Search results for: axial flux induction machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4631

Search results for: axial flux induction machine

4091 High-Frequency Induction Heat Sintering of Al/SiC/GNS Nanocomposites and Their Tribological Properties

Authors: Mohammad Islam, Iftikhar Ahmad, Hany S. Abdo, Yasir Khalid

Abstract:

High-frequency induction heat sintering (HFIHS) is a fast, efficient powder consolidation technique. In this work, aluminum (Al) powder was mixed with silicon carbide (SiC) and/or graphene nanosheets (GNS) in different proportions and compacted using HFIHS process to produce dense nanocomposites. The nanostructures dispersion was assessed via electron microscopy using both SEM and TEM. Tribological behavior of the nanocomposites was investigated at different loads to determine wear rate and coefficient of friction. The scratch profiles were examined under the microscope to correlate wear properties with the microstructure. While the addition of SiC nanoparticles enhances microhardness values, GNS incorporation promotes dry lubricity with strikingly different wear scratch morphologies. Such Al/SiC/GNS material compositions can be explored for use in automotive brake pad and thermal management applications.

Keywords: aluminum nanocomposites, silicon carbide, graphene nanosheets, tribology

Procedia PDF Downloads 313
4090 A System to Detect Inappropriate Messages in Online Social Networks

Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty

Abstract:

As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.

Keywords: machine learning, online social networks, soft text classifier, support vector machine

Procedia PDF Downloads 509
4089 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 258
4088 Phi Thickening Induction as a Response to Abiotic Stress in the Orchid Miltoniopsis

Authors: Nurul Aliaa Idris, David A. Collings

Abstract:

Phi thickenings are specialized secondary cell wall thickenings that are found in the cortex of the roots in a wide range of plant species, including orchids. The role of phi thickenings in the root is still under debate through research have linked environmental conditions, particularly abiotic stresses such as water stress, heavy metal stress and salinity to their induction in the roots. It has also been suggested that phi thickenings may act as a barrier to regulate solute uptake, act as a physical barrier against fungal hyphal penetration due to its resemblance to the Casparian strip and play a mechanical role to support cortical cells. We have investigated phi thickening function in epiphytic orchids of the genus Miltoniopsis through induction experiment against factors such as soil compaction and water stress. The permeability of the phi thickenings in Miltoniopsis was tested through uptake experiments using the fluorescent tracer dyes Calcofluor white, Lucifer yellow and Propidium iodide then viewed with wide-field or confocal microscopy. To test whether phi thickening may prevent fungal colonization in the root cell, fungal re-infection experiment was conducted by inoculating isolated symbiotic fungus to sterile in vitro Miltoniopsis explants. As the movement of fluorescent tracers through the apoplast was not blocked by phi thickenings, and as phi thickenings developed in the roots of sterile cultures in the absence of fungus and did not prevent fungal colonization of cortical cells, the phi thickenings in Miltoniopsis do not function as a barrier. Phi thickenings were found to be absent in roots grown on agar and remained absent when plants were transplanted to moist soil. However, phi thickenings were induced when plants were transplanted to well-drained media, and by the application of water stress in all soils tested. It is likely that phi thickenings stabilize the root cortex during dehydration. Nevertheless, the varied induction responses present in different plant species suggest that the phi thickenings may play several adaptive roles, instead of just one, depending on species.

Keywords: abiotic stress, Miltoniopsis, orchid, phi thickening

Procedia PDF Downloads 149
4087 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet

Authors: Jan Schmidt, Pierre Köhring

Abstract:

Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.

Keywords: analytical model, eddy current, losses, lattice network, permanent magnet

Procedia PDF Downloads 422
4086 CNC Milling-Drilling Machine Cutting Tool Holder

Authors: Hasan Al Dabbas

Abstract:

In this paper, it is addressed that the mechanical machinery captures a major share of innovation in drilling and milling chucks technology. Users demand higher speeds in milling because they are cutting more aluminum and are relying on higher speeds to eliminate secondary finishing operations. To meet that demand, milling-machine builders have enhanced their machine’s rigidity. Moreover, faster cutting has caught up with boring mills. Cooling these machine’s internal components is a challenge at high speeds. Another trend predicted that it is more use of controlled axes to let the machines do many more operations on 5 sides without having to move or re-fix the work. Advances of technology in mechanical engineering have helped to make high-speed machining equipment. To accompany these changes in milling and drilling machines chucks, the demand of easiest software is increased. An open architecture controller is being sought that would allow flexibility and information exchange.

Keywords: drilling, milling, chucks, cutting edges, tools, machines

Procedia PDF Downloads 573
4085 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
4084 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation

Authors: Zhaoyang Liu

Abstract:

It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.

Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions

Procedia PDF Downloads 174
4083 Experimental Investigations to Measure Surface Fatigue Wear in Journal Bearing by Using Vibration Signal Analysis

Authors: Amarnath M., Ramachandra C. G., H. Chelladurai, P..Sateesh Kumar, K. Santhosh Kumar

Abstract:

Journal bearings are extensively used sliding contact machine elements to support radial/axial loaded rotors used in various applications viz. automobile crankshaft, turbine propeller shaft, rope conveyer, heavy duty electric motors. The primary reasons for the failures of these bearings include unstable lubricant film, oil degradation, misalignment, etc. This paper describes the results of experimental investigations carried out to detect surface fatigue wear developed on load bearing the contact surfaces of journal bearing. The test bearing was subjected to fatigue load cycles over a period of 600 hours. The vibration signals were acquired from the journal bearing at regular intervals of 100 hrs. These signals were post-processed by using the vibration analysis technique to obtain diagnostic information of wear propagated in the journal-bearing system.

Keywords: fatigue, journal bearing, sound signals, vibration signals, wear

Procedia PDF Downloads 83
4082 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition

Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi

Abstract:

Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.

Keywords: porous medium, power law fluids, surface heat flux, vertical wedge

Procedia PDF Downloads 312
4081 Development and Modeling of a Geographic Information System Solar Flux in Adrar, Algeria

Authors: D. Benatiallah, A. Benatiallah, K. Bouchouicha, A. Harouz

Abstract:

The development and operation of renewable energy known an important development in the world with significant growth potential. Estimate the solar radiation on terrestrial geographic locality is of extreme importance, firstly to choose the appropriate site where to place solar systems (solar power plants for electricity generation, for example) and also for the design and performance analysis of any system using solar energy. In addition, solar radiation measurements are limited to a few areas only in Algeria. Thus, we use theoretical approaches to assess the solar radiation on a given location. The Adrar region is one of the most favorable sites for solar energy use with a medium flow that exceeds 7 kWh / m2 / d and saddle of over 3500 hours per year. Our goal in this work focuses on the creation of a data bank for the given data in the energy field of the Adrar region for the period of the year and the month then the integration of these data into a geographic Information System (GIS) to estimate the solar flux on a location on the map.

Keywords: Adrar, flow, GIS, deposit potential

Procedia PDF Downloads 376
4080 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 232
4079 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 156
4078 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 450
4077 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering

Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif

Abstract:

The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.

Keywords: nanocrystalline aluminum alloys, mechanical alloying, hardness, elevated temperatures

Procedia PDF Downloads 455
4076 Rurality in Flux: A Perspective on Changing Face of Rural Tourism Enterprise

Authors: Gunjan Saxena

Abstract:

This paper presents case insights from India and Mexico to illustrate how tourism can work as a tool for bringing about peace and prosperity in disadvantaged communities living in peripheral rural localities. A reordering of rural space, given the slow but definite shift from production-oriented activities towards more complex and contested blends of production, consumption and protection indicates clearly that rurality is in flux. Whilst on one hand, there is a predominance of urban interests in the countryside, on the other rurality is boxed and presented for consumption in urban localities. Qualitative data, collected using semi-structured interviews and participant observation, is used in illustrating how creative enterprise is bringing about innovative use of rural ethos and space in response to consumer demands. Overall, this work seeks to contribute to debates on how rurality no longer represents a fixed space of tradition, but is packaged and promoted in a multi-faceted manner to creatively perform for and access tourism markets.

Keywords: rural tourism, creative enterprise, India, Mexico

Procedia PDF Downloads 315
4075 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver

Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko

Abstract:

The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines

Procedia PDF Downloads 340
4074 An Antidiabetic Dietary Defence Weapon: Oats and Milk Based Probiotic Fermented Product

Authors: Rameshwar Singh Seema

Abstract:

In today’s world where diabetes has become an epidemic, our aim was to potentiate the effect of probiotics by integrating probiotics with cereals to formulate composite foods using Lactobacillus rhamnosus GG (LGG) and Lactobacillus casei NCDC19 against type 2 diabetes. After optimizing the product by Response Surface Methodology, it was studied for their effect on induction and progression of type 2 diabetes in HFD-fed Wistar rats. After 9 weeks study, best results were shown by the group fed with oat and milk based product fermented with LGG and L. casei NCDC19 which resulted in a significant decrease in blood glucose, HBA1c, improved OGTT, oxidative stress, cholesterol and triglycerides level during progression study of type 2 diabetes. During induction study also, there was significant reduction in blood glucose level, oxidative stress, cholesterol level and triglycerides level but slightly less as compared to progression study. Real time PCR gene expression studies were done for 5 genes (GLUT-4, IRS-2, ppar-γ, TNF-α, IL-6) whose expression is directly related to type 2 diabetes. The relative fold change expression was increased in case of GLUT-4, IRS-2, ppar-γ and decreased in case of TNF-α and IL-6 during both induction and progression study of diabetes but more significantly during progression study. Hence it was concluded that oat and milk based probiotic fermented product showed the synergistic effect of probiotics and oats especially in case of progression of type 2 diabetes. The benefits of these probiotic formulations may be further validated by clinical trials.

Keywords: type 2 diabetes, LGG, L.casei NCDC19, food science

Procedia PDF Downloads 417
4073 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach

Authors: Xinyi Le

Abstract:

In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.

Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach

Procedia PDF Downloads 439
4072 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease

Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena

Abstract:

Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.

Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics

Procedia PDF Downloads 98
4071 Simulation of Welded Steel Tube Subjected to Internal Pressure

Authors: H. Zedira, M. T. Hannachi, H. Djebaili, B. Daheche

Abstract:

The rapid pace of technology development and strong competition in the market, prompted us to consider the field of manufacturing of steel pipes by a process complies fully with the requirements of industrial induction welding is high frequency (HF), this technique is better known today in Algeria, more precisely for the manufacture of tubes diameters Single Annabib TG Tebessa. The aim of our study is based on the characterization of processes controlling the mechanical behavior of steel pipes (type E24-2), welded by high frequency induction, considering the different tests and among the most destructive known test internal pressure. The internal pressure test is performed according to the application area of welded pipes, or as leak test, either as a test of strength (bursting). All tubes are subjected to a hydraulic test pressure of 50 bar kept at room temperature for a period of 6 seconds. This study provides information that helps optimize the design and implementation to predict the behavior of the tubes during operation.

Keywords: castem, pressure, stress, tubes, thickness

Procedia PDF Downloads 327
4070 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
4069 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform

Authors: Khadija Refouh

Abstract:

Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.

Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms

Procedia PDF Downloads 151
4068 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane

Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour

Abstract:

Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.

Keywords: hydrogen separation, perovskite, proton conducting membrane.

Procedia PDF Downloads 342
4067 Mechanistic Understanding of the Difference in two Strains Cholerae Causing Pathogens and Predicting Therapeutic Strategies for Cholera Patients Affected with new Strain Vibrio Cholerae El.tor. Using Constrain-based Modelling

Authors: Faiz Khan Mohammad, Saumya Ray Chaudhari, Raghunathan Rengaswamy, Swagatika Sahoo

Abstract:

Cholera caused by pathogenic gut bacteria Vibrio Cholerae (VC), is a major health problem in developing countries. Different strains of VC exhibit variable responses subject to different extracellular medium (Nag et al, Infect Immun, 2018). In this study, we present a new approach to model the variable VC responses in mono- and co-cultures, subject to continuously changing growth medium, which is otherwise difficult via simple FBA model. Nine VC strain and seven E. coli (EC) models were assembled and considered. A continuously changing medium is modelled using a new iterative-based controlled medium technique (ITC). The medium is appropriately prefixed with the VC model secretome. As the flux through the bacteria biomass increases secretes certain by-products. These products shall add-on to the medium, either deviating the nutrient potential or block certain metabolic components of the model, effectively forming a controlled feed-back loop. Different VC models were setup as monoculture of VC in glucose enriched medium, and in co-culture with VC strains and EC. Constrained to glucose enriched medium, (i) VC_Classical model resulted in higher flux through acidic secretome suggesting a pH change of the medium, leading to lowering of its biomass. This is in consonance with the literature reports. (ii) When compared for neutral secretome, flux through acetoin exchange was higher in VC_El tor than the classical models, suggesting El tor requires an acidic partner to lower its biomass. (iii) Seven of nine VC models predicted 3-methyl-2-Oxovaleric acid, mysirtic acid, folic acid, and acetate significantly affect corresponding biomass reactions. (iv) V. parhemolyticus and vulnificus were found to be phenotypically similar to VC Classical strain, across the nine VC strains. The work addresses the advantage of the ITC over regular flux balance analysis for modelling varying growth medium. Future expansion to co-cultures, potentiates the identification of novel interacting partners as effective cholera therapeutics.

Keywords: cholera, vibrio cholera El. tor, vibrio cholera classical, acetate

Procedia PDF Downloads 164
4066 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor

Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang

Abstract:

This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.

Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design

Procedia PDF Downloads 417
4065 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members

Authors: Sami W. Tabsh

Abstract:

The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.

Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety

Procedia PDF Downloads 430
4064 An Investigation into Sealing Materials for Vacuum Glazing

Authors: Paul Onyegbule, Harjit Singh

Abstract:

Vacuum glazing is an innovative transparent thermal insulator that has application in high performance window, especially in renewable energy. Different materials as well as sealing methods have been adopted to seal windows with different temperatures. The impact of temperatures on sealing layers has been found to have significant effects on the microstructure of the seal. This paper seeks to investigate the effects of sealing materials specifically glass powder and flux compound (borax) for vacuum glazing. The findings of the experiment conducted show that the sealing material was rigid with some leakage around the edge, and we found that this could be stopped by enhancing the uniformity of the seal within the periphery. Also, we found that due to the intense tensile stress from the oven surface temperature of the seal at 200 0C, a crack was observed at the side of the glass. Based on the above findings, this study concludes that a glass powder with a lower melting temperature of below 250 0C with the addition of an adhesive (borax flux) should be used for future vacuum seals.

Keywords: double glazed windows, U-value, heat loss, borax powder, edge seal

Procedia PDF Downloads 238
4063 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 136
4062 Calculation Analysis of an Axial Compressor Supersonic Stage Impeller

Authors: Y. Galerkin, E. Popova, K. Soldatova

Abstract:

There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The Authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio π*=3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods.

Keywords: supersonic stage, impeller, efficiency, flow rate coefficient, work coefficient, loss coefficient, oblique shock, direct shock

Procedia PDF Downloads 467