Search results for: image processing of electrical impedance tomography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8368

Search results for: image processing of electrical impedance tomography

2968 Chitin Crystalline Phase Transition Promoted by Deep Eutectic Solvent

Authors: Diana G. Ramirez-Wong, Marius Ramirez, Regina Sanchez-Leija, Adriana Rugerio, R. Araceli Mauricio-Sanchez, Martin A. Hernandez-Landaverde, Arturo Carranza, John A. Pojman, Josue D. Mota-Morales, Gabriel Luna-Barcenas

Abstract:

Chitin films were prepared using alpha-chitin from shrimp shells as raw material and a simple method of precipitation-evaporation. Choline chloride: urea Deep Eutectic Solvent (DES) was used to disperse chitin and compared against hexafluoroisopropanol (HFIP). A careful analysis of the chemical and crystalline structure was followed along the synthesis of the films, revealing crystalline-phase transitions. The full conversion of alpha- to beta-, or alpha- to gamma-chitin structure were detected by XRD and NMR on the films. The synthesis of highly crystalline monophasic gamma-chitin films was achieved using a DES; whereas HFIP helps to promote the beta-phase. These results are encouraging to continue in the study of DES as good processing media to control the final properties of chitin based materials.

Keywords: chitin, deep eutectic solvent, polymorph, phase transformation

Procedia PDF Downloads 538
2967 Model Evaluation of Nanosecond, High-Intensity Electric Pulses Induced Cellular Apoptosis

Authors: Jiahui Song, Ravindra Joshi

Abstract:

High-intensity, nanosecond, pulsed electric fields have been shown to be useful non-thermal tools capable of producing a variety of specific cellular responses. While reversible and temporary changes are often desired based on electromanipulation, irreversible effects can also be important objectives. These include elimination of tumor cells and bacterial decontamination. A simple model-based rate-equation treatment of the various cellular biochemical processes was used to qualitatively predict the pulse number-dependent caspase activation and cell survival trends. The model incorporated the caspase-8 associated extrinsic pathway, the delay inherent in its activation, cytochrome c release, and the internal feedback mechanism between caspase-3 and Bid. Results were roughly in keeping with the experimental cell-survival data. A pulse-number threshold was predicted followed by a near-exponential fall-off. The intrinsic pathway was shown to be much weaker as compared to the extrinsic mechanism for electric pulse induced cell apoptosis. Also, delays of about an hour are predicted for detectable molecular concentration increases following electrical pulsing.

Keywords: apoptosis, cell survival, model, pathway

Procedia PDF Downloads 239
2966 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection

Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok

Abstract:

The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.

Keywords: RJ45, automatic annotation, object tracking, 3D projection

Procedia PDF Downloads 167
2965 Evaluation of Hard Rocks Destruction Effectiveness at Drilling

Authors: Ekaterina Leusheva, Valentin Morenov

Abstract:

Well drilling in hard rocks is coupled with high energy demands which negates the speed of the process and thus reduces overall effectiveness. Aim of this project is to develop the technique of experimental research, which would allow to select optimal washing fluid composition while adding special hardness reducing detergent reagents. Based on the analysis of existing references and conducted experiments, technique dealing with quantitative evaluation of washing fluid weakening influence on drilled rocks was developed, which considers laboratory determination of three mud properties (density, surface tension, specific electrical resistance) and three rock properties (ultimate stress, dynamic strength, micro-hardness). Developed technique can be used in the well drilling technologies and particularly while creating new compositions of drilling muds for increased destruction effectiveness of hard rocks. It can be concluded that given technique introduces coefficient of hard rocks destruction effectiveness that allows quantitative evaluation of different drilling muds on the drilling process to be taken. Correct choice of drilling mud composition with hardness reducing detergent reagents will increase drilling penetration rate and drill meterage per bit.

Keywords: detergent reagents, drilling mud, drilling process stimulation, hard rocks

Procedia PDF Downloads 547
2964 Economic Value Added of Green Marketing for Urban Commerical Center

Authors: Kuo-Wei Hsu, Yen-Ting, Wu

Abstract:

Recently, green marketing issues have emerged as the developing direction for local governments and social enterprises. At the same time, many social enterprises have considered how to effectively create a low-carbon and sustainable environment. Local government has a role to play in promoting low-carbon life styles and creating a green sustainable environment within this green marketing trend. Therefore, urban commercial centers have implemented relevant plans such as: Green Store, Green Action Shops, Green Restaurants and Green Hotels. The purpose of these plans to select the commercial center organizations have potential energy saving demonstration and environmental greenification. These organizations are willing to provide assistance counseling and become a green demonstration district, thereby promoting the major shopping district to take the initiative to enhance its green competitiveness. Finally, they create a new landscape for the commercial center. Studies on green marketing in commercial centers are seen as less attractive and only a few studies for commercial centers have focused on green marketing strategies. There is no empirical evidence for how commercial center managers evaluate a commercial center green marketing strategy. This research investigated the major commercial centers in Taichung City and found green marketing helps to enhance the connection between the urban commercial center value and society value, shape corporate image with social responsibility and create brand value, and therefore impact the increase of economic value.

Keywords: economic value added, green marketing, sustainable environment, urban commercial center.

Procedia PDF Downloads 369
2963 Psychological Testing in Industrial/Organizational Psychology: Validity and Reliability of Psychological Assessments in the Workplace

Authors: Melissa C. Monney

Abstract:

Psychological testing has been of interest to researchers for many years as useful tools in assessing and diagnosing various disorders as well as to assist in understanding human behavior. However, for over 20 years now, researchers and laypersons alike have been interested in using them for other purposes, such as determining factors in employee selection, promotion, and even termination. In recent years, psychological assessments have been useful in facilitating workplace decision processing, regarding employee circulation within organizations. This literature review explores four of the most commonly used psychological tests in workplace environments, namely cognitive ability, emotional intelligence, integrity, and personality tests, as organizations have used these tests to assess different factors of human behavior as predictive measures of future employee behaviors. The findings suggest that while there is much controversy and debate regarding the validity and reliability of these tests in workplace settings as they were not originally designed for these purposes, the use of such assessments in the workplace has been useful in decreasing costs and employee turnover as well as increase job satisfaction by ensuring the right employees are selected for their roles.

Keywords: cognitive ability, personality testing, predictive validity, workplace behavior

Procedia PDF Downloads 242
2962 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform

Authors: Yingqi Cui, Changran Huang, Raymond Lee

Abstract:

In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.

Keywords: artificial intelligence, natural Language processing, knowledge graph, intelligent agents, QA system

Procedia PDF Downloads 187
2961 Mixed Natural Adsorbents and Oxides for Oil Remediation

Authors: Cesar Maximo Oliva González, Javier Acevedo Cortez, Boris Kharisov, Thelma Serrano Quezada

Abstract:

The importance of the crude oil refining process is due to the demand for petroleum products such as gasoline, kerosene, asphalt, etc., which are used in daily activities and have a high impact on the global economy. In the processes of oil obtaining and refining, it is common to find problems such as spills on seabed and high energy consumption in processing. In order to quickly and efficiently attack these problems, the use of adsorbents has taken on great importance due to its ease of implementation, as well as the possibility of their regeneration to be reused. In this work, the use of two types of adsorbents is proposed: the first is a natural adsorbent such as aloe vera or nopal, which were lyophilized and hydrophobized to achieve a selectivity in oil adsorption in oil / water mixtures. The second is a mixed iron/nickel oxide, which is specially designed to adsorb the asphaltenes in the heavy fractions of the oil; in addition, this type of adsorbents presents catalytic properties that manage to decompose the heavier fractions of the petroleum in light hydrocarbons, descending thus the energy required for the oil refining process.

Keywords: nanomaterials, oil spills, remediation, natural adsorbents, mixed oxides

Procedia PDF Downloads 241
2960 The Logistics Collaboration in Supply Chain of Orchid Industry in Thailand

Authors: Chattrarat Hotrawaisaya

Abstract:

This research aims to formulate the logistics collaborative model which is the management tool for orchid flower exporter. The researchers study logistics activities in orchid supply chain that stakeholders can collaborate and develop, including demand forecasting, inventory management, warehouse and storage, order-processing, and transportation management. The research also explores logistics collaboration implementation into orchid’s stakeholders. The researcher collected data before implementation and after model implementation. Consequently, the costs and efficiency were calculated and compared between pre and post period of implementation. The research found that the results of applying the logistics collaborative model to orchid exporter reduces inventory cost and transport cost. The model also improves forecasting accuracy, and synchronizes supply chain of exporter. This research paper contributes the uniqueness logistics collaborative model which value to orchid industry in Thailand. The orchid exporters may use this model as their management tool which aims in competitive advantage.

Keywords: logistics, orchid, supply chain, collaboration

Procedia PDF Downloads 437
2959 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
2958 Metabolic Engineering of Yarrowia Lipolytica for the Simultaneous Production of Succinic Acid (SA) and Polyhydroxyalkanoates (PHAs)

Authors: Qingsheng Qi, Cuijuan Gao, Carol Sze Ki Lin

Abstract:

Food waste can be defined as a by-product of food processing by industries and consumers, which has not been recycled or used for other purposes. Stringent waste regulations worldwide are pushing local companies and sectors towards higher sustainability standards. The development of novel strategies for food waste re-use is economically and environmentally sound, as it solves a waste management issue and represents an inexpensive nutrient source for biotechnological processes. For example, Yarrowia lipolytica is a yeast which can utilize hydrophobic substrates, such as fatty acids, lipids, and alkanes and simple carbon sources, such as glucose and glycerol, which can all be found in food waste. This broad substrate range makes Y. lipolytica a promising candidate for the degradation and valorisation of food waste, and for the production of organic acids, such as citric and α-ketoglutaric acids. Current research conducted in our group demonstrated that Y. lipolytica was shown to be able to produce succinic acid. In this talk, we will focus on the application of genetically modified yeast Y. lipolytica for fermentative succinic acid production with an aim to increase productivity and yield.

Keywords: food waste, succinic acid, Yarrowia lipolytica, bioplastic

Procedia PDF Downloads 292
2957 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series

Authors: Tamas Madl

Abstract:

Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.

Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification

Procedia PDF Downloads 234
2956 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm

Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao

Abstract:

In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.

Keywords: SEDREAMS, GCI, SBC, GOI

Procedia PDF Downloads 356
2955 Investigation of Lead and Zinc Oxide Deposits Using Geological and Geophysical Techniques at Oshiri Province in Onicha Local Government Area of Ebonyi State Located Within Southeastern Part of Nigeria, West Africa

Authors: Amaechi O. Azi, Uche D. Aluge, Lim H. San, Godwin A. Agbo

Abstract:

This paper is centered on the investigation of mineral deposits in selected locations in Oshiri province in Ebonyi State. Mineral deposits contribute immensely to the economic growth of a society. In researching lead and zinc oxide-bearing sites at Oshiri, geological and geophysical research technique was employed. Petrozenith, Earth Resistivity Meter, and Schlumberger setup were selected to examine the electrical characteristics of the subsurface. To determine the apparent resistivity of the subsurface, five soundings were taken, and the field data were processed using WinResist software. The mudstone, lead-shale, shale-granite, and lateritic topsoil were the four geoelectric strata that were found. The third layer, which corresponds to the shale-lead lithology, has a resistivity value between 211.9 m to 807.7 m at a depth of 25 m. Due to its resistivity levels and geological trend, this layer makes an excellent signature for lead-zinc occurrence. This zone is expected to house deposits of lead and zinc oxide in commercial quantity.

Keywords: Schlumberger, current, resistivity, lithology

Procedia PDF Downloads 76
2954 Effects of Chemical and Organic Fertilizer Application on Yield of Herbaceous Crops in Succession

Authors: Tarantino E., Disciglio G., Gagliardi A., Gatta G., Tarantino A.

Abstract:

Fertilizer is a critical input for improving production and increasing crop yields. Consecutive experimental trials during six years (from 2010-2015) were carried out in Apulia region (south-eastern Italy) on seven crops grown in cylinder pots. The aim was to determinate the effects of chemical and organic fertilizer on marketable yield and other parameters of processing tomato (Lycopersicum esculentum L., cv Docet), lettuce (Lactuca sativa L., cv Canasta), cauliflower (Brassica oleracea L., cv Casper), pepper (Capsicum annum L., cv Akron), fennel (Foeniculum vulgare L., cv Tarquinia), eggplant (Solanum melongena L. cv Primato F1) and chard (Beta vulgaris L., Argentata). At harvest the quail-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA). Results showed that the yields for all of these crops were greater under the chemical system than the organic system whereas quite variable results were generally observed for the other characteristics of the yield.

Keywords: fertilizers, herbaceous crops, yield characteristics, succession

Procedia PDF Downloads 583
2953 Water Demand Modelling Using Artificial Neural Network in Ramallah

Authors: F. Massri, M. Shkarneh, B. Almassri

Abstract:

Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.

Keywords: water management, demand forecasting, consumption, ANN, Ramallah

Procedia PDF Downloads 219
2952 Digital Literacy Skills for Geologist in Public Sector

Authors: Angsumalin Puntho

Abstract:

Disruptive technology has had a great influence on our everyday lives and the existence of an organization. Geologists in the public sector need to keep up with digital technology and be able to work and collaborate in a more effective manner. The result from SWOT and 7S McKinsey analyses suggest that there are inadequate IT personnel, no individual digital literacy development plan, and a misunderstanding of management policies. The Office of Civil Service Commission develops digital literacy skills that civil servants and government officers should possess in order to work effectively; it consists of nine dimensions, including computer skills, internet skills, cyber security awareness, word processing, spreadsheets, presentation programs, online collaboration, graphics editors and cyber security practices; and six steps of digital literacy development including self-assessment, individual development plan, self-learning, certified test, learning reflection, and practices. Geologists can use digital literacy as a learning tool to develop themselves for better career opportunities.

Keywords: disruptive technology, digital technology, digital literacy, computer skills

Procedia PDF Downloads 116
2951 The Effect of Physical Biorhythm Cycle on Health-Related Fitness Factors

Authors: Leyli Khavari, Javad Yousefian

Abstract:

The aim of this study was to investigate the effect of physical biorhythm cycle on health-related fitness factors. For this purpose, 120 athlete and non-athlete male and female students were selected randomly and based on the level of physical activity divided into athletic and non-athletic groups. The exact date of birth and also when the subjects were in the positive, negative and critical physical biorhythm cycle was determined by calculation software biorhythm. The physical fitness factors tests, including Queens College Step Test, AAHPERD sit-ups; Wells stretch test and hand dynamometer. Students in three stages in positive, negative and critical physical cycle were tested. Data processing using SPSS software and statistical tests ANOVA with repeated measures and student t test was used for dependent. The results of this study showed that changes in physical fitness and physical biorhythm were not affected by changes in the 23-day physical cycle.

Keywords: AAHPERD test, biorhythm, physical cycle, Queens College Step Test

Procedia PDF Downloads 182
2950 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data

Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores

Abstract:

Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.

Keywords: SAR, generalized gamma distribution, detection curves, radar detection

Procedia PDF Downloads 452
2949 R Software for Parameter Estimation of Spatio-Temporal Model

Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.

Keywords: GSTAR Model, MAPE, OLS method, oil production, R software

Procedia PDF Downloads 242
2948 An Improved Approach Based on MAS Architecture and Heuristic Algorithm for Systematic Maintenance

Authors: Abdelhadi Adel, Kadri Ouahab

Abstract:

This paper proposes an improved approach based on MAS Architecture and Heuristic Algorithm for systematic maintenance to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.

Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling

Procedia PDF Downloads 301
2947 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine

Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade

Abstract:

The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.

Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft

Procedia PDF Downloads 474
2946 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique

Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal

Abstract:

Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.

Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis

Procedia PDF Downloads 451
2945 Sustainability in Hospitality: An Inevitable Necessity in New Age with Big Environmental Challenges

Authors: Majid Alizadeh, Sina Nematizadeh, Hassan Esmailpour

Abstract:

The mutual effects of hospitality and the environment are undeniable, so that the tourism industry has major harmful effects on the environment. Hotels, as one of the most important pillars of the hospitality industry, have significant effects on the environment. Green marketing is a promising strategy in response to the growing concerns about the environment. A green hotel marketing model was proposed using a grounded theory approach in the hotel industry. The study was carried out as a mixed method study. Data gathering in the qualitative phase was done through literature review and In-depth, semi-structured interviews with 10 experts in green marketing using snowball technique. Following primary analysis, open, axial, and selective coding was done on the data, which yielded 69 concepts, 18 categories and six dimensions. Green hotel (green product) was adopted as the core phenomenon. In the quantitative phase, data were gleaned using 384 questionnaires filled-out by hotel guests and descriptive statistics and Structural equation modeling (SEM) were used for data analysis. The results indicated that the mediating role of behavioral response between the ecological literacy, trust, marketing mix and performance was significant. The green marketing mix, as a strategy, had a significant and positive effect on guests’ behavioral response, corporate green image, and financial and environmental performance of hotels.

Keywords: green marketing, sustainable development, hospitality, grounded theory, structural equations model

Procedia PDF Downloads 81
2944 Electricity Services and COVID-19: Understanding the Role of Infrastructure Improvements and Institutional Innovations

Authors: Javed Younas

Abstract:

Fiscal challenges pervade the electricity sector in many developing countries. Low bill payment and high theft mean utility customers have little incentive to conserve. It also means electricity distribution companies have less to invest in infrastructure maintenance, modernization, and technical upgrades. The low-quality electricity services can result impair the economic benefits from connections to the electrical grid. We study the impacts of two interventions implemented in Karachi, Pakistan, with the goal of reducing distribution losses and increasing revenue recovery: infrastructure improvements that made illegal connections physically more difficult and institutional innovations designed to increase communities’ trust in and cooperation with the utility. Using differences in implementation timing across space, we estimate the interventions’ impacts before the COVID-19 pandemic and their role in mitigating the pandemic’s effects on electricity services. Results indicate that the infrastructure improvements reduced losses, as well as the electricity delivered to the distribution system, a proxy for a generation. The institutional innovations significantly impacted revenue recovery, but not losses in their initial months; however, the efforts mitigated the pandemic’s negative effect on the utility finances.

Keywords: electricity, infrastructure, losses, revenue recovery

Procedia PDF Downloads 197
2943 Preparation and in vitro Characterisation of Chitosan/Hydroxyapatite Injectable Microspheres as Hard Tissue Substitution

Authors: H. Maachou, A. Chagnes, G. Cote

Abstract:

The present work reports the properties of chitosan/hydroxyapatite (Cs/HA: 100/00, 70/30 and 30/70) composite microspheres obtained by emulsification processing route. The morphology of chitosane microspheres was observed by a scanning electron microscope (SEM) which shows an aggregate of spherical microspheres with a particle size, determined by optical microscope, ranged from 4 to 10 µm. Thereafter, a biomimetic approach was used to study the in vitro biomineralization of these composites. It concerns the composites immersion in simulated body fluid (SBF) for different times. The deposited calcium phosphate was studied using X-ray diffraction analysis (XRD), FTIR spectroscopy and ICP analysis of phosphorus. In fact, the mineral formed on Cs/HA microspheres was a mixture of carbonated HA and β-TCP as showed by FTIR peaks at 1419,5 and 871,8 cm-1 and XRD peak at 29,5°. This formation was induced by the presence of HA in chitosan microspheres. These results are confirmed by SEM micrographs which chow the Ca-P crystals growth in form of cauliflowers. So, these materials are of great interest for bone regeneration applications due to their ability to nucleate calcium phosphates in presence of simulated body fluid (SBF).

Keywords: hydroxyapatite, chitosan, microsphere, composite, bone regeneration

Procedia PDF Downloads 330
2942 Economic and Environmental Benefits of the Best Available Technique Application in a Food Processing Plant

Authors: Frantisek Bozek, Pavel Budinsky, Ignac Hoza, Alexandr Bozek, Magdalena Naplavova

Abstract:

A cleaner production project was implemented in a bakery. The project is based on the substitution of the best available technique for an obsolete leaven production technology. The new technology enables production of durable, high-quality leavens. Moreover, 25% of flour as the original raw material can be replaced by pastry from the previous day production which has not been sold. That pastry was previously disposed in a waste incineration plant. Besides the environmental benefits resulting from less waste, lower consumption of energy, reduction of sewage waters quantity and floury dustiness there are also significant economic benefits. Payback period of investment was calculated with help of static method of financial analysis about 2.6 years, using dynamic method 3.5 years and an internal rate of return more than 29%. The supposed annual average profit after taxation in the second year of operation was incompliance with the real profit.

Keywords: bakery, best available technology, cleaner production, costs, economic benefit, efficiency, energy, environmental benefit, investment, savings

Procedia PDF Downloads 365
2941 Study on the Quality of Biscuits Prepared from Wheat Flour and Cassava Flour

Authors: Ramim Tanver Rahman, Muhammad Mahbub Sobhan, M. A. Alim

Abstract:

This study reports on processing of biscuits using skinned, treated and dried cassava flour. Five samples of biscuits S2, S3, S4, S5, and S6 containing 8, 16, 24, 32, and 40% cassava flour with wheat flour and a control sample (S1) containing no cassava flour were processed. The weights of all the biscuit samples were higher than that of control biscuit. The biscuit containing cassava flour was lower width than the control biscuit. The spread ratio of biscuits with 16% cassava flour was higher than other combinations of cassava flour. No remarkable changes in moisture content, peroxide value, fatty acid value, texture, and flavor were observed up to 4 months of storage in ambient conditions (27° to 35°C). A decreasing trend in color, flavor, texture and overall acceptability was observed with the increased incorporation of cassava flour. The sample S1 (no cassava flour) secured the highest overall acceptability and sample S6 (40% cassava flour) obtained the lowest overall acceptability. It is recommended that good quality cassava flour fortified biscuits may be processed in industrial-scale substituting the wheat flour by cassava flour up to 24% levels.

Keywords: cassava flour, wheat flour, shelf life, spread ratio, storage, biscuit

Procedia PDF Downloads 369
2940 Design Modification in CNC Milling Machine to Reduce the Weight of Structure

Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar

Abstract:

The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.

Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction

Procedia PDF Downloads 277
2939 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 109