Search results for: segmentation genes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1357

Search results for: segmentation genes

847 Early Diagnosis and Treatment of Cancer Using Synthetic Cationic Peptide

Authors: D. J. Kalita

Abstract:

Cancer is one of the prime causes of early death worldwide. Mutation of the gene involve in DNA repair and damage, like BRCA2 (Breast cancer gene two) genes, can be detected efficiently by PCR-RFLP to early breast cancer diagnosis and adopt the suitable method of treatment. Host Defense Peptide can be used as blueprint for the design and synthesis of novel anticancer drugs to avoid the side effect of conventional chemotherapy and chemo resistance. The change at nucleotide position 392 of a -› c in the cancer sample of dog mammary tumour at BRCA2 (exon 7) gene lead the creation of a new restriction site for SsiI restriction enzyme. This SNP may be a marker for detection of canine mammary tumour. Support vector machine (SVM) algorithm was used to design and predict the anticancer peptide from the mature functional peptide. MTT assay of MCF-7 cell line after 48 hours of post treatment showed an increase in the number of rounded cells when compared with untreated control cells. The ability of the synthesized peptide to induce apoptosis in MCF-7 cells was further investigated by staining the cells with the fluorescent dye Hoechst stain solution, which allows the evaluation of the nuclear morphology. Numerous cells with dense, pyknotic nuclei (the brighter fluorescence) were observed in treated but not in control MCF-7 cells when viewed using an inverted phase-contrast microscope. Thus, PCR-RFLP is one of the attractive approach for early diagnosis, and synthetic cationic peptide can be used for the treatment of canine mammary tumour.

Keywords: cancer, cationic peptide, host defense peptides, Breast cancer genes

Procedia PDF Downloads 90
846 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models

Authors: Ainouna Bouziane

Abstract:

The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.

Keywords: electron tomography, supported catalysts, nanometrology, error assessment

Procedia PDF Downloads 87
845 Analysis of Nitrogenase Fe Protein Activity in Transplastomic Tobacco

Authors: Jose A. Aznar-Moreno, Xi Jiang, Stefan Burén, Luis M. Rubio

Abstract:

Integration of prokaryotic nitrogen fixation (nif) genes into the plastid genome for expression of functional nitrogenase components could render plants capable of assimilating atmospheric N2 making their crops less dependent of nitrogen fertilizers. The nitrogenase Fe protein component (NifH) has been used as proxy for expression and targeting of Nif proteins within plant and yeast cells. Here we use tobacco plants with the Azotobacter vinelandii nifH and nifM genes integrated into the plastid genome. NifH and its maturase NifM were constitutively produced in leaves, but not roots, during light and dark periods. Nif protein expression in transplastomic plants was stable throughout development. Chloroplast NifH was soluble, but it only showed in vitro activity when isolated from leaves collected at the end of the dark period. Exposing the plant extracts to elevated temperatures precipitated NifM and apo-NifH protein devoid of [Fe4S4] clusters, dramatically increasing the specific activity of remaining NifH protein. Our data indicate that the chloroplast endogenous [Fe-S] cluster biosynthesis was insufficient for complete NifH maturation, albeit a negative effect on NifH maturation due to excess NifM in the chloroplast cannot be excluded. NifH and NifM constitutive expression in transplastomic plants did not affect any of the following traits: seed size, germination time, germination ratio, seedling growth, emergence of the cotyledon and first leaves, chlorophyll content and plant height throughout development.

Keywords: NifH, chloroplast, nitrogen fixation, crop improvement, transplastomic plants, fertilizer, biotechnology

Procedia PDF Downloads 162
844 Contribution of PALB2 and BLM Mutations to Familial Breast Cancer Risk in BRCA1/2 Negative South African Breast Cancer Patients Detected Using High-Resolution Melting Analysis

Authors: N. C. van der Merwe, J. Oosthuizen, M. F. Makhetha, J. Adams, B. K. Dajee, S-R. Schneider

Abstract:

Women representing high-risk breast cancer families, who tested negative for pathogenic mutations in BRCA1 and BRCA2, are four times more likely to develop breast cancer compared to women in the general population. Sequencing of genes involved in genomic stability and DNA repair led to the identification of novel contributors to familial breast cancer risk. These include BLM and PALB2. Bloom's syndrome is a rare homozygous autosomal recessive chromosomal instability disorder with a high incidence of various types of neoplasia and is associated with breast cancer when in a heterozygous state. PALB2, on the other hand, binds to BRCA2 and together, they partake actively in DNA damage repair. Archived DNA samples of 66 BRCA1/2 negative high-risk breast cancer patients were retrospectively selected based on the presence of an extensive family history of the disease ( > 3 affecteds per family). All coding regions and splice-site boundaries of both genes were screened using High-Resolution Melting Analysis. Samples exhibiting variation were bi-directionally automated Sanger sequenced. The clinical significance of each variant was assessed using various in silico and splice site prediction algorithms. Comprehensive screening identified a total of 11 BLM and 26 PALB2 variants. The variants detected ranged from global to rare and included three novel mutations. Three BLM and two PALB2 likely pathogenic mutations were identified that could account for the disease in these extensive breast cancer families in the absence of BRCA mutations (BLM c.11T > A, p.V4D; BLM c.2603C > T, p.P868L; BLM c.3961G > A, p.V1321I; PALB2 c.421C > T, p.Gln141Ter; PALB2 c.508A > T, p.Arg170Ter). Conclusion: The study confirmed the contribution of pathogenic mutations in BLM and PALB2 to the familial breast cancer burden in South Africa. It explained the presence of the disease in 7.5% of the BRCA1/2 negative families with an extensive family history of breast cancer. Segregation analysis will be performed to confirm the clinical impact of these mutations for each of these families. These results justify the inclusion of both these genes in a comprehensive breast and ovarian next generation sequencing cancer panel and should be screened simultaneously with BRCA1 and BRCA2 as it might explain a significant percentage of familial breast and ovarian cancer in South Africa.

Keywords: Bloom Syndrome, familial breast cancer, PALB2, South Africa

Procedia PDF Downloads 236
843 Inhibitory Effect of P2Y1R Agonist 1-Indolinoalkyl 2-Phenolic Derivative on Prostate Cancer Cell Proliferation via the MAPK Signalling

Authors: Hien Thi Thu Le, Nuno Rafael Candeias, Olli Yli-Harja, Meenakshisundaram Kandhavelu

Abstract:

Purinergic receptor 1 (P2Y1R) is the potential therapeutic target for inducing prostate cancer (PCa) cell death. Recently, 1-indolinoalkyl 2-phenolic derivative, HIC, was identified as a P2Y1R agonist that increases apoptosis and inhibits cell proliferation of PCa. However, the biological effects of HIC have not been extensively studied at the molecular level. In the present study, we have investigated the anticancer effects of HIC and the molecular mechanisms underlying in PCa cells. Half maximal inhibitory concentration (IC₅₀) of HIC was measured as 15.98 μM and 15.64 μM for DU145 and PC3 cells, respectively. In addition, we found that HIC inhibited cell growth and metastasis of PC3 and DU145 cells colonies, spheroid areas, and migrated cells. RNA seq analysis revealed significant changes of over 3000 genes (p value < 0.05) upon HIC treatment in PC3 and DU145 cells. Genes involved in DNA damage, apoptosis, cell cycle arrest at G1/S phase were modulated by HIC treatment. MAPK and NF-κB protein array revealed the increased expression of ERK1/2, JNK1/2, p53 phosphorylation, and p53 protein. ERK1/2 and JNK1/2 activations are known to increase the stabilization of p53, a tumor suppressor protein, which is required to arrest the cell cycle at G1/S phase and cause cell death of PCa cells. Overall, our results suggest that HIC can serve as a multi-dimensional chemotherapeutic agent possessing strong cytotoxic, anti-cancer, and anti-metastasis against PCa growth.

Keywords: prostate cancer, P2Y1 receptor, apoptosis, metastasis

Procedia PDF Downloads 133
842 Identification of a Panel of Epigenetic Biomarkers for Early Detection of Hepatocellular Carcinoma in Blood of Individuals with Liver Cirrhosis

Authors: Katarzyna Lubecka, Kirsty Flower, Megan Beetch, Lucinda Kurzava, Hannah Buvala, Samer Gawrieh, Suthat Liangpunsakul, Tracy Gonzalez, George McCabe, Naga Chalasani, James M. Flanagan, Barbara Stefanska

Abstract:

Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is the second leading cause of cancer death worldwide. Late onset of clinical symptoms in HCC results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable early detection biomarkers that can distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed and could increase the cure rate from 5% to 80%. We used Illumina-450K microarray to test whether blood DNA, an easily accessible source of DNA, bear site-specific changes in DNA methylation in response to HCC before diagnosis with conventional tools (pre-diagnostic). Top 11 differentially methylated sites were selected for validation by pyrosequencing. The diagnostic potential of the 11 pyrosequenced probes was tested in blood samples from a prospective cohort of cirrhotic patients. We identified 971 differentially methylated CpG sites in pre-diagnostic HCC cases as compared with healthy controls (P < 0.05, paired Wilcoxon test, ICC ≥ 0.5). Nearly 76% of differentially methylated CpG sites showed lower levels of methylation in cases vs. controls (P = 2.973E-11, Wilcoxon test). Classification of the CpG sites according to their location relative to CpG islands and transcription start site revealed that those hypomethylated loci are located in regulatory regions important for gene transcription such as CpG island shores, promoters, and 5’UTR at higher frequency than hypermethylated sites. Among 735 CpG sites hypomethylated in cases vs. controls, 482 sites were assigned to gene coding regions whereas 236 hypermethylated sites corresponded to 160 genes. Bioinformatics analysis using GO, KEGG and DAVID knowledgebase indicate that differentially methylated CpG sites are located in genes associated with functions that are essential for gene transcription, cell adhesion, cell migration, and regulation of signal transduction pathways. Taking into account the magnitude of the difference, statistical significance, location, and consistency across the majority of matched pairs case-control, we selected 11 CpG loci corresponding to 10 genes for further validation by pyrosequencing. We established that methylation of CpG sites within 5 out of those 10 genes distinguish cirrhotic patients who subsequently developed HCC from those who stayed cancer free (cirrhotic controls), demonstrating potential as biomarkers of early detection in populations at risk. The best predictive value was detected for CpGs located within BARD1 (AUC=0.70, asymptotic significance ˂0.01). Using an additive logistic regression model, we further showed that 9 CpG loci within those 5 genes, that were covered in pyrosequenced probes, constitute a panel with high diagnostic accuracy (AUC=0.887; 95% CI:0.80-0.98). The panel was able to distinguish pre-diagnostic cases from cirrhotic controls free of cancer with 88% sensitivity at 70% specificity. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established biomarker panel has high potential to be developed into a routine clinical test after validation in larger cohorts. This study was supported by Showalter Trust, American Cancer Society (IRG#14-190-56), and Purdue Center for Cancer Research (P30 CA023168) granted to BS.

Keywords: biomarker, DNA methylation, early detection, hepatocellular carcinoma

Procedia PDF Downloads 304
841 Effect of Different Muscle Contraction Mode on the Expression of Myostatin, IGF-1, and PGC-1 Alpha Family Members in Human Vastus Lateralis Muscle

Authors: Pejman Taghibeikzadehbadr

Abstract:

Muscle contraction stimulates a transient change of myogenic factors, partly related to the mode of contractions. Here, we assessed the response of Insulin-like growth factor 1Ea (IGF-1Ea), Insulin-like growth factor 1Eb (IGF-1Eb), Insulin-like growth factor 1Ec (IGF-1Ec), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α-1), Peroxisome proliferator-activated receptor gamma coactivator 4-alpha (PGC1α-4), and myostatin to the eccentric Vs the concentric contraction in human skeletal muscle. Ten healthy males were performed an acute eccentric and concentric exercise bout (n = 5 per group). For each contraction type, participants performed 12 sets of 10 repetitions knee extension by the dominant leg. Baseline and post-exercise muscle biopsy were taken 4 weeks before and immediately after experimental sessions from Vastus Lateralis muscle. Genes expression was measured by real-time PCR technique. There was a significant increase in PGC1α-1, PGC1α-4, IGF-1Ea and, IGF-1Eb mRNA after concentric contraction (p ≤ 0.05), while the PGC1α-4 and IGF-1Ec significantly increased after eccentric contraction (p ≤ 0.05). It is intriguing to highlight that; no significant differences between groups were evident for changes in any variables following exercise bouts (p ≥ 0.05). Our results found that concentric and eccentric contractions presented different responses in PGC1α-1, IGF-1Ea, IGF-1Eb, and IGF-1Ec mRNA. However, a similar significant increase in mRNA content was observed in PGC1α-4. Further, no apparent differences could be found between the response of genes to eccentric and concentric contraction.

Keywords: eccentric contraction, concentric contraction, gene expression, PGC-1 alpha, IGF-1 Myostatin

Procedia PDF Downloads 160
840 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach

Authors: Kanika Gupta, Ashok Kumar

Abstract:

Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.

Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database

Procedia PDF Downloads 170
839 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.

Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM

Procedia PDF Downloads 116
838 Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA are Reduced in Patients with Type 2 Diabetes Evidence That Insulin Resistance is Associated with a Disturbed Antioxidant Defense Mechanism

Authors: Ghibeche Abderrahmane

Abstract:

To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n=7) and age-matched (n=5) and young (n=9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50,P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle.

Keywords: euglycemic-hyperinsulinemic, HSP72, mRNA, diabete

Procedia PDF Downloads 440
837 Molecular Detection and Antibiotics Resistance Pattern of Extended-Spectrum Beta-Lactamase Producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria

Authors: I. N. Nwafia, U. C. Ozumba, M. E. Ohanu, S. O. Ebede

Abstract:

Antibiotic resistance is increasing globally and has become a major health challenge. Extended-spectrum beta-lactamase is clinically important because the ESBL gene are mostly plasmid encoded and these plasmids frequently carry genes encoding resistance to other classes of antimicrobials thereby limiting antibiotic options in the treatment of infections caused by these organisms. The specific objectives of this study were to determine the prevalence of ESBLs production in Escherichia coli, to determine the antibiotic susceptibility pattern of ESBLs producing Escherichia coli, to detect TEM, SHV and CTX-M genes and the risk factors to acquisition of ESBL producing Escherichia coli. The protocol of the study was approved by Health Research and Ethics committee of the University of Nigeria Teaching Hospital (UNTH), Enugu. It was a descriptive cross-sectional study that involved all hospitalized patients in UNTH from whose specimens Escherichia coli was isolated during the period of the study. The samples analysed were urine, wound swabs, blood and cerebrospinal fluid. These samples were cultured in 5% sheep Blood agar and MacConkey agar (Oxoid Laboratories, Cambridge UK) and incubated at 35-370C for 24 hours. Escherichia coli was identified with standard biochemical tests and confirmed using API 20E auxanogram (bioMerieux, Marcy 1'Etoile, France). The antibiotic susceptibility testing was done by disc diffusion method and interpreted according to the Clinical and Laboratory Standard Institute guideline. ESBL production was confirmed using ESBL Epsilometer test strips (Liofilchem srl, Italy). The ESBL bla genes were detected with polymerase chain reaction, after extraction of DNA with plasmid mini-prep kit (Jena Bioscience, Jena, Germany). Data analysis was with appropriate descriptive and inferential statistics. One hundred and six isolates (53.00%) out of the 200 were from urine, followed by isolates from different swabs specimens 53(26.50%) and the least number of the isolates 4(2.00) were from blood (P value = 0.096). Seventy (35.00%) out of the 200 isolates, were confirmed positive for ESBL production. Forty-two (60.00%) of the isolates were from female patients while 28(40.00%) were from male patients (P value = 0.13). Sixty-eight (97.14%) of the isolates were susceptible to imipenem while all of the isolates were resistant to ampicillin, chloramphenicol and tetracycline. From the 70 positive isolates the ESBL genes detected with polymerase chain reaction were blaCTX-M (n=26; 37.14%), blaTEM (n=7; 10.00%), blaSHV (n=2; 2.86%), blaCTX-M/TEM (n=7; 10.0%), blaCTX-M/SHV (n=14; 20.0%) and blaCTX-M/TEM/SHV (n=10; 14.29%). There was no gene detected in 4(5.71%) of the isolates. The most associated risk factors to infections caused by ESBL producing Escherichia coli was previous antibiotics use for the past 3 months followed by admission in the intensive care unit, recent surgery, and urinary catheterization. In conclusion, ESBLs was detected in 4 of every 10 Escherichia coli with the predominant gene detected being CTX-M. This knowledge will enable appropriate measures towards improvement of patient health care, antibiotic stewardship, research and infection control in the hospital.

Keywords: antimicrobial, Escherichia coli, extended spectrum beta lactamase, resistance

Procedia PDF Downloads 299
836 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
835 Micro-Ribonucleic Acid-21 as High Potential Prostate Cancer Biomarker

Authors: Regina R. Gunawan, Indwiani Astuti, H. Raden Danarto

Abstract:

Cancer is the leading cause of death worldwide. Cancer is caused by mutations that alter the function of normal human genes and give rise to cancer genes. MicroRNA (miRNA) is a small non-coding RNA that regulates the gen through complementary bond towards mRNA target and cause mRNA degradation. miRNA works by either promoting or suppressing cell proliferation. miRNA level expression in cancer may offer another value of miRNA as a biomarker in cancer diagnostic. miRNA-21 is believed to have a role in carcinogenesis by enhancing proliferation, anti-apoptosis, cell cycle progression and invasion of tumor cells. Hsa-miR-21-5p marker has been identified in Prostate Cancer (PCa) and Benign Prostatic Hyperplasia (BPH) patient’s urine. This research planned to explore the diagnostic performance of miR-21 to differentiate PCa and BPH patients. In this study, urine samples were collected from 20 PCa patients and 20 BPH patients. miR-21 relative expression against the reference gene was analyzed and compared between the two. miRNA expression was analyzed using the comparative quantification method to find the fold change. miR-21 validity in identifying PCa patients was performed by quantifying the sensitivity and specificity with the contingency table. miR-21 relative expression against miR-16 in PCa patient and in BPH patient has 12,98 differences in fold change. From a contingency table of Cq expression of miR-21 in identifying PCa patients from BPH patient, Cq miR-21 has 100% sensitivity and 75% specificity. miR-21 relative expression can be used in discriminating PCa from BPH by using a urine sample. Furthermore, the expression of miR-21 has higher sensitivity compared to PSA (Prostate specific antigen), therefore miR-21 has a high potential to be analyzed and developed more.

Keywords: benign prostate hyperplasia, biomarker, miRNA-21, prostate cancer

Procedia PDF Downloads 159
834 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images

Authors: Shenlun Chen, Leonard Wee

Abstract:

Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.

Keywords: colorectal cancer, differentiation, survival analysis, tumor grading

Procedia PDF Downloads 134
833 Effect of Miconazole Nitrate on Immunological Response and Its Preventive Efficacy in Labeo rohita Fingerlings against Oomycetes Saprolegnia parasitica

Authors: Mukta Singh, Ratan Kumar Saha, Himadri Saha, Paramveer Singh

Abstract:

The present study evaluated the effect of sub-lethal doses of antifungal drug miconazole nitrate (MCZ) on immunological responses including immune-related gene expression and its role as a prophylactic drug against S. parasitica in Labeo rohita fingerlings. Fish were fed with sub lethal doses of MCZ i.e., T1- 6.30 mg MCZ kgBW⁻¹, T2- 12.61 mg MCZ kgBW⁻¹ and T3- 25.22 mg MCZ kgBW⁻¹ and sampling was done at different time intervals for 240 h. Immunological parameters viz. lysozyme activity, oxygen radical production and plasma anti-protease activity showed significant enhancement (p < 0.05) in fish fed with T2 and T3 doses. Significant reduction in plasma protein content was observed in all the dietary groups as compared to control. Expression of immune-relevant genes like TLR-22 and β2-M showed significantly higher expression at six h and 24 h of sampling in both liver and head-kidney. However, these genes showed a down-regulation after 120 h of sampling in both the tissues. Preventive efficacy study showed that single dose of MCZ provides protection against oomycetes up to the fourth day of infection. Significantly higher mortality was observed in control diet-fed fish as compared to fish fed with MCZ medicated diet. Thus, from the study, it can be concluded that the MCZ can act as a potent antifungal agent for preventing oomycetes infection as well as to enhance the immune response.

Keywords: antifungal, immune gene, immunological, miconazole nitrate, prophylactic

Procedia PDF Downloads 246
832 Hyaluronan and Hyaluronan-Associated Genes in Human CD8 T Cells

Authors: Emily Schlebes, Christian Hundhausen, Jens W. Fischer

Abstract:

The glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix, typically produced by fibroblasts of the connective tissue but also by immune cells. Here, we investigated the capacity of human peripheral blood CD8 T cells from healthy donors to produce HA and to express HA receptors as well as HA degrading enzymes. Further, we evaluated the effect of pharmacological HA inhibition on CD8 T cell function. Using immunocytochemistry together with quantitative PCR analysis, we found that HA synthesis is rapidly induced upon antibody-induced T cell receptor (TCR) activation and almost exclusively mediated by HA synthase 3 (HAS3). TCR activation also resulted in the upregulation of HA receptors CD44, hyaluronan-mediated motility receptor (HMMR), and layilin (LAYN), although kinetics and strength of expression varied greatly between subjects. The HA-degrading enzymes HYAL1 and HYAL2 were detected at low levels and induced by cell activation in some individuals. Interestingly, expression of HAS3, HA receptors, and hyaluronidases were modulated by the proinflammatory cytokines IL-6 and IL-1bβ in most subjects. To assess the functional role of HA in CD8 T cells, we performed carboxyfluorescein succinimidyl ester (CFSE) based proliferation assays and cytokine analysis in the presence of the HA inhibitor 4- Methylumbelliferone (4-MU). Despite significant inter-individual variation with regard to the effective dose, 4-MU resulted in the inhibition of CD8 T cell proliferation and reduced release of TNF-α and IFN-γ. Collectively, these data demonstrate that human CD8 T cells respond to TCR stimulation with a synthesis of HA and expression of HA-related genes. They further suggest that HA inhibition may be helpful in interfering with pathogenic T cell activation in human disease.

Keywords: CD8 T cells, extracellular matrix, hyaluronan, hyaluronan synthase 3

Procedia PDF Downloads 99
831 Identification and Isolation of E. Coli O₁₅₇:H₇ From Water and Wastewater of Shahrood and Neka Cities by PCR Technique

Authors: Aliasghar Golmohammadian, Sona Rostampour Yasouri

Abstract:

One of the most important intestinal pathogenic strains is E. coli O₁₅₇:H₇. This pathogenic bacterium is transmitted to humans through water and food. E. coli O₁₅₇:H₇ is the main cause of Hemorrhagic colitis (HC), Hemolytic Uremic Syndrome (HUS), Thrombotic Thrombocytopenic Purpura (TTP) and in some cases death. Since E. coli O₁₅₇:H₇ can be transmitted through the consumption of different foods, including vegetables, agricultural products, and fresh dairy products, this study aims to identify and isolate E. coli O₁₅₇:H₇ from wastewater by PCR technique. One hundred twenty samples of water and wastewater were collected by Falcom Sterile from Shahrood and Neka cities. The samples were checked for colony formation after appropriate centrifugation and cultivation in the specific medium of Sorbitol MacConkey Agar (SMAC) and other diagnostic media of E. coli O₁₅₇:H₇. Also, the plates were observed macroscopically and microscopically. Then, the necessary phenotypic tests were performed on the colonies, and finally, after DNA extraction, the PCR technique was performed with specific primers related to rfbE and stx2 genes. The number of 5 samples (6%) out of all the samples examined were determined positive by PCR technique with observing the bands related to the mentioned genes on the agarose gel electrophoresis. PCR is a fast and accurate method to identify the bacteria E. coli O₁₅₇:H₇. Considering that E. coli bacteria is a resistant bacteria and survives in water and food for weeks and months, the PCR technique can provide the possibility of quick detection of contaminated water. Moreover, it helps people in the community control and prevent the transfer of bacteria to healthy and underground water and agricultural and even dairy products.

Keywords: E. coli O₁₅₇:H₇, PCR, water, wastewater

Procedia PDF Downloads 65
830 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 42
829 Towards Development of Superior Brassica juncea by Pyramiding of Genes of Diverse Pathways for Value Addition, Stress Alleviation and Human Health

Authors: Deepak Kumar, Ravi Rajwanshi, Mohd. Aslam Yusuf, Nisha Kant Pandey, Preeti Singh, Mukesh Saxena, Neera Bhalla Sarin

Abstract:

Global issues are leading to concerns over food security. These include climate change, urbanization, increase in population subsequently leading to greater energy and water demand. Futuristic approach for crop improvement involves gene pyramiding for agronomic traits that empower the plants to withstand multiple stresses. In an earlier study from the laboratory, the efficacy of overexpressing γ-tocopherol methyl transferase (γ-TMT) gene from the vitamin E biosynthetic pathway has been shown to result in six-fold increase of the most biologically active form, the α-tocopherol in Brassica juncea which resulted in alleviation of salt, heavy metal and osmoticum induced stress by the transgenic plants. The glyoxalase I (gly I) gene from the glyoxalase pathway has also been earlier shown by us to impart tolerance against multiple abioitc stresses by detoxification of the cytotoxic compound methylglyoxal in Brassica juncea. Recently, both the transgenes were pyramided in Brassica juncea lines through sexual crosses involving two stable Brassica juncea lines overexpressing γ-TMT and gly I genes respectively. The transgene integration was confirmed by PCR analysis and their mRNA expression was evident by RT-PCR analysis. Preliminary physiological investigations showed ~55% increased seed germination under 200 mM NaCl stress in the pyramided line and 81% higher seed germination under 200 mM mannitol stress as compared to the WT control plants. The pyramided lines also retained more chlorophyll content when the leaf discs were floated on NaCl (200, 400 and 600 mM) or mannitol (200, 400 and 600 mM) compared to the WT control plants. These plants had higher Relative Water Content and greater solute accumulation under stress compared to the parental plants having γ-TMT or the glyI gene respectively. The studies revealed the synergy of two components from different metabolic pathways in enhancing stress hardiness of the transgenic B. juncea plants. It was concluded that pyramiding of genes (γ-TMT and glyI) from diverse pathways can lead to enhanced tolerance to salt and mannitol stress (simulating drought conditions). This strategy can prove useful in enhancing the crop yields under various abiotic stresses.

Keywords: abiotic stress, brassica juncea, glyoxalase I, α-tocopherol

Procedia PDF Downloads 550
828 Association of Nuclear – Mitochondrial Epistasis with BMI in Type 1 Diabetes Mellitus Patients

Authors: Agnieszka H. Ludwig-Slomczynska, Michal T. Seweryn, Przemyslaw Kapusta, Ewelina Pitera, Katarzyna Cyganek, Urszula Mantaj, Lucja Dobrucka, Ewa Wender-Ozegowska, Maciej T. Malecki, Pawel Wolkow

Abstract:

Obesity results from an imbalance between energy intake and its expenditure. Genome-Wide Association Study (GWAS) analyses have led to discovery of only about 100 variants influencing body mass index (BMI), which explain only a small portion of genetic variability. Analysis of gene epistasis gives a chance to discover another part. Since it was shown that interaction and communication between nuclear and mitochondrial genome are indispensable for normal cell function, we have looked for epistatic interactions between the two genomes to find their correlation with BMI. Methods: The analysis was performed on 366 T1DM patients using Illumina Infinium OmniExpressExome-8 chip and followed by imputation on Michigan Imputation Server. Only genes which influence mitochondrial functioning (listed in Human MitoCarta 2.0) were included in the analysis – variants of nuclear origin (MAF > 5%) in 1140 genes and 42 mitochondrial variants (MAF > 1%). Gene expression analysis was performed on GTex data. Association analysis between genetic variants and BMI was performed with the use of Linear Mixed Models as implemented in the package 'GENESIS' in R. Analysis of association between mRNA expression and BMI was performed with the use of linear models and standard significance tests in R. Results: Among variants involved in epistasis between mitochondria and nucleus we have identified one in mitochondrial transcription factor, TFB2M (rs6701836). It interacted with mitochondrial variants localized to MT-RNR1 (p=0.0004, MAF=15%), MT-ND2 (p=0.07, MAF=5%) and MT-ND4 (p=0.01, MAF=1.1%). Analysis of the interaction between nuclear variant rs6701836 (nuc) and rs3021088 localized to MT-ND2 mitochondrial gene (mito) has shown that the combination of the two led to BMI decrease (p=0.024). Each of the variants on its own does not correlate with higher BMI [p(nuc)=0.856, p(mito)=0.116)]. Although rs6701836 is intronic, it influences gene expression in the thyroid (p=0.000037). rs3021088 is a missense variant that leads to alanine to threonine substitution in the MT-ND2 gene which belongs to complex I of the electron transport chain. The analysis of the influence of genetic variants on gene expression has confirmed the trend explained above – the interaction of the two genes leads to BMI decrease (p=0.0308). Each of the mRNAs on its own is associated with higher BMI (p(mito)=0.0244 and p(nuc)=0.0269). Conclusıons: Our results show that nuclear-mitochondrial epistasis can influence BMI in T1DM patients. The correlation between transcription factor expression and mitochondrial genetic variants will be subject to further analysis.

Keywords: body mass index, epistasis, mitochondria, type 1 diabetes

Procedia PDF Downloads 175
827 Prenatal Use of Serotonin Reuptake Inhibitors (SRIs) and Congenital Heart Anomalies (CHA): An Exploratory Pharmacogenetics Study

Authors: Aizati N. A. Daud, Jorieke E. H. Bergman, Wilhelmina S. Kerstjens-Frederikse, Pieter Van Der Vlies, Eelko Hak, Rolf M. F. Berger, Henk Groen, Bob Wilffert

Abstract:

Prenatal use of SRIs was previously associated with Congenital Heart Anomalies (CHA). The aim of the study is to explore whether pharmacogenetics plays a role in this teratogenicity using a gene-environment interaction study. A total of 33 case-mother dyads and 2 mother-only (children deceased) registered in EUROCAT Northern Netherlands were included in a case-only study. Five case-mother dyads and two mothers-only were exposed to SRIs (paroxetine=3, fluoxetine=2, venlafaxine=1, paroxetine and venlafaxine=1) in the first trimester of pregnancy. The remaining 28 case-mother dyads were not exposed to SRIs. Ten genes that encode the enzymes or proteins important in determining fetal exposure to SRIs or its mechanism of action were selected: CYPs (CYP1A2, CYP2C9, CYP2C19, CYP2D6), ABCB1 (placental P-glycoprotein), SLC6A4 (serotonin transporter) and serotonin receptor genes (HTR1A, HTR1B, HTR2A, and HTR3B). All included subjects were genotyped for 58 genetic variations in these ten genes. Logistic regression analyses were performed to determine the interaction odds ratio (OR) between genetic variations and SRIs exposure on the risk of CHA. Due to low phenotype frequencies of CYP450 poor metabolizers among exposed cases, the OR cannot be calculated. For ABCB1, there was no indication of changes in the risk of CHA with any of the ABCB1 SNPs in the children and their mothers. Several genetic variations of the serotonin transporter and receptors (SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 & rs6298, HTR3B rs1176744) were associated with an increased risk of CHA, but with too limited sample size to reach statistical significance. For SLC6A4 genetic variations, the mean genetic scores of the exposed case-mothers tended to be higher than the unexposed mothers (2.5 ± 0.8 and 1.88 ± 0.7, respectively; p=0.061). For SNPs of the serotonin receptors, the mean genetic score for exposed cases (children) tended to be higher than the unexposed cases (3.4 ± 2.2, and 1.9 ± 1.6, respectively; p=0.065). This study might be among the first to explore the potential gene-environment interaction between pharmacogenetic determinants and SRIs use on the risk of CHA. With small sample sizes, it was not possible to find a significant interaction. However, there were indications for a role of serotonin receptor polymorphisms in fetuses exposed to SRIs on fetal risk of CHA which warrants further investigation.

Keywords: gene-environment interaction, heart defects, pharmacogenetics, serotonin reuptake inhibitors, teratogenicity

Procedia PDF Downloads 219
826 CMPD: Cancer Mutant Proteome Database

Authors: Po-Jung Huang, Chi-Ching Lee, Bertrand Chin-Ming Tan, Yuan-Ming Yeh, Julie Lichieh Chu, Tin-Wen Chen, Cheng-Yang Lee, Ruei-Chi Gan, Hsuan Liu, Petrus Tang

Abstract:

Whole-exome sequencing focuses on the protein coding regions of disease/cancer associated genes based on a priori knowledge is the most cost-effective method to study the association between genetic alterations and disease. Recent advances in high throughput sequencing technologies and proteomic techniques has provided an opportunity to integrate genomics and proteomics, allowing readily detectable mutated peptides corresponding to mutated genes. Since sequence database search is the most widely used method for protein identification using Mass spectrometry (MS)-based proteomics technology, a mutant proteome database is required to better approximate the real protein pool to improve disease-associated mutated protein identification. Large-scale whole exome/genome sequencing studies were launched by National Cancer Institute (NCI), Broad Institute, and The Cancer Genome Atlas (TCGA), which provide not only a comprehensive report on the analysis of coding variants in diverse samples cell lines but a invaluable resource for extensive research community. No existing database is available for the collection of mutant protein sequences related to the identified variants in these studies. CMPD is designed to address this issue, serving as a bridge between genomic data and proteomic studies and focusing on protein sequence-altering variations originated from both germline and cancer-associated somatic variations.

Keywords: TCGA, cancer, mutant, proteome

Procedia PDF Downloads 593
825 Hypervirulent Klebsiella Pneumoniae in a South African Tertiary Hospital – Clinical Profile, Genetic Determinants and Virulence in Caenorhabditis Elegans

Authors: Dingiswayo Likhona, Arko-Cobbah Emmanuel, Carolina Pohl, Nthabiseng Z. Mokoena, Jolly Musoke

Abstract:

A distinct strain of Klebsiella pneumoniae (K. pneumoniae), referred to as hypervirulent (hvKp), is associated with invasive infections such as an invasive pyogenic liver abscess in young and healthy individuals. In South Africa, limited information is known about the prevalence and virulence of this hvKp strain. Thus, this study aimed to determine the prevalence of hvKp and virulence-associated factors in K. pneumoniae isolates from one of the largest Tertiary hospitals in a South African province. A total of 74 K. pneumoniae isolates were received from Pelonomi National Health Laboratory Services (NHLS), Bloemfontein. Virulence-associated genes (rmpA, capsule serotype K1/K2, iroB, and irp2) were screened, and the virulence of hvKp vs. classical Klebsiella pneumoniae (cKp) was investigated using Caenorhabditis elegans nematode model. The iutA (aerobactin transporter) gene was used as a primary biomarker of hvKp. An average of 12% (9/74) of cases were defined as hvKp. Moreover, hvKp was found to be significantly more virulent in vivo Caenorhabditis elegans relative to cKp. The virulence-associated genes (rmpA, iroB, hmv phenotype, and capsule K1/K2) were significantly (p< 0.05) associated with hvKp. Findings from this study confirm the presence of hvKp in one large Tertiary hospital in South Africa. However, the low prevalence and mild to moderate clinical presentation suggest a marginal threat to public health. Further studies in different settings are required to establish the true potential impact of hvKp in developing countries.

Keywords: hypervirulent klebsiella pneumoniae, virulence, caenorhabditis elegans, aerobactin (iutA)

Procedia PDF Downloads 85
824 Genome Editing in Sorghum: Advancements and Future Possibilities: A Review

Authors: Micheale Yifter Weldemichael, Hailay Mehari Gebremedhn, Teklehaimanot Hailesslasie

Abstract:

The advancement of target-specific genome editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), mega-nucleases, base editing (BE), prime editing (PE), transcription activator-like endonucleases (TALENs), and zinc-finger nucleases (ZFNs), have paved the way for a modern era of gene editing. CRISPR/Cas9, as a versatile, simple, cost-effective and robust system for genome editing, has dominated the genome manipulation field over the last few years. The application of CRISPR/Cas9 in sorghum improvement is particularly vital in the context of ecological, environmental and agricultural challenges, as well as global climate change. In this context, gene editing using CRISPR/Cas9 can improve nutritional value, yield, resistance to pests and disease and tolerance to different abiotic stress. Moreover, CRISPR/Cas9 can potentially perform complex editing to reshape already available elite varieties and new genetic variations. However, existing research is targeted at improving even further the effectiveness of the CRISPR/Cas9 genome editing techniques to fruitfully edit endogenous sorghum genes. These findings suggest that genome editing is a feasible and successful venture in sorghum. Newer improvements and developments of CRISPR/Cas9 techniques have further qualified researchers to modify extra genes in sorghum with improved efficiency. The fruitful application and development of CRISPR techniques for genome editing in sorghum will not only help in gene discovery, creating new, improved traits in sorghum regulating gene expression sorghum functional genomics, but also in making site-specific integration events.

Keywords: CRISPR/Cas9, genome editing, quality, sorghum, stress, yield

Procedia PDF Downloads 59
823 Genetic Characterization of a Composite Transposon Carrying armA and Aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt

Authors: Omneya M. Helmy, Mona T. Kashef

Abstract:

Aminoglycosides are used in treating a wide range of infections caused by both Gram-negative and Gram positive bacteria. The presence of 16S rRNA methyl transferases (16S-RMTase) is among the newly discovered resistance mechanisms that confer high resistance to clinically useful aminoglycosides. Cephalosporins are the most commonly used antimicrobials in Egypt; therefore, this study was conducted to determine the isolation frequency of 16S rRNA methyl transferases among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycoside resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In Conclusion, the isolation frequency of 16S-RMTase was low among the tested cephalosporin-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.

Keywords: aminoglcosides, armA gene, β lactmases, 16S rRNA methyl transferases

Procedia PDF Downloads 282
822 Angiotensin Converting Enzyme (ACE) and Angiotensinogen (AGT) Gene Variants in Pakistani Patients of Diabetes Mellitus and Diabetic Nephropathy

Authors: Rozeena Shaikh, Syed M Shahid, Jamil Ahmad, Qaisar Mansoor, Muhammad Ismail, Abid Azhar

Abstract:

Introduction: Diabetes mellitus (DM) is a prevalent non-communicable disease worldwide. In most high-income countries as well as middle-income and low- income countries. DM is among the top causes of deaths. DM may lead to many vascular complications like hypertension, nephropathy, retinopathy, neuropathy, and foot. Diabetic nephropathy (DN) characterized by persistent albuminuria is a leading cause of end stage renal failure (ESRF). Pathogenesis of diabetic nephropathy is implicated by the polymorphisms in genes encoding the components of reninangiotensin- aldosteron system (RAAS) which include angiotensinogen (AGT), angiotensin-II receptor and particularly angiotensin converting enzyme (ACE) gene. Method: Study subjects include 110 control, 110 patients with DM without hypertension, 110 patients with DM with hypertension and 110 patients with DN. Blood samples were collected for Biochemical analysis and PCR and sequencing for the specific region of both genes. Results: The frequency of DD genotype and D allele of ACE (I/D) was significantly (p<0.05) high in DM normotensive, DM hypertensive and DN patients when compared to control. The ACE G2350A genotypes and allele frequencies were significantly different (p<0.05) in DM hypertensive patients as compared to control and DN, while no difference was observed between DM normotensive and DN when compared to control. The genotypes and alleles of AGT (M268T) polymorphism were significantly different (p<0.05) in DM normotensive, DM hypertensive and DN when compared to control. Conclusion: The DD genotype and D allele of ACE (I/D), GG genotype and G allele of ACE (G2350A) and the TT genotype and T allele of AGT (M268T) polymorphism have shown a significant difference in genotype and allele frequencies between controls and patients.

Keywords: genetic variations, ACE, AGT, diabetes mellitus, diabetic nephropathy, Pakistan

Procedia PDF Downloads 392
821 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 122
820 Next Generation Sequencing Analysis of Circulating MiRNAs in Rheumatoid Arthritis and Osteoarthritis

Authors: Khalda Amr, Noha Eltaweel, Sherif Ismail, Hala Raslan

Abstract:

Introduction: Osteoarthritis is the most common form of arthritis that involves the wearing away of the cartilage that caps the bones in the joints. While rheumatoid arthritis is an autoimmune disease in which the immune system attacks the joints, beginning with the lining of joints. In this study, we aimed to study the top deregulated miRNAs that might be the cause of pathogenesis in both diseases. Methods: Eight cases were recruited in this study: 4 rheumatoid arthritis (RA), 2 osteoarthritis (OA) patients, as well as 2 healthy controls. Total RNA was isolated from plasma to be subjected to miRNA profiling by NGS. Sequencing libraries were constructed and generated using the NEBNextR UltraTM small RNA Sample Prep Kit for Illumina R (NEB, USA), according to the manufacturer’s instructions. The quality of samples were checked using fastqc and multiQC. Results were compared RA vs Controls and OA vs. Controls. Target gene prediction and functional annotation of the deregulated miRNAs were done using Mienturnet. The top deregulated miRNAs in each disease were selected for further validation using qRT-PCR. Results: The average number of sequencing reads per sample exceeded 2.2 million, of which approximately 57% were mapped to the human reference genome. The top DEMs in RA vs controls were miR-6724-5p, miR-1469, miR-194-3p (up), miR-1468-5p, miR-486-3p (down). In comparison, the top DEMs in OA vs controls were miR-1908-3p, miR-122b-3p, miR-3960 (up), miR-1468-5p, miR-15b-3p (down). The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Six of the deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis. Conclusion: Six of our studied deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) might be highly involved in the disease pathogenesis. Further functional studies are crucial to assess their functions and actual target genes.

Keywords: next generation sequencing, mirnas, rheumatoid arthritis, osteoarthritis

Procedia PDF Downloads 96
819 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics

Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere

Abstract:

Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciences

Keywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet

Procedia PDF Downloads 137
818 Monoallelic and Biallelic Deletions of 13q14 in a Group of 36 CLL Patients Investigated by CGH Haematological Cancer and SNP Array (8x60K)

Authors: B. Grygalewicz, R. Woroniecka, J. Rygier, K. Borkowska, A. Labak, B. Nowakowska, B. Pienkowska-Grela

Abstract:

Introduction: Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world. Hemizygous and or homozygous loss at 13q14 occur in more than half of cases and constitute the most frequent chromosomal abnormality in CLL. It is believed that deletions 13q14 play a role in CLL pathogenesis. Two microRNA genes miR-15a and miR- 16-1 are targets of 13q14 deletions and plays a tumor suppressor role by targeting antiapoptotic BCL2 gene. Deletion size, as a single change detected in FISH analysis, has haprognostic significance. Patients with small deletions, without RB1 gene involvement, have the best prognosis and the longest overall survival time (OS 133 months). In patients with bigger deletion region, containing RB1 gene, prognosis drops to intermediate, like in patients with normal karyotype and without changes in FISH with overall survival 111 months. Aim: Precise delineation of 13q14 deletions regions in two groups of CLL patients, with mono- and biallelic deletions and qualifications of their prognostic significance. Methods: Detection of 13q14 deletions was performed by FISH analysis with CLL probe panel (D13S319, LAMP1, TP53, ATM, CEP-12). Accurate deletion size detection was performed by CGH Haematological Cancer and SNP array (8x60K). Results: Our investigated group of CLL patients with the 13q14 deletion, detected by FISH analysis, comprised two groups: 18 patients with monoallelic deletions and 18 patients with biallelic deletions. In FISH analysis, in the monoallelic group the range of cells with deletion, was 43% to 97%, while in biallelic group deletion was detected in 11% to 94% of cells. Microarray analysis revealed precise deletion regions. In the monoallelic group, the range of size was 348,12 Kb to 34,82 Mb, with median deletion size 7,93 Mb. In biallelic group discrepancy of total deletions, size was 135,27 Kb to 33,33 Mb, with median deletion size 2,52 Mb. The median size of smaller deletion regions on one copy chromosome 13 was 1,08 Mb while the average region of bigger deletion on the second chromosome 13 was 4,04 Mb. In the monoallelic group, in 8/18 deletion region covered RB1 gene. In the biallelic group, in 4/18 cases, revealed deletion on one copy of biallelic deletion and in 2/18 showed deletion of RB1 gene on both deleted 13q14 regions. All minimal deleted regions included miR-15a and miR-16-1 genes. Genetic results will be correlated with clinical data. Conclusions: Application of CGH microarrays technique in CLL allows accurately delineate the size of 13q14 deletion regions, what have a prognostic value. All deleted regions included miR15a and miR-16-1, what confirms the essential role of these genes in CLL pathogenesis. In our investigated groups of CLL patients with mono- and biallelic 13q14 deletions, patients with biallelic deletion presented smaller deletion sizes (2,52 Mb vs 7,93 Mb), what is connected with better prognosis.

Keywords: CLL, deletion 13q14, CGH microarrays, SNP array

Procedia PDF Downloads 255