Search results for: cohesionless soils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 885

Search results for: cohesionless soils

345 Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land

Authors: Jalil Badamfirooz

Abstract:

Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses.

Keywords: mulch, bitumen emulsion, arid land, PAH

Procedia PDF Downloads 89
344 Comparison of Mean Monthly Soil Temperature at (5 and 30 cm) Depths at Compton Experimental Site, West Midlands (UK), between 1976-2008

Authors: Aminu Mansur

Abstract:

A comparison of soil temperature at (5 and 30 cm) depths at a research site over the period (1976-2008) was analyzed. Based on the statistical analysis of the database of (12,045) days of individual soil temperature measurements in sandy-loam of the (salwick series) soils, the mean soil temperature revealed a statistically significant increase of about -1.1 to 10.9°C at 5 cm depth in 1976 compared to 2008. Similarly, soil temperature at 30 cm depth increased by -0.1 to 2.1°C in 2008 compared to 1976. Although, rapid increase in soil temperature at all depths was observed during that period, but a thorough assessment of these conditions suggested that the soil temperature at 5 cm depth are progressively increasing over time. A typical example of those increases in soil temperature was provided for agriculture where Miscanthus (elephant) plant that grows within the study area is adversely affected by the mean soil temperature increase. The study concluded that these observations contribute to the growing mass of evidence of global warming and knowledge on secular trends. Therefore, there was statistically significant increase in soil temperature at Compton Experimental Site between 1976-2008.

Keywords: soil temperature, warming trend, environment science, climate and atmospheric sciences

Procedia PDF Downloads 297
343 Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity.

Keywords: axial load, cavity, clay, pile, ultimate capacity

Procedia PDF Downloads 270
342 Improvement of Oran Sebkha Soil by Dredged Sediments from Chorfa Dam in Algeria

Authors: Z. Aloui-Labiod, H. Trouzine, M. S. Ghembaza

Abstract:

Geotechnical properties of dredged sediment from Chorfa dam in Algeria and their mixtures (5%, 10%, 15%, 20%, and 25%)with bentonite were investigated through with bentonite were investigated through a series of laboratory experimental tests in order to investigate possibilities of their usage as a barrier against the spread out of the Sebkha of Oran in the northwest of Algeria. Grain size and Atterberg limits tests, chemical and mineral analyses, and compaction, vertical swelling, and horizontal and vertical permeability tests were performed on the soils and their mixtures using tap water and the salty Sebkha water. The results indicate that the bentonite specimens remolded and inundated with Sebkha salty water have less swell potential than those prepared with tap water. The addition of bentonite to Chorfa sediment increases the density, limit liquid, specific surface, and swell potential of the mixtures. Compaction tests show a decrease in the optimum moisture and an increase in maximum dry densities as the bentonite content increases. The horizontal and vertical permeabilities decrease relatively with the addition of bentonite.

Keywords: dredged sediment, bentonite, salty water, barrier

Procedia PDF Downloads 428
341 Applying Massively Parallel Sequencing to Forensic Soil Bacterial Profiling

Authors: Hui Li, Xueying Zhao, Ke Ma, Yu Cao, Fan Yang, Qingwen Xu, Wenbin Liu

Abstract:

Soil can often link a person or item to a crime scene, which makes it a valuable evidence in forensic casework. Several techniques have been utilized in forensic soil discrimination in previous studies. Because soil contains a vast number of microbiomes, the analyse of soil microbiomes is expected to be a potential way to characterise soil evidence. In this study, we applied massively parallel sequencing (MPS) to soil bacterial profiling on the Ion Torrent Personal Genome Machine (PGM). Soils from different regions were collected repeatedly. V-region 3 and 4 of Bacterial 16S rRNA gene were detected by MPS. Operational taxonomic units (OTU, 97%) were used to analyse soil bacteria. Several bioinformatics methods (PCoA, NMDS, Metastats, LEfse, and Heatmap) were applied in bacterial profiles. Our results demonstrate that MPS can provide a more detailed picture of the soil microbiomes and the composition of soil bacterial components from different region was individualistic. In conclusion, the utility of soil bacterial profiling via MPS of the 16S rRNA gene has potential value in characterising soil evidences and associating them with their place of origin, which can play an important role in forensic science in the future.

Keywords: bacterial profiling, forensic, massively parallel sequencing, soil evidence

Procedia PDF Downloads 563
340 Evaluation of Response Modification Factors in Moment Resisting Frame Buildings Considering Soil Structure Interaction

Authors: K. Farheen, A. Munir

Abstract:

Seismic response of the multi-storey buildings is created by the interaction of both the structure and underlying soil medium. The seismic design philosophy is incorporated using response modification factor 'R'. Current code based values of 'R' factor does not reflect the SSI problem as it is based on fixed base condition. In this study, the modified values of 'R' factor for moment resisting frame (MRF) considering SSI are evaluated. The response of structure with and without SSI has been compared using equivalent linear static and nonlinear static pushover analyses for 10-storied moment resisting frame building. The building is located in seismic zone 2B situated on different soils with shear wave velocity (Vₛ) of 300m/sec (SD) and 1200m/s (SB). Code based 'R' factor value for building frame system has been taken as 5.5. Soil medium is modelled using identical but mutually independent horizontal and vertical springs. It was found that the modified 'R' factor values have been decreased by 47% and 43% for soil SD and SB respectively as compared to that of code based 'R' factor.

Keywords: buildings, SSI, shear wave velocity, R factor

Procedia PDF Downloads 212
339 Interaction of between Cd and Zn in Barley (Hordeum vulgare L.) Plant for Phytoextraction Method

Authors: S. Adiloğlu, K. Bellitürk, Y. Solmaz, A. Adiloğlu

Abstract:

The aim of this research is to remediation of the cadmium (Cd) pollution in agricultural soils by using barley (Hordeum vulgare L.) plant. For this purpose, a pot experiment was done in greenhouse conditions. Cadmium (100 mg/kg) as CdSO4.8H2O forms was applied to each pot and incubated during 30 days. Then Ethylenediamine tetraacetic acid (EDTA) chelate was applied to each pot at five doses (0, 3, 6, 8 and 10 mmol/kg) 20 days before harvesting time of the barley plants. The plants were harvested after two months planting. According to the pot experiment results, Cd and Zn amounts of barley plant increased with increasing EDTA application and Zn and Cd contents of barley 20,13 and 1,35 mg/kg for 0 mmol /kg EDTA; 58,61 and 113,24 mg/kg for 10 mmol/kg EDTA doses, respectively. On the other hand, Cd and Zn concentrations of experiment soil increased with EDTA application to the soil samples. Zinc and Cd concentrations of soil 0,31 and 0,021 mg/kg for 0 mmol /kg EDTA; 2,39 and 67,40 mg/kg for 10 mmol/kg EDTA doses, respectively. These increases were found to be statistically significant at the level of 1 %. According to the results of the pot experiment, some heavy metal especially Cd pollution of barley (Hordeum vulgare L.) plant province can be remediated by the phytoextraction method.

Keywords: Barley, Hordeum vulgare L., cadmium, zinc, phytoextraction, soil pollution

Procedia PDF Downloads 448
338 The Evaluation of Shear Modulus (Go) Consistency State of Consolidation Cohesive Soils and Seismic Reflection Survey Using Degree of Soil Consolidation

Authors: Abdul Halim Abdul, Wan Ismail Wan Yusoff

Abstract:

The geological formation at Limau Manis Besar area, are consist of low grade metamorphic rock and undulating mountaineers, rugged terrain and the quite steeply 45 degree slope gradient. The objectives of this paper are present the methods and devices used in measurement of P-wave velocity to estimate the initial Shear Modulus (Go) in steady state and critical state soil consolidation. The relationship between SPT-N values and the Shear Modulus (Go) at very small strain is widely considered to be evaluated. Based on the seismic reflection survey, the constant (K) poroelastic theory, mean effectives stress and primer wave velocity (Vs) increase as the soil depth increase. The steady state and critical state, Degree of Soil Consolidation(U) concept is used to interpret the behavior of Shear Modulus (Go). The relationship between Consolidation Test and Seismic Reflection Survey is also discussed.

Keywords: geological setting, shear modulus, poroelastic theory, steady state and none steady state degree of soil consolidation, consolidation test

Procedia PDF Downloads 474
337 Clogging Reduction Design Factor for Geosynthetics Used in Sustainable Urban Drainage Systems and Roads

Authors: Jaime Carpio-García, Elena Blanco-Fernández, Javier González-Fernández, Daniel Castro-Fresno

Abstract:

Sustainable urban drainage systems (SUDS) are more often used in order to prevent floods, water treatment, fight against pollution, urban heat island effect, and global warming in applications like green roofs, permeable pavements, and others. Furthermore, geosynthetics are also worldwide used as a part of drainage systems in road construction. Geotextiles are an essential part of both, and one of the main geotextile properties in those applications is permeability, whose behavior is not well established along its service life. In this paper, clogging reduction design factors for an estimated service life of 25 years are experimentally obtained for five different geotextiles used in SUDS and roads combined with two different soils and with two pollutants, motor oil, and lime, in order to evaluate chemical clogging, too. The effect of characteristic opening size and other characteristics of the geosynthetics are also discussed in order to give civil engineers, together with the clogging reduction factors, a better long-time design of geotextiles used in their SUDS and roads.

Keywords: geotextiles, drainage, clogging, reduction factor

Procedia PDF Downloads 75
336 Preliminary Assessment of Arsenic Levels in Farmland Soils of Bokkos Local Government Area, Plateau State Nigeria

Authors: W. M. Buba, J. G. Nangbes, J. P. Butven

Abstract:

This research was undertaken to evolve community based awareness on the arsenic contamination from agricultural practices in Communities of Bokkos local government area. Contaminated farmland soil samples were collected from the surface for tailings and at various depths (50, 100, 150 cm intervals) in eight holes drilled in each farm at different locations using hand auger. A total of sixty- four (64) soil samples were collected from eight (8) different communities. A standard titrimetric method was applied for the determination of arsenic. It was found that the average concentration of arsenic in the surface soil (0-150cm) for the entire study areas was 0.0525mg/kg with range 0.0425 -0.0601mg/kg which is well above the recommended the soil to plant concentration guideline range of 2.3 – 4.3 x10-4 mg/kg value. This indicates that the arsenic concentration in the study areas does pose health risk for agricultural practices via potential bioaccumulation in plant food crops. However, some risks measures could follow the arsenic occurrence through direct exposure such as those resulting from the inhalation, oral or dermal intake of arsenic during agricultural practices and in the course of stay on the contaminated soil.

Keywords: agrochemicals, arsenic, bokkos, contamination, soil

Procedia PDF Downloads 347
335 The Dynamic Cone Penetration Test: A Review of Its Correlations and Applications

Authors: Abdulrahman M. Hamid

Abstract:

Dynamic Cone Penetration Test (DCPT) is widely used for field quality assessment of soils. Its application to predict the engineering properties of soil is globally promoted by the fact that it is difficult to obtain undisturbed soil samples, especially when loose or submerged sandy soil is encountered. Detailed discussion will be presented on the current development of DCPT correlations with resilient modulus, relative density, California Bearing Ratio (CBR), unconfined compressive strength and shear strength that have been developed for different materials in both the laboratory and field, as well as on the usage of DCPT in quality control of compaction of earth fills and performance evaluation of pavement layers. In addition, the relationship of the DCPT with other instruments such as falling weight deflectometer, nuclear gauge, soil stiffens gauge, and plate load test will be reported. Lastely, the application of DCPT in Saudi Arabia in recent years will be addressed in this manuscript.

Keywords: dynamic cone penetration test, falling weight deflectometer, nuclear gauge, soil stiffens gauge, plate load test, automated dynamic cone penetration

Procedia PDF Downloads 433
334 Grain Size Effect of Durability of Bio-Clogging Treatment

Authors: Tahani Farah, Hanène Souli, Jean-Marie Fleureau, Guillaume Kermouche, Jean-Jacques Fry, Benjamin Girard, Denis Aelbrecht

Abstract:

In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material.

Keywords: bio-clogging, granulometry, permeability, nutrition

Procedia PDF Downloads 406
333 Reliability Based Investigation on the Choice of Characteristic Soil Properties

Authors: Jann-Eike Saathoff, Kirill Alexander Schmoor, Martin Achmus, Mauricio Terceros

Abstract:

By using partial factors of safety, uncertainties due to the inherent variability of the soil properties and loads are taken into account in the geotechnical design process. According to the reliability index concept in Eurocode-0 in conjunction with Eurocode-7 a minimum safety level of β = 3.8 for reliability class RC2 shall be established. The reliability of the system depends heavily on the choice of the prespecified safety factor and the choice of the characteristic soil properties. The safety factors stated in the standards are mainly based on experience. However, no general accepted method for the calculation of a characteristic value within the current design practice exists. In this study, a laterally loaded monopile is investigated and the influence of the chosen quantile values of the deterministic system, calculated with p-y springs, will be presented. Monopiles are the most common foundation concepts for offshore wind energy converters. Based on the calculations for non-cohesive soils, a recommendation for an appropriate quantile value for the necessary safety level according to the standards for a deterministic design is given.

Keywords: asymptotic sampling, characteristic value, monopile foundation, probabilistic design, quantile values

Procedia PDF Downloads 146
332 Influence of Shear Parameter on Liquefaction Susceptibility of Ramsar Sand

Authors: Siavash Salamatpoor, Hossein Motaghedi, Jr., Mehrdad Nategh

Abstract:

In this study, undrained triaxial tests under anisotropic consolidation were conducted on the reconstituted samples of Ramsar sand, which underlies a densely populated, seismic region of the southern coast of Caspian Sea in Mazandaran province, Iran. Ramsar costal city is regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. The specimens were consolidated anisotropically to simulate initial shear stress which is mobilized due to surface constructions. Different states of soil behavior were obtained by applying different levels of initial relative density, shear stress, and effective stress. It is shown that Ramsar clean sand can experience the whole possible states of liquefiable soils i.e. fully liquefaction, limited liquefaction, and dilation behaviors. It would be shown that by increasing the shear parameter in high confine pressure, the liquefaction susceptibility has increased while for low confine pressure it would be vice versa.

Keywords: anisotropic, triaxial test, shear parameter, static liquefaction

Procedia PDF Downloads 412
331 Stabilization of Fly Ash Slope Using Plastic Recycled Polymer and Finite Element Analysis Using Plaxis 3D

Authors: Tushar Vasant Salunkhe, Sariput M. Nawghare, Maheboobsab B. Nadaf, Sushovan Dutta, J. N. Mandal

Abstract:

The model tests were conducted in the laboratory without and with plastic recycled polymer in fly ash steep slopes overlaying soft foundation soils like fly ash and power soil in order to check the stability of steep slope. In this experiment, fly ash is used as a filling material, and Plastic Recycled Polymers of diameter = 3mm and length = 4mm were made from the waste plastic product (lower grade plastic product). The properties of fly ash and plastic recycled polymers are determined. From the experiments, load and settlement have measured. From these data, load–settlement curves have been reported. It has been observed from test results that the load carrying capacity of mixture fly ash with Plastic Recycled Polymers slope is more than that of fly ash slope. The deformation of Plastic Recycled Polymers slope is slightly more than that of fly ash slope. A Finite Element Method (F.E.M.) was also evaluated using PLAXIS 3D version. The failure pattern, deformations and factor of safety are reported based on analytical programme. The results from experimental data and analytical programme are compared and reported.

Keywords: factor of safety, finite element method (FEM), fly ash, plastic recycled polymer

Procedia PDF Downloads 428
330 Potential of Hyperion (EO-1) Hyperspectral Remote Sensing for Detection and Mapping Mine-Iron Oxide Pollution

Authors: Abderrazak Bannari

Abstract:

Acid Mine Drainage (AMD) from mine wastes and contaminations of soils and water with metals are considered as a major environmental problem in mining areas. It is produced by interactions of water, air, and sulphidic mine wastes. This environment problem results from a series of chemical and biochemical oxidation reactions of sulfide minerals e.g. pyrite and pyrrhotite. These reactions lead to acidity as well as the dissolution of toxic and heavy metals (Fe, Mn, Cu, etc.) from tailings waste rock piles, and open pits. Soil and aquatic ecosystems could be contaminated and, consequently, human health and wildlife will be affected. Furthermore, secondary minerals, typically formed during weathering of mine waste storage areas when the concentration of soluble constituents exceeds the corresponding solubility product, are also important. The most common secondary mineral compositions are hydrous iron oxide (goethite, etc.) and hydrated iron sulfate (jarosite, etc.). The objectives of this study focus on the detection and mapping of MIOP in the soil using Hyperion EO-1 (Earth Observing - 1) hyperspectral data and constrained linear spectral mixture analysis (CLSMA) algorithm. The abandoned Kettara mine, located approximately 35 km northwest of Marrakech city (Morocco) was chosen as study area. During 44 years (from 1938 to 1981) this mine was exploited for iron oxide and iron sulphide minerals. Previous studies have shown that Kettara surrounding soils are contaminated by heavy metals (Fe, Cu, etc.) as well as by secondary minerals. To achieve our objectives, several soil samples representing different MIOP classes have been resampled and located using accurate GPS ( ≤ ± 30 cm). Then, endmembers spectra were acquired over each sample using an Analytical Spectral Device (ASD) covering the spectral domain from 350 to 2500 nm. Considering each soil sample separately, the average of forty spectra was resampled and convolved using Gaussian response profiles to match the bandwidths and the band centers of the Hyperion sensor. Moreover, the MIOP content in each sample was estimated by geochemical analyses in the laboratory, and a ground truth map was generated using simple Kriging in GIS environment for validation purposes. The acquired and used Hyperion data were corrected for a spatial shift between the VNIR and SWIR detectors, striping, dead column, noise, and gain and offset errors. Then, atmospherically corrected using the MODTRAN 4.2 radiative transfer code, and transformed to surface reflectance, corrected for sensor smile (1-3 nm shift in VNIR and SWIR), and post-processed to remove residual errors. Finally, geometric distortions and relief displacement effects were corrected using a digital elevation model. The MIOP fraction map was extracted using CLSMA considering the entire spectral range (427-2355 nm), and validated by reference to the ground truth map generated by Kriging. The obtained results show the promising potential of the proposed methodology for the detection and mapping of mine iron oxide pollution in the soil.

Keywords: hyperion eo-1, hyperspectral, mine iron oxide pollution, environmental impact, unmixing

Procedia PDF Downloads 228
329 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments

Authors: Alaa El-Din Rezk

Abstract:

For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.

Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD

Procedia PDF Downloads 263
328 Statistical Variability of Soil Parameters within the Copper Belt Region of the Democratic Republic of the Congo

Authors: Stephan P. Barkhuizen, Deon Greyling, Ryan J. Miller

Abstract:

The accurate determination of the engineering parameters of soil is necessary for the design of geotechnical structures, such as Tailings Storage Facilities. The shear strength and saturated permeability of soil and tailings samples obtained from 14 sites located in the copper belt in the Democratic Republic of the Congo have been tested at six commercial soil laboratories in South Africa. This study compiles a database of the test results proved by the soil laboratories. The samples have been categorised into clay, silt, and sand, based on the Unified Soil Classification System, with tailings kept separate. The effective friction angle (Φ’) and cohesion (c’) were interpreted from the stress paths, in s’:t space, obtained from triaxial tests. The minimum, lower quartile, median, upper quartile, and maximum values for Φ’,c’, and saturated hydraulic conductivity (k) have been determined for the soil sample. The objective is to provide statistics of the measured values of the engineering properties for the TSF borrow material, foundation soils and tailings of this region.

Keywords: Democratic Republic of the Congo, laboratory test work, soil engineering parameter variation, tailings storage facilities

Procedia PDF Downloads 64
327 Investigation of Vibration in Diesel-Fueled Motoblocks in the Case of Supplying Different Types of Fuel Mixture

Authors: Merab Mamuladze, Mixeil Lejava, Fadiko Abuselidze

Abstract:

At present, where most of the soils of Georgia have a small contour, the demand for small-capacity technical means, in particular motoblocks, has increased. Motoblocks perform agricultural work for various purposes, where the work process is performed by the operator, who experiences various magnitudes of vibration, impact, noise, and in general, as a result of long-term work production, causes body damage, dynamic load, and respiratory diseases in people. In the scientific paper, the dependence on the vibration of different types of diesel fuel is investigated in the case of five different revolutions in the internal combustion engine. Studies have shown that fuel and engine speed are the only risk factors that contradict the ISO 5349-2(2004) international standard. The experience of four years of work studies showed that 10% of operators received various types of injuries as a result of working with motoblocks. Experiments also showed that the amount of vibration decreases when the number of revolutions of the engine increases, and in the case of using biodiesel fuel, the damage risk factor is 5-10%, and in the case of using conventional diesel, this indicator has gone up to 20%.

Keywords: engine, vibration, biodiesel, high risk factor, working conditions

Procedia PDF Downloads 80
326 Application of Electrical Resistivity Tomography to Image the Subsurface Structure of a Sinkhole, a Case Study in Southwestern Missouri

Authors: Shishay T. Kidanu

Abstract:

The study area is located in Southwestern Missouri and is mainly underlain by Mississippian Age limestone which is highly susceptible to karst processes. The area is known for the presence of various karst features like caves, springs and more importantly Sinkholes. Sinkholes are one of the most common karst features and the primary hazard in karst areas. Investigating the subsurface structure and development mechanism of existing sinkholes enables to understand their long-term impact and chance of reactivation and also helps to provide effective mitigation measures. In this study ERT (Electrical Resistivity Tomography), MASW (Multichannel Analysis of Surface Waves) and borehole control data have been used to image the subsurface structure and investigate the development mechanism of a sinkhole in Southwestern Missouri. The study shows that the main process responsible for the development of the sinkhole is the downward piping of fine grained soils. Furthermore, the study reveals that the sinkhole developed along a north-south oriented vertical joint set characterized by a vertical zone of water seepage and associated fine grained soil piping into preexisting fractures.

Keywords: ERT, Karst, MASW, sinkhole

Procedia PDF Downloads 213
325 Examination of the Socioeconomic Impact of Soil Diversity in Semi-Arid Regions on Agriculture: A Case Study in the Tissemsilt Province 

Authors: Ouabel Habib, Taleb Mohamed Lamine, Ben Zohra Mohamed Nadjib

Abstract:

The Tissemsilt Province occupies a natural transitional zone and is dedicated to cereal production, dry forage, and livestock farming. It encompasses an agricultural domain covering an area of 181,097 hectares, of which 143,451 hectares are considered arable land. A field study was conducted along a west-to-east transect, covering six zones within the province, including Maacem, Ammari, Tissemsilt, Khemisti, Laayoune, Theniet el Had, and Taza. Random soil samples were collected from each region for laboratory analyses to assess soil types and quality, ultimately aiming to identify soil diversity within the Tissemsilt Province. Within the agricultural zones, approximately 40 soil samples were collected, revealing that the province contains moderately high-quality clayey soils, semi-rich in organic matter. However, as one moves southward, this richness diminishes. This leads us to predict that the agricultural zone is an ideal region for cereal cultivation. Nonetheless, this situation is challenged by the decreasing precipitation, which affects overall yields.

Keywords: soil, biodiversity, semi-arid, agriculture

Procedia PDF Downloads 71
324 The Use of Fertilizers in the Context of Agricultural Extension

Authors: Ahmed Altalb

Abstract:

Fertilizers are natural materials, or industrial contain nutrients, which help to improve soil fertility and is considered (nitrogen, phosphorus, and potassium) is important elements for the growth of crops properly. Fertilization is necessary in order to improve the quality of agricultural products and the recovery in agricultural activities. The use of organic fertilizers and chemical lead to reduce the loss of nutrients in agricultural soils, and this leads to an increase in the production of agricultural crops. Fertilizers are one of the key factors in the increase of agricultural production as well as other factors such as irrigation and improved seeds and Prevention and others; the fertilizers will continue to be a cornerstone of the agriculture in order to produce the food to feed of world population. The use of fertilizers has become commonplace today, especially the chemical fertilizers for the development of agricultural production, due to the provision of nutrients for plants and in high concentrations and easily dissolves in water and ease of use. The choose the right type of fertilizer depends on the soil type and the type of crop. In this subject, find the relationship between the agricultural extension and the optimal use of fertilizers. The extension plays the important role in the advise and educate of farmers in how they optimal use the fertilizers in a scientific way. This article aims to identify the concept the fertilizers. Identify the role of fertilizers in increasing the agricultural production, identify the role of agricultural extension in the optimal use of fertilizers and rural development.

Keywords: agricultural, extension, fertilizers, production

Procedia PDF Downloads 437
323 Evaluating the Topsoil and Subsoil Physical Quality Using Relative Bulk Density in Urmia Plain

Authors: Hossein Asgarzadeh, Ayoub Osmani, Farrokh Asadzadeh, Mohammad Reza Mosaddeghi

Abstract:

This study was conducted to evaluate the topsoil and subsoil physical quality using relative bulk density (RBD) in Urmia plain in Iran. Undisturbed samples were collected from two layers (topsoil and subsoil) of thirty agricultural soils. Categories of 0.72 ≥ RBD (low degree of compactness), 0.82 > RBD > 0.72 (moderate/optimum degree of compactness), and RBD ≥ 0.82 (high degree of compactness) were used to evaluate soil physical quality (SPQ). Two topsoils had a low degree of compactness, fourteen topsoils had an optimum degree of compactness, and the rest (i.e., fourteen topsoils) had a high degree of compactness. Only one subsoil had an optimum degree of compactness, and twenty-eight subsoils (i.e., 93%) had a high degree of compactness, indicating poor SPQ of the subsoil layer in the studied region. It seems that conventional tillage in the past decades destroyed the pore system in the majority of studied subsoils. The high degree of compactness would reduce soil aeration and increase soil penetration resistance which could restrict root and plant growth. Conversely, a low degree of soil compactness is expected to reduce the root-soil contact.

Keywords: compactness, relative bulk density, soil physical quality

Procedia PDF Downloads 123
322 Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method

Authors: Samera Salimpour Abkenar

Abstract:

In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution.

Keywords: eco-friendly, natural dyes, silk, traditional dyeing

Procedia PDF Downloads 189
321 Laboratory Studies to Assess the Effect of Recron Fiber on Soil Subgrade Characteristics

Authors: Lokesh Gupta, Rakesh Kumar

Abstract:

Stabilization of weak subgrade soil is mainly aimed for the improvement of soil strength and its durability. Highway engineers are concerned to get the soil material or system that will hold under the design use conditions and for the designed life of the engineering project. The present study envisages the effect of Recron fibres mixed in different proportion (up to 1% by weight of dry soil) on Atterberg limits, Compaction of the soil, California bearing ratio (CBR) values and unconfined compressive strength (UCS) of the soil. The present study deals with the influence of varying in length (20 mm, 30mm, 40mm and 50mm) and percentage (0.25 %, 0.50 %, 0.75 % and 1.0 %) of fibre added to the soil samples. The aim of study is to determine the reinforcing effect of randomly distributed fibres on the Compaction characteristics, penetration resistance and unconfined compressive strength of soils. The addition of fibres leads to an increase in the optimum moisture content and decrease in maximum dry density. With the addition of the fibres, the increases in CBR and UCS values are observed. The test result shows higher CBR and unconfined compressive strength value for the soil reinforced with 0.5% Recron fibre, once keeping aspect ratio as 160.

Keywords: soil, recron fiber, unconfined compressive strength (UCS), California bearing ratio (CBR)

Procedia PDF Downloads 163
320 Role of Arbuscular Mycorrhiza in Heavy Metal Tolerance in Sweet Basil Plants

Authors: Aboul-Nasr Amal, Sabry Soraya, Sabra Mayada

Abstract:

The effects of phosphorus amendments and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the sweet basil (Ocimum basilicum L.), chemical composition and percent of volatile oil, and metal accumulation in plants and its availability in soil were investigated in field experiment at two seasons 2012 and 2013 under contaminated soil with Pb and Cu. The content of essential oil and shoot and root dry weights of sweet basil was increased by the application of mineral phosphorus as compared to control. Inoculation with AM fungi reduced the metal concentration in shoot, recording a lowest value of (33.24, 18.60 mg/kg) compared to the control (46.49, 23.46 mg/kg) for Pb and Cu, respectively. Availability of Pb and Cu in soil were decreased after cultivation in all treatments compared to control. However, metal root concentration increased with the inoculation, with highest values of (30.15, 39.25 mg/kg)compared to control (22.01, 33.57mg/kg) for Pb and Cu, respectively. The content of linalool and methyl chavicol in basil oil was significantly increased in all treatments compared to control. We can thus conclude that the AM-sweet basil symbiosis could be employed as an approach to bioremediate polluted soils and enhance the yield and maintain the quality of volatile oil of sweet basil plants.

Keywords: arbuscular mycorrhizal fungus, heavy metals, sweet basil, oil composition

Procedia PDF Downloads 252
319 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer

Authors: K. Benyounes, A. Benmounah

Abstract:

Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.

Keywords: rheology, cement grout, bentonite, superplasticizer, viscosity, yield stress

Procedia PDF Downloads 361
318 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia

Authors: Zouhaier Nasr, Mohamed Nouri

Abstract:

The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.

Keywords: forest, soil, carbon, climate change, Tunisia

Procedia PDF Downloads 129
317 Importance of Cadastral Infrastructure in Rural Development

Authors: Saban Inam, Necdet Sahiner, Tayfun Cay

Abstract:

Environmental factors such as rapid population growth, changing economic conditions, desertification and climate change increase demand for the acquisition and use of land. Demands on the land are increasing due to the lack of production of soils and scarcity. This causes disagreements on the land. Reducing the pressure on the land and protecting the natural resources, public investments should be directed economically and rationally. This will make it possible to achieve equivalent living conditions between the rural area and the urban area. Initiating the development from the rural area and the cadastre needs to be redefined to allow the management of the land. The planned, regular, effective agriculture and rural development policies that Turkey will implement in the process of European Union membership will also significantly shape Turkey's position in the European Union. For this reason, Turkey enjoys the most appropriate use of natural resources, which is one of the main objectives of the European Union's recent rural development policy. This study deals with the urgent need to provide cadastral data infrastructure that will form the basis for land management which is supposed to support economic and societal sustainable development in rural and urban areas.

Keywords: rural development, cadastre, land management, agricultural reform implementation project, land parcel identification system

Procedia PDF Downloads 573
316 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France

Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet

Abstract:

Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.

Keywords: air temperature, neural network model, urban heat island, urban weather generator

Procedia PDF Downloads 91