Search results for: underline energy demand trend (UEDT)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12271

Search results for: underline energy demand trend (UEDT)

6721 Sidelobe Free Inverse Synthetic Aperture Radar Imaging of Non Cooperative Moving Targets Using WiFi

Authors: Jiamin Huang, Shuliang Gui, Zengshan Tian, Fei Yan, Xiaodong Wu

Abstract:

In recent years, with the rapid development of radio frequency technology, the differences between radar sensing and wireless communication in terms of receiving and sending channels, signal processing, data management and control are gradually shrinking. There has been a trend of integrated communication radar sensing. However, most of the existing radar imaging technologies based on communication signals are combined with synthetic aperture radar (SAR) imaging, which does not conform to the practical application case of the integration of communication and radar. Therefore, in this paper proposes a high-precision imaging method using communication signals based on the imaging mechanism of inverse synthetic aperture radar (ISAR) imaging. This method makes full use of the structural characteristics of the orthogonal frequency division multiplexing (OFDM) signal, so the sidelobe effect in distance compression is removed and combines radon transform and Fractional Fourier Transform (FrFT) parameter estimation methods to achieve ISAR imaging of non-cooperative targets. The simulation experiment and measured results verify the feasibility and effectiveness of the method, and prove its broad application prospects in the field of intelligent transportation.

Keywords: integration of communication and radar, OFDM, radon, FrFT, ISAR

Procedia PDF Downloads 107
6720 A Review Paper on Data Security in Precision Agriculture Using Internet of Things

Authors: Tonderai Muchenje, Xolani Mkhwanazi

Abstract:

Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.

Keywords: precision agriculture, security, IoT, EIDE

Procedia PDF Downloads 76
6719 Integrated Clean Development Mechanism and Risk Management Approach for Infrastructure Transportation Project

Authors: Debasis Sarkar

Abstract:

Clean development mechanism (CDM) can act as an effective instrument for mitigating climate change. This mechanism can effectively reduce the emission of CO2 and other green house gases (GHG). Construction of a mega infrastructure project like underground corridor construction for metro rail operation involves in consumption of substantial quantity of concrete which consumes huge quantity of energy consuming materials like cement and steel. This paper is an attempt to develop an integrated clean development mechanism and risk management approach for sustainable development for an underground corridor metro rail project in India during its construction phase. It was observed that about 35% reduction in CO2 emission can be obtained by adding fly ash as a part replacement of cement. The reduced emission quantity of CO2 which is of the quantum of about 21,646.36 MT would result in cost savings of approximately INR 8.5 million (USD 1,29,878).But construction and operation of such infrastructure projects of the present era are subject to huge risks and uncertainties throughout all the phases of the project, thus reducing the probability of successful completion of the project within stipulated time and cost frame. Thus, an integrated approach of combining CDM with risk management would enable the metro rail authorities to develop a sustainable risk mitigation measure framework to ensure more cost and energy savings and lesser time and cost over-run.

Keywords: clean development mechanism (CDM), infrastructure transportation, project risk management, underground metro rail

Procedia PDF Downloads 463
6718 Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling

Authors: Anton Golubkov, Gleb Ermachkov, Aleksandr Smerdin, Oleg Sidorov, Victor Philippov

Abstract:

Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector’s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described.

Keywords: contact strip, current collector, high-speed running, program control, wear

Procedia PDF Downloads 131
6717 A Novel Environmentally Benign Positive Electrode Material with Improved Energy Density for Lithium Ion Batteries

Authors: Wassima El Mofid, Svetlozar Ivanov, Andreas Bund

Abstract:

The increasing requirements for high power and energy lithium ion batteries have led to the development of several classes of positive electrode materials. Among those one promising material is LiNixMnyCo1−x−yO2 due to its high reversible capacity and remarkable cycling performance. Further structural stabilization and improved electrochemical performance of this class of cathode materials can be achieved by cationic substitution to a transition metal such as Al, Mg, Cr, etc. The current study discusses a novel NMC type material obtained by simultaneous cationic substitution of the cobalt which is a toxic element, with aluminum and iron. A compound with the composition LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) was synthesized by the self-combustion method using sucrose as fuel. The material has a layered α-NaFeO2 type structure with a good hexagonal ordering. Rietveld refinement analysis of the XRD patterns revealed a very low cationic mixing compared to the non-substituted material LiNi0.6Mn0,2Co0.2O2 suggesting a structural stabilization. Galvanostatic cycling measurements indicate improved electrochemical performance after the metal substitution. An initial discharge capacity of about 190 mAh.g−1 at slow rate (C/20), and a good cycling stability even at moderately faster rates (C/5 and C) have been observed. The long term cycling displayed a capacity retention of about 90% after 10 cycles.

Keywords: cationic substitution, lithium ion batteries, positive electrode material, self-combustion synthesis method

Procedia PDF Downloads 393
6716 Indian Brands Speak Through Colors That Is ‘Culturally Vibrant’

Authors: Ranjana Dani

Abstract:

Brand communication narratives in India has evolved today to reflect the vibrant and intriguing tone of voice inspired by a rich cultural heritage while addressing the culturally alert attitude of the contemporary global Indian. Brands are strongly associated with the organization's values, vision, and mission and portray this through specific ‘look and feel’ and ‘tone of voice’. It is within the brand’s visual language that COLOUR has evolved to become a most powerful weapon in the designer’s arsenal. Color is big business in Brand Design! A brand is a ‘collection of perceptions’, meaningful brand connect is about striving to occupy head and heart space in consumers. The persona of the young Indian reflects a deep attachment to cultural roots as seen through the characteristic of ‘Indie Pride,’ blended with the ambitious, aspirational traits of a modern ‘global citizen’.Studies on ‘Color Perceptions’ indicate a trend that amplifies this, and hence brands reflect a GLOCAL palette, a Global and Local Blend. This paper establishes this through case studies that expand the inspirations, selection processes, and use of innovative color palettes crafted by some dynamic brand designers. This throws light on the role of color as it generates visual impact and recall for successful brands.

Keywords: colour palettes, brand design and business, cultural context, colour perceptions, glocal, contemporaneity

Procedia PDF Downloads 65
6715 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks

Authors: Jayesh M. Patel, Bharat P. Modi

Abstract:

The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.

Keywords: cellular, Wi-Fi, mobile, smart phone

Procedia PDF Downloads 348
6714 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing

Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis

Abstract:

The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.

Keywords: additive manufacture, new designs, orthoses, finite elements

Procedia PDF Downloads 196
6713 Modeling and Performance Analysis of an Air-Cooled Absorption Chiller

Authors: A. Roukbi, B. Draoui

Abstract:

Due to the high cost and the environmental problems caused by the conventional air-conditioning systems, various researches are being increasingly focused on thermal comfort in the building sector integrating renewable energy sources, particularly solar energy. For that purpose, this study aims to present a modeling and performance analysis of a direct air-cooled Water/LiBr absorption chiller. The chiller is considered to be coupled to a small residential building at an arid zone situated in south Algeria. The system is modeled with TRNSYS simulation program. The main objective is to study the feasibility of the chosen system in arid zones and to apply a simplified method to predict the performance of the system by mean of the characteristic equation approach tacking in account the influence of the climatic conditions of the considered site, the collector area and storage volume of the hot water tank on the performance of the installation. First, the results of the system modeling are compared with an experimental data from the open literature and the developed model is then validated. In another hand, a parametric study is performed to analyze the performance of the direct air-cooled absorption chiller at the operating conditions of interest for the present study. Thus, the obtained results has shown that the studied system can present a good alternative for cooling systems in arid zones since the cooling load is roughly in phase with solar availability.

Keywords: absorption chiller, air-cooled, arid zone, thermal comfort

Procedia PDF Downloads 220
6712 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 263
6711 The Thermochemical Conversion of Lactic Acid in Subcritical and Supercritical Water

Authors: Shyh-Ming Chern, Hung-Chi Tu

Abstract:

One way to utilize biomass is to thermochemically convert it into gases and chemicals. For conversion of biomass, glucose is a particularly popular model compound for cellulose, or more generally for biomass. The present study takes a different approach by employing lactic acid as the model compound for cellulose. Since lactic acid and glucose have identical elemental composition, they are expected to produce similar results as they go through the conversion process. In the current study, lactic acid was thermochemically converted to assess its reactivity and reaction mechanism in subcritical and supercritical water, by using a 16-ml autoclave reactor. The major operating parameters investigated include: The reaction temperature, from 673 to 873 K, the reaction pressure, 10 and 25 MPa, the dosage of oxidizing agent, 0 and 0.5 chemical oxygen demand, and the concentration of lactic acid in the feed, 0.5 and 1.0 M. Gaseous products from the conversion were generally found to be comparable to those derived from the conversion of glucose.

Keywords: lactic acid, subcritical water, supercritical water, thermochemical conversion

Procedia PDF Downloads 303
6710 Windstorm Risk Assessment for Offshore Wind Farms in the North Sea

Authors: Paul Buchana, Patrick E. Mc Sharry

Abstract:

In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators.

Keywords: catastrophe modeling, North Sea wind farms, offshore wind power, risk analysis

Procedia PDF Downloads 287
6709 Impact of Syngenetic Elements on the Physico-Chemical Properties of Lignocellulosic Biochar

Authors: Edita Baltrėnaitė, Pranas Baltrėnas, Eglė MarčIulaitienė, Mantas PranskevičIus, Valeriia Chemerys

Abstract:

The growing demand for organic products in the market promotes their use in various fields. One of such products is biochar. Among the innovative environmental applications, biochar has the potential as an adsorbent for retaining contaminants in environmental engineering and agrotechnical systems. Artificial modification of biochar can improve its adsorption capacity. However, indirect/natural change of biochar composition (e.g., contaminated biomass) based on syngenetic elements provides prospects for new applications of biochar as well as decreases the modification costs. Natural lignocellulosic and biochar composition variations would lead to a new field of application of biochar and reduce resources for biochar modifications. The aim of this study was to determine the influence of syngenetic elements of biochar’s feedstock on the physicochemical properties of lignocellulosic biochar. Syngenetic elements (e.g., Zn, Cu, Ni, Pb, Mg) and other intrinsic properties (e.g., lignin, COHN, moisture, ash) of indifferent types of lignocellulosic feedstock on the physicochemical characteristics of biochar are discussed.

Keywords: adsorption, lignocellulosic biochar, instrinsic properties, syngenetic elements

Procedia PDF Downloads 182
6708 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot

Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi

Abstract:

To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.

Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients

Procedia PDF Downloads 65
6707 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study

Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott

Abstract:

In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.

Keywords: discrete event simulation, flexible manufacturing system, capacity performance, automotive

Procedia PDF Downloads 313
6706 Treatment of Simulated Textile Wastewater Containing Reactive Azo Dyes Using Laboratory Scale Trickling Filter

Authors: Ayesha Irum, Sadia Mumtaz, Abdul Rehman, Iffat Naz, Safia Ahmed

Abstract:

The present study was conducted to evaluate the potential applicability of biological trickling filter system for the treatment of simulated textile wastewater containing reactive azo dyes with bacterial consortium under non-sterile conditions. The percentage decolorization for the treatment of wastewater containing structurally different dyes was found to be higher than 95% in all trials. The stable bacterial count of the biofilm on stone media of the trickling filter during the treatment confirmed the presence, proliferation, dominance and involvement of the added microbial consortium in the treatment of textile wastewater. Results of physicochemical parameters revealed the reduction in chemical oxygen demand (58.5-75.1%), sulphates (18.9-36.5%), and phosphates (63.6-73.0%). UV-Visible and FTIR spectroscopy confirmed decolorization of dye containing wastewater was the ultimate consequence of biodegradation. Toxicological studies revealed the nontoxic nature of degradative metabolites.

Keywords: biodegradation, textile dyes, waste water, trickling filters

Procedia PDF Downloads 418
6705 COVID-19 Impact: How the Pandemic Changed the Fashion Industry

Authors: Akshata Patel, Reenu Singh

Abstract:

This paper focuses on current and upcoming fashion trends and global impact on the fashion industry due to the COVID-19 pandemic. The pandemic has had a major impact on the fashion industry worldwide. At the same time, the fashion market also faces challenges in consumer demand. As the supply chain and distribution channels are interconnected, this outbreak has a global impact due to travel restrictions and raw materials shortages. Given that this particular period represents an unprecedented market situation with almost no prior research on how the industry will recover from such a crisis and mold back to its original form, this research aims to propose new possibilities by evaluating the framework of specific segments. Based on the analysis and extensive literature review, the study develops a conceptual model that will illustrate the various connections among the different segments of the fashion industry. The findings provide actionable considerations for fashion industry pupils when implementing appropriate strategies to prevent unfavourable outcomes during times of crisis, such as the COVID-19 outbreak.

Keywords: COVID-19, fashion industry, global impact, new possibilities, pandemic

Procedia PDF Downloads 265
6704 A Study on Legal Regimes Alternatives from the Aspect of Shenzhen Global Ocean Central City Construction

Authors: Jinsong Zhao, Lin Zhao

Abstract:

Shenzhen, one of the fastest growing cities in the world, has been building a global ocean central city since 2017, facing many challenges, especially how to innovate new legal regimes to meet the future demands of the development of global shipping. First, the current legal regime of bills of lading as a document of title was established by English law in the 18th century but limited to the period of marine transportation from port of loading to port of discharge (namely, port to port). The e-commerce era is asking for such a function to be extended from port to port to door to door. Secondly, the function of the port has also been upgraded from the traditional loading and unloading of goods to a much wider area, such as being custody of warehousing goods for its mortgage bank, and therefore its legal status is changing, so it is necessary to amend the law of ports and harbours and innovate the rights and responsibilities of the port under its new role as the custody. Thirdly, the development of new marine energy has made more and more offshore floating wind power and floating photovoltaic devices face new legal issues such as legal status, nationality and ownership registration, mortgage, maritime lien, and possessory lien. Fourthly, the jurisdiction of the above issues, as well as conflicts of law and the applicable law, are also questions pending answers. This paper will discuss these issues of private international law, especially the innovation of new legal regimes with an aim to solve the above problems.

Keywords: maritime law, bills of lading, e-commerce, port law, marine clean energy

Procedia PDF Downloads 10
6703 Climate Change Impacts on Future Wheat Growing Areas

Authors: Rasha Aljaryian, Lalit Kumar

Abstract:

Climate is undergoing continuous change and this trend will affect the cultivation areas ofmost crops, including wheat (Triticum aestivum L.), in the future. The current suitable cultivation areas may become unsuitable climatically. Countries that depend on wheat cultivation and export may suffer an economic loss because of production decline. On the other hand, some regions of the world could gain economically by increasing cultivation areas. This study models the potential future climatic suitability of wheat by using CLIMEX software. Two different global climate models (GCMs) were used, CSIRO-Mk3.0 (CS) and MIROC-H (MR), with two emission scenarios (A2, A1B). The results of this research indicate that the suitable climatic areas for wheat in the southern hemisphere, such as Australia, are expected to contract by the end of this century. However, some unsuitable or marginal areas will become climatically suitable under future climate scenarios. In North America and Europe further expansion inland could occur. Also, the results illustrate that heat and dry stresses as abiotic climatic factors will play an important role in wheat distribution in the future. Providing sufficient information about future wheat distribution will be useful for agricultural ministries and organizations to manage the shift in production areas in the future. They can minimize the expected harmful economic consequences by preparing strategic plans and identifying new areas for wheat cultivation.

Keywords: Climate change, Climate modelling, CLIMEX, Triticum aestivum, Wheat

Procedia PDF Downloads 237
6702 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 77
6701 A Review of Common Tropical Culture Trees

Authors: Victoria Tobi Dada, Emmanuel Dada

Abstract:

Culture trees are notable agricultural system in the tropical region of the world because of its great contribution to the economy of this region. Plantation agriculture such as oil palm, cocoa, cashew and rubber are the dominant agricultural trees in the tropical countries with the at least mean annual rainfall of 1500mm and 280c temperature. The study examines the review developmental trend in the common tropical culture trees. The study shows that global area of land occupied by rubber plantation increased from 9464276 hectares to 11739333 hectares between year 2010 and 2017, while oil palm cultivated land area increased from 1851278 in 2010 hectares to 2042718 hectares in 2013 across 35 countries. Global cashew plantation cultivation are dominated by West Africa with 44.8%, South-Eastern Asia with 32.9% and Sothern Asia with 13.8%, while the remaining 8.5% of the cultivated land area were distributed among six other tropical countries of the world. Cocoa cultivation and production globally are dominated by five West African countries, Indonesia and Brazil. The study revealed that notable tropical culture trees have not study together to determine their spatial distribution.

Keywords: culture trees, tropical region, cultivated area, spatial distribution

Procedia PDF Downloads 82
6700 The Internal Migration in Jiangxi Province, China after the Migrating Decision

Authors: Gourida Siham

Abstract:

Chinese society has witnessed a continuing trend of nationwide rural to urban migration since the 1970's. Before that age, under restricted hukou systems, peasants were kept still and fixed in the farm land. The year 1978 and later years saw the control of migration in China was relaxed gradually, freeing peasants to start their own businesses and reach out to work also in urban areas. Since then the “floating population” (migrants without local hukou) took great momentum and drew great attention from both the media and academia. The scale of such internal migration is enormous –the floating population has reached to a number of 79 million in 2000, and as of 2010, the number of migrant workers from rural China amounts to over 221 million and according to the annual survey results projections by National Bureau of Statistics; the total migrant workers in china in 2012 amounted to 262.61 million, which refers to an increase of 9.83 million compared with the previous year with increase percentage by 3.9%. Using China’s Jiangxi Province as a case, this paper examines patterns of internal migration as a response of emigrations in the context of high emigration communities. Our findings suggest that emigration of individuals initially deterred both inter-provincial and intra- provincial migration of other family members, and yet, overtime they had an increasing propensity to migrate internally at both scales.

Keywords: internal migration, jiangxi, nanchang, remittances

Procedia PDF Downloads 390
6699 Economic Growth Relations to Domestic and International Air Passenger Transport in Brazil

Authors: Manoela Cabo da Silva, Elton Fernandes, Ricardo Pacheco, Heloisa Pires

Abstract:

This study examined cointegration and causal relationships between economic growth and regular domestic and international passenger air transport in Brazil. Total passengers embarked and disembarked were used as a proxy for air transport activity and gross domestic product (GDP) as a proxy for economic development. The test spanned the period from 2000 to 2015 for domestic passenger traffic and from 1995 to 2015 for international traffic. The results confirm the hypothesis that there is cointegration between passenger traffic series and economic development, showing a bi-directional Granger causal relationship between domestic traffic and economic development and unidirectional influence by economic growth on international passenger air transport demand. Variance decomposition of the series showed that domestic air transport was far more important than international transport to promoting economic development in Brazil.

Keywords: air passenger transport, cointegration, economic growth, GDP, Granger causality

Procedia PDF Downloads 221
6698 An Introduction to Critical Chain Project Management Methodology

Authors: Ranjini Ramanath, Nanjunda P. Swamy

Abstract:

Construction has existed in our lives since time immemorial. However, unlike any other industry, construction projects have their own unique challenges – project type, purpose and end use of the project, geographical conditions, logistic arrangements, largely unorganized manpower and requirement of diverse skill sets, etc. These unique characteristics bring in their own level of risk and uncertainties to the project, which cause the project to deviate from its planned objectives of time, cost, quality, etc. over the many years, there have been significant developments in the way construction projects are conceptualized, planned, and managed. With the rapid increase in the population, increased rate of urbanization, there is a growing demand for infrastructure development, and it is required that the projects are delivered timely, and efficiently. In an age where ‘Time is Money,' implementation of new techniques of project management is required in leading to successful projects. This paper proposes a different approach to project management, which if applied in construction projects, can help in the accomplishment of the project objectives in a faster manner.

Keywords: critical chain project management methodology, critical chain, project management, construction management

Procedia PDF Downloads 407
6697 Tofu Flour as a Protein Sources

Authors: Dicky Eka Putra, S. P. Nadia Chairunissa, Lidia Paramita, Roza Hartati, Ice Yolanda Puri

Abstract:

Background: Soy bean and the products such as tofu, tempeh and soy milk are famous in the community. Moreover, another product is tofu flour which is not familiar in Indonesia yet and it is well known as Okara. There are massive differences of energy, protein and carbohydrate between them which is know as good for protein sources as well. Unfortunately, it is seldom used as food variety. Basically, it can be benefit in order to create many products for example cakes, snacks and some desserts. Aim: the study was in order to promote the benefit of tofu flour as school feeding of elementary school and baby porridge and also to compare the nutrient. Method: Soy pulp was filtered and steamed approximately 30 minutes. Then, it was put at a plate under sunrise or barked on the oven for 10 hours at 800C. When it have dried and milling and tofu flour is ready to be used. Result: Tofu flour could be used as substitute of flour and rice flour when people want to cook some foods. In addition, some references said that soy bean is good for a specific remedy for the proper functioning of the heart, liver, kidneys, stomach, and bowels, constipation, as a stimulant for the lungs, for eradication of poison from the system, improving the complexion by cleaning the skin of impurities, and stimulating the growth and appearance of the hair. Discussion: Comparing between soy bean, tofu and tofu flour which has difference amount of nutrients. For example energy 382 kcal, 79 kcal and 393 kcal respectively and also protein 30.2 kcal, 7.8 kcal, and 17.4 kcal. In addition, carbohydrate of soy pulp was high than soy bean and tofu (30.1 kcal). Finally, local should replace flour, rice and gelatin rice flour with tofu flour.

Keywords: tofu flour, protein, soy bean, school feeding

Procedia PDF Downloads 363
6696 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery

Authors: Colette Malyack, Pius Egbelu

Abstract:

Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.

Keywords: network planning, last mile delivery, omnichannel delivery network, omnichannel logistics

Procedia PDF Downloads 133
6695 Synthesis of ZnO Nanoparticles with Varying Calcination Temperature for Photocatalytic Degradation of Ethylbenzene

Authors: Darlington Ashiegbu, Herman Johannes Potgieter

Abstract:

The increasing utilization of Zinc Oxide (ZnO) as a better alternative to TiO₂ has been attributed to its wide bandgap (3.37eV), lower production cost, ability to absorb over a larger range of the UV-spectrum and higher efficiency in some cases. ZnO nanoparticles were synthesized via sol-gel process and calcined at 400ᵒC, 500ᵒC, and 650ᵒC. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Brunauer–Emmett–Teller (BET) surface area measurement. Scanning electron micrograph revealed pseudo-spherical and rod-like morphologies and a high rate of agglomeration for the sample calcined at 650ᵒC, Brunnauer Emmett Teller (BET) surface area measurement was highest in the sample calcined at 500ᵒC, energy dispersive X-ray spectroscopy (EDS) results confirmed the purity of the samples as only Zn and O₂ were detected and X-ray diffraction (XRD) results revealed crystalline hexagonal wurtzite structure of the ZnO nanoparticles. All three samples were utilized in the degradation of ethylbenzene, and a UV-Vis spectrophotometer was utilized in monitoring degradation of ethylbenzene. The sample calcined at 500ᵒC had the highest surface area for reaction, lowest agglomeration and the highest photocatalytic activity in the degradation of ethylbenzene. This revealed temperature as a very important factor in improved and higher photocatalytic activity.

Keywords: ethylbenzene, pseudo-spherical, sol-gel, zinc oxide

Procedia PDF Downloads 149
6694 Virtual Computing Lab for Phonics Development among Deaf Students

Authors: Ankita R. Bansal, Naren S. Burade

Abstract:

Idea is to create a cloud based virtual lab for Deaf Students, “A language acquisition program using Visual Phonics and Cued Speech” using VMware Virtual Lab. This lab will demonstrate students the sounds of letters associated with the Language, building letter blocks, making words, etc Virtual labs are used for demos, training, for the Lingual development of children in their vernacular language. The main potential benefits are reduced labour and hardware costs, faster response times to users. Virtual Computing Labs allows any of the software as a service solutions, virtualization solutions, and terminal services solutions available today to offer as a service on demand, where a single instance of the software runs on the cloud and services multiple end users. VMWare, XEN, MS Virtual Server, Virtuoso, and Citrix are typical examples.

Keywords: visual phonics, language acquisition, vernacular language, cued speech, virtual lab

Procedia PDF Downloads 585
6693 Performance Evaluation of Hemispherical Basin Type Solar Still

Authors: Husham Mahmood Ahmed

Abstract:

For so many reasons, fresh water scarcity is one of major problems facing the world and in particularly in the third world in the Northern Africa, the Middle East, the Southwest of Asia, and many other desert areas. Solar distillation offers one of the most promising solutions of renewable energy to this aggravated situation. The main obstacle hindering the spread of the use of solar technology for fresh water production is its low efficiency. Therefore, enhancing the solar stills performances by studying the parameters affecting their productivity and implementing new ideas and a different design are the main goals of the investigators in recent years. The present research is experimental work that tests a new design of solar still with a hemispherical top cover for water desalination with and without external reflectors under the climate of the Kingdom of Bahrain during the autumn season. The hemispherical cover has a base diameter of 1m and a depth of 0.4m, die cast from a 6 mm thick Lexan plastic sheet. The net effective area was 0.785 m2. It has been found that the average daily production rate obtained from the hemispherical top cover solar still is 3.610 liter/day. This yield is 11.1% higher than the yield of a conventional simple type single slope solar still having 20ᴼ slope glass cover and a larger effective area of 1 m2 obtained in previous research under similar climatic conditions. It has also been found that adding 1.2m long by 0.15 curved reflectors increased the yield of the hemispherical solar still by 5.5 %, while the 1.2 long by 0.3m curved reflector increased the yield by about 8%.

Keywords: hemispherical solar still, solar desalination, solar energy, the Northern Africa

Procedia PDF Downloads 386
6692 Exploring the Challenges and Opportunities in Clinical Waste Management: The Case of Private Clinics, Selangor, Malaysia

Authors: Golyasamin Khanehzaei, Mohd. Bakri Ishak, Ahmad Makmom Hj Abdullah, Latifah Abd Manaf

Abstract:

Abstract—Management of clinical waste is a critical problem worldwide. Immediate attention is required to manage the clinical waste in an appropriate way in newly developing economy country such as Malaysia. The increasing amount of clinical waste generated is resulted from rapid urbanization and growing number of private health care facilities in developing countries such as Malaysia. In order to develop a sensible clinical waste management system and improvement of the management, information on factors affecting clinical waste generation has the crucial role. This paper is the study of management characteristics of clinical waste and the level of efficiency of clinical waste management systems operating in private clinics located in Selangor, Malaysia. Are they following the proper international standards? By taking all of this in consideration the aim of this paper is to identify and discuss the current trend, current challenges and also the present opportunities among the challenges of clinical waste management in private clinics of Selangor, Malaysia. The SWOT analysis was characterized for the evaluation of strengths, weaknesses, opportunities and threats. The methodology for this study was constituted of direct observation, Informal interviews, Conducting SWOT analysis, conduction of one sustainability dimensions analysis and application. The results show that clinical waste management in private clinics is far from an ideal model.

Keywords: clinical waste, SWOT analysis, Selangor, Malaysia

Procedia PDF Downloads 334