Search results for: overton database
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1637

Search results for: overton database

1127 The Study of Groundcover for Heat Reduction

Authors: Winai Mankhatitham

Abstract:

This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1) Types of groundcover affecting heat reduction, 2) The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane, 3) Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof.

Keywords: green roof, heat reduction, groundcover, energy saving

Procedia PDF Downloads 515
1126 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data

Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah

Abstract:

At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.

Keywords: Semantic Web, linked open data, database, statistic

Procedia PDF Downloads 174
1125 Remote Monitoring and Control System of Potentiostat Based on the Internet of Things

Authors: Liang Zhao, Guangwen Wang, Guichang Liu

Abstract:

Constant potometer is an important component of pipeline anti-corrosion systems in the chemical industry. Based on Internet of Things (IoT) technology, Programmable Logic Controller (PLC) technology and database technology, this paper developed a set of a constant potometer remote monitoring management system. The remote monitoring and remote adjustment of the working status of the constant potometer are realized. The system has real-time data display, historical data query, alarm push management, user permission management, and supporting Web access and mobile client application (APP) access. The actual engineering project test results show the stability of the system, which can be widely used in cathodic protection systems.

Keywords: internet of things, pipe corrosion protection, potentiostat, remote monitoring

Procedia PDF Downloads 147
1124 Predictors of Motor and Cognitive Domains of Functional Performance after Rehabilitation of Individuals with Acute Stroke

Authors: A. F. Jaber, E. Dean, M. Liu, J. He, D. Sabata, J. Radel

Abstract:

Background: Stroke is a serious health care concern and a major cause of disability in the United States. This condition impacts the individual’s functional ability to perform daily activities. Predicting functional performance of people with stroke assists health care professionals in optimizing the delivery of health services to the affected individuals. The purpose of this study was to identify significant predictors of Motor FIM and of Cognitive FIM subscores among individuals with stroke after discharge from inpatient rehabilitation (typically 4-6 weeks after stroke onset). A second purpose is to explore the relation among personal characteristics, health status, and functional performance of daily activities within 2 weeks of stroke onset. Methods: This study used a retrospective chart review to conduct a secondary analysis of data obtained from the Healthcare Enterprise Repository for Ontological Narration (HERON) database. The HERON database integrates de-identified clinical data from seven different regional sources including hospital electronic medical record systems of the University of Kansas Health System. The initial HERON data extract encompassed 1192 records and the final sample consisted of 207 participants who were mostly white (74%) males (55%) with a diagnosis of ischemic stroke (77%). The outcome measures collected from HERON included performance scores on the National Institute of Health Stroke Scale (NIHSS), the Glasgow Coma Scale (GCS), and the Functional Independence Measure (FIM). The data analysis plan included descriptive statistics, Pearson correlation analysis, and Stepwise regression analysis. Results: significant predictors of discharge Motor FIM subscores included age, baseline Motor FIM subscores, discharge NIHSS scores, and comorbid electrolyte disorder (R2 = 0.57, p <0.026). Significant predictors of discharge Cognitive FIM subscores were age, baseline cognitive FIM subscores, client cooperative behavior, comorbid obesity, and the total number of comorbidities (R2 = 0.67, p <0.020). Functional performance on admission was significantly associated with age (p < 0.01), stroke severity (p < 0.01), and length of hospital stay (p < 0.05). Conclusions: our findings show that younger age, good motor and cognitive abilities on admission, mild stroke severity, fewer comorbidities, and positive client attitude all predict favorable functional outcomes after inpatient stroke rehabilitation. This study provides health care professionals with evidence to evaluate predictors of favorable functional outcomes early at stroke rehabilitation, to tailor individualized interventions based on their client’s anticipated prognosis, and to educate clients about the benefits of making lifestyle changes to improve their anticipated rate of functional recovery.

Keywords: functional performance, predictors, stroke, recovery

Procedia PDF Downloads 144
1123 Secured Embedding of Patient’s Confidential Data in Electrocardiogram Using Chaotic Maps

Authors: Butta Singh

Abstract:

This paper presents a chaotic map based approach for secured embedding of patient’s confidential data in electrocardiogram (ECG) signal. The chaotic map generates predefined locations through the use of selective control parameters. The sample value difference method effectually hides the confidential data in ECG sample pairs at these predefined locations. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evident through various statistical and clinical performance measures. Statistical metrics comprise of Percentage Root Mean Square Difference (PRD) and Peak Signal to Noise Ratio (PSNR). Further, a comparative analysis between proposed method and existing approaches was also performed. The results clearly demonstrated the superiority of proposed method.

Keywords: chaotic maps, ECG steganography, data embedding, electrocardiogram

Procedia PDF Downloads 195
1122 Application of Wireless Sensor Networks: A Survey in Thailand

Authors: Sathapath Kilaso

Abstract:

Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.

Keywords: wireless sensor network, smart city, survey, Adhoc Network

Procedia PDF Downloads 207
1121 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors

Authors: Ayyaz Hussain, Tariq Sadad

Abstract:

Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.

Keywords: breast cancer, DCNN, KNN, mammography

Procedia PDF Downloads 136
1120 Overview of Wireless Body Area Networks

Authors: Rashi Jain

Abstract:

The Wireless Body Area Networks (WBANs) is an emerging interdisciplinary area where small sensors are placed on/within the human body. These sensors monitor the physiological activities and vital statistics of the body. The data from these sensors is aggregated and communicated to a remote doctor for immediate attention or to a database for records. On 6 Feb 2012, the IEEE 802.15.6 task group approved the standard for Body Area Network (BAN) technologies. The standard proposes the physical and MAC layer for the WBANs. The work provides an introduction to WBANs and overview of the physical and MAC layers of the standard. The physical layer specifications have been covered. A comparison of different protocols used at MAC layer is drawn. An introduction to the network layer and security aspects of the WBANs is made. The WBANs suffer certain limitations such as regulation of frequency bands, minimizing the effect of transmission and reception of electromagnetic signals on the human body, maintaining the energy efficiency among others. This has slowed down their implementation.

Keywords: vehicular networks, sensors, MicroController 8085, LTE

Procedia PDF Downloads 259
1119 A Bibliometric Analysis of Research on E-learning in Physics Education: Trends, Patterns, and Future Directions

Authors: Siti Nurjanah, Supahar

Abstract:

E-learning has become an increasingly popular mode of instruction, particularly in the field of physics education, where it offers opportunities for interactive and engaging learning experiences. This research aims to analyze the trends of research that investigated e-learning in physics education. Data was extracted from Scopus's database using the keywords "physics" and "e-learning". Of the 380 articles obtained based on the search criteria, a trend analysis of the research was carried out with the help of RStudio using the biblioshiny package and VosViewer software. Analysis showed that publications on this topic have increased significantly from 2014 to 2021. The publication was dominated by researchers from the United States. The main journal that publishes articles on this topic is Proceedings Frontiers in Education Conference fie. The most widely cited articles generally focus on the effectiveness of Moodle for physics learning. Overall, this research provides an in-depth understanding of the trends and key findings of research related to e-learning in physics.

Keywords: bibliometric analysis, physics education, biblioshiny, E-learning

Procedia PDF Downloads 41
1118 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images

Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.

Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets

Procedia PDF Downloads 485
1117 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Authors: Hae-Yeoun Lee

Abstract:

Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment

Procedia PDF Downloads 278
1116 Autonomic Threat Avoidance and Self-Healing in Database Management System

Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik

Abstract:

Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.

Keywords: autonomic computing, self-healing, threat avoidance, security

Procedia PDF Downloads 504
1115 Android Application on Checking Halal Product Based on Augmented Reality

Authors: Saidatul A'isyah Ahmad Shukri, Haslina Arshad

Abstract:

This study was conducted to develop an application that provides Augmented Reality experience in identifying halal food products and beverages based on Malaysian Islamic Development Department (JAKIM) database for Muslim consumers in Malaysia. The applications is operating on the mobile device using the Android platform. This application aims to provide a new experience to the user how to use the Android application implements Augmentation Reality technology The methodology used is object-oriented analysis and design (OOAD). The programming language used is JAVA programming using the Android Software Development Kit (SDK) and XML. Android operating system is selected, and it is an open source operating system. Results from the study are implemented to further enhance diversity in presentation of information contained in this application and so can bring users using these applications from different angles.

Keywords: android, augmented reality, food, halal, Malaysia, products, XML

Procedia PDF Downloads 455
1114 European Commission Radioactivity Environmental Monitoring Database REMdb: A Law (Art. 36 Euratom Treaty) Transformed in Environmental Science Opportunities

Authors: M. Marín-Ferrer, M. A. Hernández, T. Tollefsen, S. Vanzo, E. Nweke, P. V. Tognoli, M. De Cort

Abstract:

Under the terms of Article 36 of the Euratom Treaty, European Union Member States (MSs) shall periodically communicate to the European Commission (EC) information on environmental radioactivity levels. Compilations of the information received have been published by the EC as a series of reports beginning in the early 1960s. The environmental radioactivity results received from the MSs have been introduced into the Radioactivity Environmental Monitoring database (REMdb) of the Institute for Transuranium Elements of the EC Joint Research Centre (JRC) sited in Ispra (Italy) as part of its Directorate General for Energy (DG ENER) support programme. The REMdb brings to the scientific community dealing with environmental radioactivity topics endless of research opportunities to exploit the near 200 millions of records received from MSs containing information of radioactivity levels in milk, water, air and mixed diet. The REM action was created shortly after Chernobyl crisis to support the EC in its responsibilities in providing qualified information to the European Parliament and the MSs on the levels of radioactive contamination of the various compartments of the environment (air, water, soil). Hence, the main line of REM’s activities concerns the improvement of procedures for the collection of environmental radioactivity concentrations for routine and emergency conditions, as well as making this information available to the general public. In this way, REM ensures the availability of tools for the inter-communication and access of users from the Member States and the other European countries to this information. Specific attention is given to further integrate the new MSs with the existing information exchange systems and to assist Candidate Countries in fulfilling these obligations in view of their membership of the EU. Article 36 of the EURATOM treaty requires the competent authorities of each MS to provide regularly the environmental radioactivity monitoring data resulting from their Article 35 obligations to the EC in order to keep EC informed on the levels of radioactivity in the environment (air, water, milk and mixed diet) which could affect population. The REMdb has mainly two objectives: to keep a historical record of the radiological accidents for further scientific study, and to collect the environmental radioactivity data gathered through the national environmental monitoring programs of the MSs to prepare the comprehensive annual monitoring reports (MR). The JRC continues his activity of collecting, assembling, analyzing and providing this information to public and MSs even during emergency situations. In addition, there is a growing concern with the general public about the radioactivity levels in the terrestrial and marine environment, as well about the potential risk of future nuclear accidents. To this context, a clear and transparent communication with the public is needed. EURDEP (European Radiological Data Exchange Platform) is both a standard format for radiological data and a network for the exchange of automatic monitoring data. The latest release of the format is version 2.0, which is in use since the beginning of 2002.

Keywords: environmental radioactivity, Euratom, monitoring report, REMdb

Procedia PDF Downloads 443
1113 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network

Procedia PDF Downloads 104
1112 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment

Authors: Jatuphum Ketchatturat

Abstract:

Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.

Keywords: learning achievement, monitoring and evaluation, value-added assessment

Procedia PDF Downloads 423
1111 The Effects of Aging on the Cost of Operating and Support: An Empirical Study Applied to Weapon Systems

Authors: Byungchae Kim, Jiwoo Nam

Abstract:

Aging of weapon systems can cause the failure and degeneration of components which results in increase of operating and support costs. However, whether this aging effect is significantly strong and it influences a lot on national defense spending due to the rapid increase in operating and support (O&S) costs is questionable. To figure out this, we conduct a literature review analyzing the aging effect of US weapon systems. We also conduct an empirical research using a maintenance database of Korean weapon systems, Defense Logistics Integrated Information System (DAIIS). We run regression of various types of O&S cost on weapon system age to investigate the statistical significance of aging effect and use generalized linear model to find relations between the failure of different priced components and the age. Our major finding is although aging effect exists, its impacts on weapon system cost seem to be not too large considering several characteristics of O&S cost elements not relying on the age.

Keywords: O&S cost, aging effect, weapon system, GLM

Procedia PDF Downloads 142
1110 Saliency Detection Using a Background Probability Model

Authors: Junling Li, Fang Meng, Yichun Zhang

Abstract:

Image saliency detection has been long studied, while several challenging problems are still unsolved, such as detecting saliency inaccurately in complex scenes or suppressing salient objects in the image borders. In this paper, we propose a new saliency detection algorithm in order to solving these problems. We represent the image as a graph with superixels as nodes. By considering appearance similarity between the boundary and the background, the proposed method chooses non-saliency boundary nodes as background priors to construct the background probability model. The probability that each node belongs to the model is computed, which measures its similarity with backgrounds. Thus we can calculate saliency by the transformed probability as a metric. We compare our algorithm with ten-state-of-the-art salient detection methods on the public database. Experimental results show that our simple and effective approach can attack those challenging problems that had been baffling in image saliency detection.

Keywords: visual saliency, background probability, boundary knowledge, background priors

Procedia PDF Downloads 429
1109 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 368
1108 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points

Authors: Nougrara Zineb

Abstract:

The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.

Keywords: fovea, optic disc, registration, retinal images

Procedia PDF Downloads 266
1107 A Supervised Face Parts Labeling Framework

Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad

Abstract:

Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.

Keywords: face labeling, semantic segmentation, classification, face segmentation

Procedia PDF Downloads 255
1106 Environmental Impact of a New-Build Educational Building in England: Life-Cycle Assessment as a Method to Calculate Whole Life Carbon Emissions

Authors: Monkiz Khasreen

Abstract:

In the context of the global trend towards reducing new buildings carbon footprint, the design team is required to make early decisions that have a major influence on embodied and operational carbon. Sustainability strategies should be clear during early stages of building design process, as changes made later can be extremely costly. Life-Cycle Assessment (LCA) could be used as the vehicle to carry other tools and processes towards achieving the requested improvement. Although LCA is the ‘golden standard’ to evaluate buildings from 'cradle to grave', lack of details available on the concept design makes LCA very difficult, if not impossible, to be used as an estimation tool at early stages. Issues related to transparency and accessibility of information in the building industry are affecting the credibility of LCA studies. A verified database derived from LCA case studies is required to be accessible to researchers, design professionals, and decision makers in order to offer guidance on specific areas of significant impact. This database could be the build-up of data from multiple sources within a pool of research held in this context. One of the most important factors that affects the reliability of such data is the temporal factor as building materials, components, and systems are rapidly changing with the advancement of technology making production more efficient and less environmentally harmful. Recent LCA studies on different building functions, types, and structures are always needed to update databases derived from research and to form case bases for comparison studies. There is also a need to make these studies transparent and accessible to designers. The work in this paper sets out to address this need. This paper also presents life-cycle case study of a new-build educational building in England. The building utilised very current construction methods and technologies and is rated as BREEAM excellent. Carbon emissions of different life-cycle stages and different building materials and components were modelled. Scenario and sensitivity analyses were used to estimate the future of new educational buildings in England. The study attempts to form an indicator during the early design stages of similar buildings. Carbon dioxide emissions of this case study building, when normalised according to floor area, lie towards the lower end of the range of worldwide data reported in the literature. Sensitivity analysis shows that life cycle assessment results are highly sensitive to future assumptions made at the design stage, such as future changes in electricity generation structure over time, refurbishment processes and recycling. The analyses also prove that large savings in carbon dioxide emissions can result from very small changes at the design stage.

Keywords: architecture, building, carbon dioxide, construction, educational buildings, England, environmental impact, life-cycle assessment

Procedia PDF Downloads 112
1105 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 216
1104 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, LIU Xuebin, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Lao Xuerui

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature have led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using Yolov5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network, machine vision

Procedia PDF Downloads 98
1103 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 532
1102 Organisationmatcher: An Organisation Ranking System for Student Placement Using Preference Weights

Authors: Nor Sahida Ibrahim, Ruhaila Maskat, Aishah Ahmad

Abstract:

Almost all tertiary-level students will undergo some form of training in organisations prior to their graduation. This practice provides the necessary exposure and experience to allow students to cope with actual working environment and culture in the future. Nevertheless, a particular degree of “matching” between what is expected and what can be offered between students and organisations underpins how effective and enriching the experience is. This matching of students and organisations is challenging when preferences from both parties must be satisfied. This work developed a web-based system, namely the OrganisationMatcher, which leverage on the use of preference weights to score each organisation and rank them based on “suitability”. OrganisationMatcher has been implemented on a relational database, designed using object-oriented methods and developed using PHP programming language for browser front-end access. We outline the challenges and limitations of our system and discuss future improvements to the system, specifically in the utilisation of intelligent methods.

Keywords: student industrial placement, information system, web-based, ranking

Procedia PDF Downloads 279
1101 The Mediatory Role of Innovation in the Link between Social and Financial Performance

Authors: Bita Mashayekhi, Amin Jahangard, Milad Samavat, Saeid Homayoun

Abstract:

In the modern competitive business environment, one cannot overstate the importance of corporate social responsibility. The controversial link between the social and financial performance of firms has become a topic of interest for scholars. Hence, this study examines the social and financial performance link by taking into account the mediating role of innovation performance. We conducted the Covariance-based Structural Equation Modeling (CB-SEM) method on an international sample of firms provided by the ASSET4 database. In this research, to explore the black box of the social and financial performance relationship, we first examined the effect of social performance separately on financial performance and innovation; then, we measured the mediation role of innovation in the social and financial performance link. While our results indicate the positive effect of social performance on financial performance and innovation, we cannot document the positive mediating role of innovation. This possibly relates to the long-term nature of benefits from investments in innovation.

Keywords: ESG, financial performance, innovation, social performance, structural equation modeling

Procedia PDF Downloads 102
1100 Optimization of a Combined Ejector-Vapor Compression Refrigeration Systems with R134a

Authors: Ilhem Ouelhazi, Mouna Elakhdar, Lakdar Kairouani

Abstract:

A computer simulation model for a combined ejector-vapor compression cycle that uses working fluid R134a. A refrigeration system was developed which combines a basic vapor compression refrigeration cycle with an ejector cooling cycle. A one-dimensional mathematical model was developed using the equations governing the flow and thermodynamics based on the constant area ejector flow model. The effects of the operating parameters on the cooling capacity, the performance coefficient, and the entrainment ratio are studied. The current model is based on the NIST-REFPROP database for refrigerants properties calculations. The simulated performance is compared with the available experimental data from the literature for validation.

Keywords: combined refrigeration cycle, constant area ejector, R134a, ejector-cooling cycle, performance, mathematical simulation, vapor compression cycle

Procedia PDF Downloads 226
1099 A Preliminary Study for Building an Arabic Corpus of Pair Questions-Texts from the Web: Aqa-Webcorp

Authors: Wided Bakari, Patrce Bellot, Mahmoud Neji

Abstract:

With the development of electronic media and the heterogeneity of Arabic data on the Web, the idea of building a clean corpus for certain applications of natural language processing, including machine translation, information retrieval, question answer, become more and more pressing. In this manuscript, we seek to create and develop our own corpus of pair’s questions-texts. This constitution then will provide a better base for our experimentation step. Thus, we try to model this constitution by a method for Arabic insofar as it recovers texts from the web that could prove to be answers to our factual questions. To do this, we had to develop a java script that can extract from a given query a list of html pages. Then clean these pages to the extent of having a database of texts and a corpus of pair’s question-texts. In addition, we give preliminary results of our proposal method. Some investigations for the construction of Arabic corpus are also presented in this document.

Keywords: Arabic, web, corpus, search engine, URL, question, corpus building, script, Google, html, txt

Procedia PDF Downloads 323
1098 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 340