Most Suitable Type of Thinking for Managers
Abstract:
The purpose of this paper is to design an applied framework for strategic thinking which can be applied in all managerial levels and all types of organizational environments. No special applied frame has been presented for this thinking. This paper presents a theoretical framework for the thinking type of a manager by making a historical research and studying the scientific documents about thinking of a strategist. In the new theoretical framework it has been tried to suggest the best type of thinking for a strategist after analyzing the environment of his decisions. So, in this framework, the traditional viewpoint about strategic thinking, which has considered it as a special type of right-brain thinking against other types of right-brain thinking and suggested it for a strategist, was put aside and suggests that the strategist should use a suitable type of thinking under different conditions.Keywords: strategic thinking, systemic thinking, lateral thinking, intuitive thinking, hybrid thinking
Procedia PDF Downloads 3312996 Psychological Intervention for Partners Post-Stroke: A Case Study
Authors: Natasha Yasmin Felles, Gerard Riley
Abstract:
Background and Aims: Relationship breakdown is typical when one partner lives with an acquired brain injury caused by issues like a stroke. Research has found that the perception of relationship satisfaction decreases following such an injury among non-injured partners. Non-injured partners also are found to experience caregiver stress/burden as they immediately have to take the role of a caregiver along with being a partner of the injured. Research has also found that the perception of a continuous relationship, i.e. the perception of the relationship to be essentially the same as it was before the injury, also changes among those caregiving partners. However, there is a lack of available intervention strategies that can help those partners with both individual and relationship difficulties. The aim of this case study was to conduct a pilot test of an intervention aimed to explore whether it is possible to support a partner to experience greater continuity within the relationship poststroke, and what benefits such a change might have. Method: A couple, where one partner experienced an acquired brain injury poststroke were provided with Integrated Behavioural Couples Therapy for 3-months. The intervention addressed goals identified as necessary by the couple and by the formulation of their individual and relationship difficulties, alongside the goal of promoting relationship continuity. Before and after measures were taken using a battery of six questionnaires to evaluate changes in perceptions of continuity, stress, and other aspects of the relationship. Results: Both quantitative and qualitative data showed that relationship continuity was improved after the therapy, as were the measures of stress and other aspects of the relationship. The stress felt by the person with the acquired brain injury also showed some evidence of improvement. Conclusion: The study found that perceptions of relationship continuity can be improved by therapy and that improving these might have a beneficial impact on the stress felt by the carer, their satisfaction with the relationship and overall levels of conflict and closeness within the relationship. The study suggested the value of further research on enhancing perceptions of continuity in the relationship after an acquired brain injury. Currently, the findings of the study have been used to develop a pilot feasibility study to collect substantive evidence on the impact of the intervention on the couples and assess its feasibility and acceptability, which will help in further developing a specific generalized relationship continuity intervention, that will be beneficial in preventing relationship breakdown in the future.Keywords: acquired brain injury, couples therapy, relationship continuity, stroke
Procedia PDF Downloads 1242995 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2242994 Germline Mutations of Mitogen-Activated Protein Kinases Pathway Signaling Pathway Genes in Children
Authors: Nouha Bouayed Abdelmoula, Rim Louati, Nawel Abdellaoui, Balkiss Abdelmoula, Oldez Kaabi, Walid Smaoui, Samir Aloulou
Abstract:
Background and Aims: Cardiofaciocutaneous syndrome (CFC) is an autosomal dominant disorder with the vast majority of cases arising by a new mutation of BRAF, MEK1, MEK2, or rarely, KRAS genes. Here, we report a rare Tunisian case of CFC syndrome for whom we identify SOS1 mutation. Methods: Genomic DNA was obtained from peripheral blood collected in an EDTA tube and extracted from leukocytes using the phenol/chloroform method according to standard protocols. High resolution melting (HRM) analysis for screening of mutations in the entire coding sequence of PTPN11 was conducted first. Then, HRM assays to look for hot spot mutations coding regions of the other genes of the RAS-MAPK pathway (RAt Sarcoma viral oncogene homolog Mitogen-Activated Protein Kinases Pathway): SOS1, SHOC2, KRAS, RAF1, KRAS, NRAS, CBL, BRAF, MEK1, MEK2, HRAS, and RIT1, were applied. Results: Heterozygous SOS1 point mutation clustered in exon 10, which encodes for the PH domain of SOS1, was identified: c.1655 G > A. The patient was a 9-year-old female born from a consanguineous couple. She exhibited pulmonic valvular stenosis as congenital heart disease. She had facial features and other malformations of Noonan syndrome, including macrocephaly, hypertelorism, ptosis, downslanting palpebral fissures, sparse eyebrows, a short and broad nose with upturned tip, low-set ears, high forehead commonly associated with bitemporal narrowing and prominent supraorbital ridges, short and/or webbed neck and short stature. However, the phenotype is also suggestive of CFC syndrome with the presence of more severe ectodermal abnormalities, including curly hair, keloid scars, hyperkeratotic skin, deep plantar creases, and delayed permanent dentition with agenesis of the right maxillary first molar. Moreover, the familial history of the patient revealed recurrent brain malignancies in the paternal family and epileptic disease in the maternal family. Conclusions: This case report of an overlapping RASopathy associated with SOS1 mutation and familial history of brain tumorigenesis is exceptional. The evidence suggests that RASopathies are truly cancer-prone syndromes, but the magnitude of the cancer risk and the types of cancer partially overlap.Keywords: cardiofaciocutaneous syndrome, CFC, SOS1, brain cancer, germline mutation
Procedia PDF Downloads 1532993 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?
Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang
Abstract:
Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.Keywords: creativity, default mode network, neural activation, SCAMPER
Procedia PDF Downloads 1002992 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 932991 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 992990 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 1402989 Efficacy and Safety of Electrical Vestibular Stimulation on Adults with Symptoms of Insomnia: A Double-Blind, Randomized, Sham-Controlled Trial
Authors: Teris Cheung, Joyce Yuen Ting Lam, Kwan Hin Fong, Calvin Pak-Wing Cheng, Julie Sittlington, Yu-Tao Xiang, Tim Man Ho Li
Abstract:
Insomnia is one of the most common health problems in the general population. Insomnia can be acute, intermittent, and become chronic, often due to comorbidity with other physical and mental health conditions. Although there are conventional pharmaceutical and psychotherapeutic treatments to treat symptoms of insomnia, however; there is no robust and novel randomized controlled trial (RCT) using transdermal neurostimulation on individuals with insomnia symptoms. This gives us the impetus to execute the first nationwide RCT. Aim: To evaluate the efficacy of Electrical Vestibular Stimulation (VeNS) on individuals with insomnia in Hong Kong. Design: This study was a two-armed, double blinded, randomized, sham-controlled trial. Sampling: 60 community-dwelling adults aged 18 and 60 years with moderate insomnia symptoms or above (Insomnia Severity Index > 14) were recruited. All subjects were computerized randomized into either the active VeNS group or the sham VeNS group on a 1:1 ratio. Intervention: All participants received a home-use VeNS device and used 30-min VeNS sessions during five consecutive days across a 4-week period (total treatment hours: 10). Baseline measurements and post-VeNS evaluation of the psychological outcomes, including 1) insomnia severity, 2) sleep quality, and 3) quality of life were investigated. The short-and long-term sustainability of the VeNS intervention was assessed immediately after poststim and at a 1-month and 3-month follow-up period. Data analysis: A mixed GEE model was used to analyze the repeated measures data. Missing data were managed by multiple imputations. The level of significance was set to p < 0.05. Significance of the study: This is the first trial to examine the efficacy and safety of VeNS among adults with insomnia symptoms in Hong Kong. Findings that emerged were used to determine whether this VeNS device can be considered a self-help technological device to reduce the severity of insomnia in the community setting and to reduce the global disease burden. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT04452981.Keywords: adults, insomnia, neuromodulation, rct, vestibular stimulation
Procedia PDF Downloads 832988 The Effect of Bihemisferic Transcranial Direct Current Stimulation Therapy on Upper Extremity Motor Functions in Stroke Patients
Authors: Dilek Cetin Alisar, Oya Umit Yemisci, Selin Ozen, Seyhan Sozay
Abstract:
New approaches and treatment modalities are being developed to make patients more functional and independent in stroke rehabilitation. One of these approaches is transcranial direct stimulation therapy (tDCS), which aims to improve the hemiplegic upper limb function of stroke patients. tDCS therapy is not in the routine rehabilitation program; however, the studies about tDCS therapy on stroke rehabilitation was increased in recent years. Evaluate the effect of tDCS treatment on upper extremity motor function in patients with subacute stroke was aimed in our study. 32 stroke patients (16 tDCS group, 16 sham groups) who were hospitalized for rehabilitation in Başkent University Physical Medicine and Rehabilitation Clinic between 01.08.2016-20.01-2018 were included in the study. The conventional upper limb rehabilitation program was used for both tDCS and control group patients for 3 weeks, 5 days a week, for 60-120 minutes a day. In addition to the conventional stroke rehabilitation program in the tDAS group, bihemispheric tDCS was administered for 30 minutes daily. Patients were evaluated before treatment and after 1 week of treatment. Functional independence measure self-care score (FIM), Brunnstorm Recovery Stage (BRS), and Fugl-Meyer (FM) upper extremity motor function scale were used. There was no difference in demographic characteristics between the groups. There were no significant differences between BRS and FM scores in two groups, but there was a significant difference FIM score (p=0.05. FIM, BRS, and FM scores are significantly in the tDCS group, when before therapy and after 1 week of therapy, however, no difference is found in the shame group (p < 0,001). When FBS and FM scores were compared, there were statistical significant differences in tDCS group (p < 0,001). In conclusion, this randomized double-blind study showed that bihemispheric tDCS treatment was found to be superior to upper extremity motor and functional enhancement in addition to conventional rehabilitation methods in subacute stroke patients. In order for tDCS therapy to be used routinely in stroke rehabilitation, there is a need for more comprehensive, long-termed, randomized controlled clinical trials in order to find answers to many questions, such as the duration and intensity of treatment.Keywords: cortical stimulation, motor function, rehabilitation, stroke
Procedia PDF Downloads 1272987 The Application of Transcranial Direct Current Stimulation (tDCS) Combined with Traditional Physical Therapy to Address Upper Limb Function in Chronic Stroke: A Case Study
Authors: Najmeh Hoseini
Abstract:
Strokerecovery happens through neuroplasticity, which is highly influenced by the environment, including neuro-rehabilitation. Transcranial direct current stimulation (tDCS) may enhance recovery by modulating neuroplasticity. With tDCS, weak direct currents are applied noninvasively to modify excitability in the cortical areas under its electrodes. Combined with functional activities, this may facilitate motor recovery in neurologic disorders such as stroke. The purpose of this case study was to examine the effect of tDCS combined with 30 minutes of traditional physical therapy (PT)on arm function following a stroke. A 29-year-old male with chronic stroke involving the left middle cerebral artery territory went through the treatment protocol. Design The design included 5 weeks of treatment: 1 week of traditional PT, 2 weeks of sham tDCS combined with traditional PT, and 2 weeks of tDCS combined with traditional PT. PT included functional electrical stimulation (FES) of wrist extensors followed by task-specific functional training. Dual hemispheric tDCS with 1 mA intensity was applied on the sensorimotor cortices for the first 20 min of the treatment combined with FES. Assessments before and after each treatment block included Modified Ashworth Scale, ChedokeMcmaster Arm and Hand inventory, Action Research Arm Test (ARAT), and the Box and Blocks Test. Results showed reduced spasticity in elbow and wrist flexors only after tDCS combination weeks (+1 to 0). The patient demonstrated clinically meaningful improvements in gross motor and fine motor control over the duration of the study; however, components of the ARAT that require fine motor control improved the greatest during the experimental block. Average time improvement compared to baseline was26.29 s for tDCS combination weeks, 18.48 s for sham tDCS, and 6.83 for PT standard of care weeks. Combining dual hemispheric tDCS with the standard of care PT demonstrated improvements in hand dexterity greater than PT alone in this patient case.Keywords: tDCS, stroke, case study, physical therapy
Procedia PDF Downloads 952986 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1592985 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 4202984 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1862983 3D-Printed Collagen/Chitosan Scaffolds Loaded with Exosomes Derived from Neural Stem Cells Pretreated with Insulin Growth Factor-1 for Neural Regeneration after Traumatic Brain Injury
Authors: Xiao-Yin Liu, Liang-Xue Zhou
Abstract:
Traumatic brain injury (TBI), as a kind of nerve trauma caused by an external force, affects people all over the world and is a global public health problem. Although there are various clinical treatments for brain injury, including surgery, drug therapy, and rehabilitation therapy, the therapeutic effect is very limited. To improve the therapeutic effect of TBI, scaffolds combined with exosomes are a promising but challenging method for TBI repair. In this study, we examined whether a novel 3D-printed collagen/chitosan scaffold/exosomes derived from neural stem cells (NSCs) pretreated with insulin growth factor-1 (IGF-I) scaffolds (3D-CC-INExos) could be used to improve TBI repair and functional recovery after TBI. Our results showed that composite scaffolds of collagen-, chitosan- and exosomes derived from NSCs pretreated with IGF-I (INExos) could continuously release the exosomes for two weeks. In the rat TBI model, 3D-CC-INExos scaffold transplantation significantly improved motor and cognitive function after TBI, as assessed by the Morris water maze test and modified neurological severity scores. In addition, immunofluorescence staining and transmission electron microscopy showed that the recovery of damaged nerve tissue in the injured area was significantly improved by 3D-CC-INExos implantation. In conclusion, our data suggest that 3D-CC-INExos might provide a potential strategy for the treatment of TBI and lay a solid foundation for clinical translation.Keywords: traumatic brain injury, exosomes, insulin growth factor-1, neural stem cells, collagen, chitosan, 3D printing, neural regeneration, angiogenesis, functional recovery
Procedia PDF Downloads 802982 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study
Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang
Abstract:
Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks
Procedia PDF Downloads 2032981 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 882980 Assessing P0.1 and Occlusion Pressures in Brain-Injured Patients on Pressure Support Ventilation: A Study Protocol
Authors: S. B. R. Slagmulder
Abstract:
Monitoring inspiratory effort and dynamic lung stress in patients on pressure support ventilation in the ICU is important for protecting against self inflicted lung injury (P-SILI) and diaphragm dysfunction. Strategies to address the detrimental effects of respiratory drive and effort can lead to improved patient outcomes. Two non-invasive estimation methods, occlusion pressure (Pocc) and P0.1, have been proposed for achieving lung and diaphragm protective ventilation. However, their relationship and interpretation in neuro ICU patients is not well understood. P0.1 is the airway pressure measured during a 100-millisecond occlusion of the inspiratory port. It reflects the neural drive from the respiratory centers to the diaphragm and respiratory muscles, indicating the patient's respiratory drive during the initiation of each breath. Occlusion pressure, measured during a brief inspiratory pause against a closed airway, provides information about the inspiratory muscles' strength and the system's total resistance and compliance. Research Objective: Understanding the relationship between Pocc and P0.1 in brain-injured patients can provide insights into the interpretation of these values in pressure support ventilation. This knowledge can contribute to determining extubation readiness and optimizing ventilation strategies to improve patient outcomes. The central goal is to asses a study protocol for determining the relationship between Pocc and P0.1 in brain-injured patients on pressure support ventilation and their ability to predict successful extubation. Additionally, comparing these values between brain-damaged and non-brain-damaged patients may provide valuable insights. Key Areas of Inquiry: 1. How do Pocc and P0.1 values correlate within brain injury patients undergoing pressure support ventilation? 2. To what extent can Pocc and P0.1 values serve as predictive indicators for successful extubation in patients with brain injuries? 3. What differentiates the Pocc and P0.1 values between patients with brain injuries and those without? Methodology: P0.1 and occlusion pressures are standard measurements for pressure support ventilation patients, taken by attending doctors as per protocol. We utilize electronic patient records for existing data. Unpaired T-test will be conducted to compare P0.1 and Pocc values between both study groups. Associations between P0.1 and Pocc and other study variables, such as extubation, will be explored with simple regression and correlation analysis. Depending on how the data evolve, subgroup analysis will be performed for patients with and without extubation failure. Results: While it is anticipated that neuro patients may exhibit high respiratory drive, the linkage between such elevation, quantified by P0.1, and successful extubation remains unknown The analysis will focus on determining the ability of these values to predict successful extubation and their potential impact on ventilation strategies. Conclusion: Further research is pending to fully understand the potential of these indices and their impact on mechanical ventilation in different patient populations and clinical scenarios. Understanding these relationships can aid in determining extubation readiness and tailoring ventilation strategies to improve patient outcomes in this specific patient population. Additionally, it is vital to account for the influence of sedatives, neurological scores, and BMI on respiratory drive and occlusion pressures to ensure a comprehensive analysis.Keywords: brain damage, diaphragm dysfunction, occlusion pressure, p0.1, respiratory drive
Procedia PDF Downloads 682979 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2102978 Can Demyelinative Lesion Cause To Behaviora Change?
Authors: Arezou Hajhashemi, Karim Asgari, Masoud Etemadifar, Maryam Keyvani, Ali Hekmatnia
Abstract:
Multiple Sclerosis (MS) is one of the most prevalent demyelinating diseases in CNS. As in other chronic cerebral diseases, impairment in cognitive functioning and in memory is popular. Because of the inflammatory and demyelinating nature of the disease, the localization of plaques in different parts of the Prefrontal and Limbic System, may lead to memorial symptoms. This investigation was intended to study relationship between frequency of plaques and memorial symptoms arising from dysfunction limbic system and prefrontal of patients with MS. The sample was selected randomly from patients with MS with memory problem, who have been referred to Isfahan Multiple Sclerosis Society. Brain System Test and Memory Test was administered to the sample, and their MRI's were analyzed by specialist in order to indentify two different parts of plaques. The data was analyzed by SPSS. The results showed that there were significant relationship between MS plaques and prefrontal's dysfunction and memorial symptom related to prefrontal area; however, there were no significant relationship between MS plaques and limbic system's dysfunction and memorial symptoms related to limbic system area. The results of this study suggest that memorial symptoms due to injury regions of the brain have the most significant relationship to prefrontal. Better judgment about these results needs more studies in future.Keywords: multiple sclerosis, magnetic image, brain injury, behavior disorder
Procedia PDF Downloads 5142977 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1142976 Music Therapy Intervention as a Means of Stimulating Communicative Abilities of Seniors with Neurocognitive Disorders – Theory versus Practice
Authors: Pavel Svoboda, Oldřich Müller
Abstract:
The paper contains a screening of the opinions of helping professional workers working in a home for seniors with individuals with neurocognitive disorders and compares them with the opinions of a younger generation of students who are just preparing for this work. The authors carried out a comparative questionnaire survey with both target groups, focusing on the analysis and comparison of possible differences in their knowledge in the field of care for elderly people with neurocognitive disorders. Specifically, they focused on knowledge and experience with approaches, methods and tools applicable within the framework of music therapy interventions, as they are understood in practice in comparison with the theoretical knowledge of secondary school students focused on social work. The questionnaire was mainly aimed at assessing the knowledge of the possibilities of effective memory stimulation of the elderly and their communication skills using the means of music. The conducted investigation was based on the research of studies dealing with so-called non-pharmacological approaches to the given clientele; for professional caregivers, it followed music therapy lessons, which the authors regularly implemented from the beginning of 2022. Its results will, among other things, serve as the basis for an upcoming study with a scoping design review.Keywords: neurocognitive disorders, seniors, music therapy intervention, melody, rhythm, text, memory stimulation, communication skills
Procedia PDF Downloads 692975 A Time and Frequency Dependent Study of Low Intensity Microwave Radiation Induced Endoplasmic Reticulum Stress and Alteration of Autophagy in Rat Brain
Authors: Ranjeet Kumar, Pravin Suryakantrao Deshmukh, Sonal Sharma, Basudev Banerjee
Abstract:
With the tremendous increase in exposure to radiofrequency microwaves emitted by mobile phones, globally public awareness has grown with regard to the potential health hazards of microwaves on the nervous system in the brain. India alone has more than one billion mobile users out of 4.3 billion globally. Our studies have suggested that radio frequency able to affect neuronal alterations in the brain, and hence, affecting cognitive behaviour. However, adverse effect of low-intensity microwave exposure with endoplasmic reticulum stress and autophagy has not been evaluated yet. In this study, we explore whether low-intensity microwave induces endoplasmic reticulum stress and autophagy with varying frequency and time duration in Wistar rat. Ninety-six male Wistar rat were divided into 12 groups of 8 rats each. We studied at 900 MHz, 1800 MHz, and 2450 MHz frequency with reference to sham-exposed group. At the end of the exposure, the rats were sacrificed to collect brain tissue and expression of CHOP, ATF-4, XBP-1, Bcl-2, Bax, LC3 and Atg-4 gene was analysed by real-time PCR. Significant fold change (p < 0.05) of gene expression was found in all groups of 1800 MHz and 2450 MHz exposure group in comparison to sham exposure group. In conclusion, the microwave exposure able to induce ER stress and modulate autophagy. ER (endoplasmic reticulum) stress and autophagy vary with increasing frequency as well as the duration of exposure. Our results suggested that microwave exposure is harmful to neuronal health as it induces ER stress and hampers autophagy in neuron cells and thereby increasing the neuron degeneration which impairs cognitive behaviour of experimental animals.Keywords: autophagy, ER stress, microwave, nervous system, rat
Procedia PDF Downloads 1312974 Influence of Cucurbitacin-Containing Phytonematicides on Growth of Rough Lemon (Citrus jambhiri)
Authors: Raisibe V. Mathabatha, Phatu W. Mashela, Nehemiah M. Mokgalong
Abstract:
Occasional incidence of phytotoxicity in Nemarioc-BL and Nemafric-AL phytonematicides to crops raises credibility challenges that could negate their registration as commercial products. Responses of plants to phytonematicides are characterized by the existence of stimulation, neutral and inhibition phases, with the mid-point of the former being referred to as the Mean Concentration Stimulation Point (MSCP = Dm + Rh/2). The objective of this study was to determine the MCSP and the overall sensitivity (∑k) of Nemarioc-AL and Nemafric-BL phytonematicides to rough lemon seedling rootstocks using the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model. Two parallel greenhouse experiments were initiated, with seven dilutions of each phytonematicide arranged in a randomised complete block design, replicated nine times. Six-month-old rough lemon seedlings were transplanted into 20-cm-diameter plastic pots, filled with steam-pasteurised river sand (300°C for 3 h) and Hygromix-T growing mixture. Treatments at 0, 2, 4, 8, 16, 32 and 164% dilutions were applied weekly at 300 ml/plant. At 84 days after the treatments, analysis of variance-significant plant variables was subjected to the CARD model to generate appropriate biological indices. Computed MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on rough lemon were 29 and 38%, respectively, whereas ∑k values were 1 and 0, respectively. At the applied concentrations, rough lemon seedlings were highly sensitive to Nemarioc-AL and Nemafric-BL phytonematicides.Keywords: crude extracts, cucurbitacins, effective microbes, fruit extracts
Procedia PDF Downloads 1462973 Brain Stem Posterior Reversible Encephalopathy Syndrome in Nephrotic Syndrome
Authors: S. H. Jang
Abstract:
Posterior reversible encephalopathy syndrome (PRES) is characterized by acute neurologic symptoms (visual loss, headache, altered mentality and seizures) and by typical imaging findings (bilateral subcortical and cortical edema with predominatly posterior distribution). Nephrotic syndrome is a syndrome comprising signs of proteinuria, hypoalbuminemia, and edema. It is well known that hypertension predispose patient with nephrotic syndrome to PRES. A 45-year old male was referred for suddenly developed vertigo, disequilibrium. He had previous history of nephrotic syndrome. His medical history included diabetes controlled with medication. He was hospitalized because of generalized edema a few days ago. His vital signs were stable. On neurologic examination, his mental state was alert. Horizontal nystagmus to right side on return to primary position was observed. He showed good grade motor weakness and ataxia in right upper and lower limbs without other sensory abnormality. Brain MRI showed increased signal intensity in FLAIR image, decreased signal intensity in T1 image and focal enhanced lesion in T1 contrast image at whole midbrain, pons and cerebellar peduncle symmetrically, which was compatible with vasogenic edema. Laboratory findings showed severe proteinuria and hypoalbuminemia. He was given intravenous dexamethasone and diuretics to reduce vasogenic edema and raise the intra-vascular osmotic pressure. Nystagmus, motor weakness and limb ataxia improved gradually over 2 weeks; He recovered without any neurologic symptom and sign. Follow-up MRI showed decreased vasogenic edema fairly. We report a case of brain stem PRES in normotensive, nephrotic syndrome patient.Keywords: posterior reversible encephalopathy syndrome, MRI, nephrotic syndrome, vasogenic brain edema
Procedia PDF Downloads 2762972 Detecting Covid-19 Fake News Using Deep Learning Technique
Authors: AnjalI A. Prasad
Abstract:
Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.Keywords: BERT, CNN, LSTM, RNN
Procedia PDF Downloads 2062971 Syndecan -1 as Regulator of Ischemic-Reperfusion Damage Limitation in Experiment
Authors: M. E. Kolpakova, A. A. Jakovleva, L. S. Poliakova, H. El Amghari, S. Soliman, D. R. Faizullina, V. V. Sharoyko
Abstract:
Brain neuroplasticity is associated with blood-brain barrier vascular endothelial proteoglycans and post-stroke microglial activation. The study of the mechanisms of reperfusion injury limitation by remote ischemic postconditioning (RC) is of interest due to the effects on functional recovery after cerebral ischemia. The goal of the study is the assessment of the role of syndecan-1 (SDC-1) in restriction of ischemic-reperfusion injury on middle cerebral artery model in rats using RC protocol. Randomized controlled trials were conducted. Ischemia was performed by middle cerebral artery occlusion by Belayev L. (1996) on the Wistar rat-males (n= 87) weighting 250 ± 50 g. under general anesthesia (Zoletil 100 и Xylazine 2%). Syndecan-1 (SDC-1) concentration difference in plasma samples of false operated animals and animals with brain ischemia was 30% (30 min. МСАо: 41.4 * ± 1.3 ng/ml). SDC-1 concentration in animal plasma samples with ischemia + RC protocol was 112% (30 min МСАо+ RC): 67.8**± 5.8 ng/ml). Calculation of infarction volume in the ischemia group revealed brain injury in 31.97 ± 2.5%; the volume of infarction was 13.6 ± 1.3% in 30 min. МCАо + RC group. Swelling of tissue in the group 30 min. МCАо + RC was 16 ± 2.1%; it was 47 ± 3.3%. in 30 min. МCАо group. Correlation analysis showed a high direct correlation relationship between infarct area and muscle strength in the right forelimb (КК=0.72) in the 30 min. МCАо + RC group. Correlation analysis showed very high inverse correlation between infarct area and capillary blood flow in the 30 min. МCАо + RC group (p <0.01; r = -0.98). We believe the SDC-1 molecule in blood plasma may play role of potential messenger of ischemic-reperfusion injury restriction mechanisms. This leads to infarct-limiting effect of remote ischemic postconditioning and early functioning recovery.Keywords: ischemia, МСАо, remote ischemic postconditioning, syndecan-1
Procedia PDF Downloads 622970 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 199