Search results for: event horizon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1433

Search results for: event horizon

923 The Effects of Qigong Exercise Intervention on the Cognitive Function in Aging Adults

Authors: D. Y. Fong, C. Y. Kuo, Y. T. Chiang, W. C. Lin

Abstract:

Objectives: Qigong is an ancient Chinese practice in pursuit of a healthier body and a more peaceful mindset. It emphasizes on the restoration of vital energy (Qi) in body, mind, and spirit. The practice is the combination of gentle movements and mild breathing which help the doers reach the condition of tranquility. On account of the features of Qigong, first, we use cross-sectional methodology to compare the differences among the varied levels of Qigong practitioners on cognitive function with event-related potential (ERP) and electroencephalography (EEG). Second, we use the longitudinal methodology to explore the effects on the Qigong trainees for pretest and posttest on ERP and EEG. Current study adopts Attentional Network Test (ANT) task to examine the participants’ cognitive function, and aging-related researches demonstrated a declined tread on the cognition in older adults and exercise might ameliorate the deterioration. Qigong exercise integrates physical posture (muscle strength), breathing technique (aerobic ability) and focused intention (attention) that researchers hypothesize it might improve the cognitive function in aging adults. Method: Sixty participants were involved in this study, including 20 young adults (21.65±2.41 y) with normal physical activity (YA), 20 Qigong experts (60.69 ± 12.42 y) with over 7 years Qigong practice experience (QE), and 20 normal and healthy adults (52.90±12.37 y) with no Qigong practice experience as experimental group (EG). The EG participants took Qigong classes 2 times a week and 2 hours per time for 24 weeks with the purpose of examining the effect of Qigong intervention on cognitive function. ANT tasks (alert network, orient network, and executive control) were adopted to evaluate participants’ cognitive function via ERP’s P300 components and P300 amplitude topography. Results: Behavioral data: 1.The reaction time (RT) of YA is faster than the other two groups, and EG was faster than QE in the cue and flanker conditions of ANT task. 2. The RT of posttest was faster than pretest in EG in the cue and flanker conditions. 3. No difference among the three groups on orient, alert, and execute control networks. ERP data: 1. P300 amplitude detection in QE was larger than EG at Fz electrode in orient, alert, and execute control networks. 2. P300 amplitude in EG was larger at pretest than posttest on the orient network. 3. P300 Latency revealed no difference among the three groups in the three networks. Conclusion: Taken together these findings, they provide neuro-electrical evidence that older adults involved in Qigong practice may develop a more overall compensatory mechanism and also benefit the performance of behavior.

Keywords: Qigong, cognitive function, aging, event-related potential (ERP)

Procedia PDF Downloads 393
922 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques

Authors: Faisal Alshuwaier, Ali Areshey

Abstract:

Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound method to simplify the texts.

Keywords: extraction, max-prod, fuzzy relations, text mining, memberships, classification, memberships, classification

Procedia PDF Downloads 582
921 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints

Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar

Abstract:

Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.

Keywords: assignment, deadline, greedy approach, Hungarian algorithm, operations research, scheduling

Procedia PDF Downloads 147
920 Application of Unmanned Aerial Vehicle in Geohazard Mapping: Case Study Dominica

Authors: Michael Mickson

Abstract:

The recent development of unmanned aerial vehicles (UAVs) has been increasing the number of technical solutions that can be used to identify, map, and manage the effects of geohazards. UAVs are generally cheaper and more versatile than traditional remote-sensing techniques, and they can be therefore considered as a good alternative for the acquisition of imagery and other remote sensing data before, during and after a natural hazard event. This study aims to use UAV for investigating areas susceptible to high mobility flows such as debris flow in Dominica, especially after the 2017 Hurricane Maria. The use of UAVs in identifying, mapping and managing of natural hazards helps to mitigate the negative effects of natural hazards on livelihood, properties and the built environment.

Keywords: unmanned aerial vehicle (UAV), geohazards, remote sensing, mapping, Dominica

Procedia PDF Downloads 130
919 A Review on Trends in Measurement of Port Performance

Authors: J. Racedo, J. Torres

Abstract:

Globalization has led to a worldwide competition for participation in markets of goods and productive factors, with significant effects on transports requirements. The port industry has not been an exception to this event, in fact, it has received increasing attention in recent years due to its crucial role on international trade. Because of this, the measurement of port performance has become an important issue in transport policy. Port performance and port efficiency has been widely studied in the last decades, resulting in noteworthy contributions to improving the industry competitiveness. In this paper, we aim to present a review of the literature on port performance and the relation between this concept and transport policies. This study has the objective to describe the approaches that have been developed in recent years, and especially those that include the modeling of public policies. Finally, we highlight existing gaps in this field, as well as possible directions for future research.

Keywords: port performance, port efficiency, transport, policy

Procedia PDF Downloads 329
918 Spatial Behavioral Model-Based Dynamic Data-Driven Diagram Information Model

Authors: Chiung-Hui Chen

Abstract:

Diagram and drawing are important ways to communicate and the reproduce of architectural design, Due to the development of information and communication technology, the professional thinking of architecture and interior design are also change rapidly. In development process of design, diagram always play very important role. This study is based on diagram theories, observe and record interaction between man and objects, objects and space, and space and time in a modern nuclear family. Construct a method for diagram to systematically and visualized describe the space plan of a modern nuclear family toward a intelligent design, to assist designer to retrieve information and check/review event pattern of past and present.

Keywords: digital diagram, information model, context aware, data analysis

Procedia PDF Downloads 333
917 Modeling of Sand Boil near the Danube River

Authors: Edina Koch, Károly Gombás, Márton Maller

Abstract:

The Little Plain is located along the Danube river, and this area is a “hotbed” of sand boil formation. This is due to the combination of a 100-250 m thick gravel layer beneath the Little Plain with a relatively thin blanket of poor soil spreading the gravel with variable thickness. Sand boils have a tradition and history in this area. It was possible to know which sand boil started and stopped working at what water level, and some of them even have names. The authors present a 2D finite element model of groundwater flow through a selected cross-section of the Danube river, which observed activation of piping phenomena during the 2013 flood event. Soil parametrization is based on a complex site investigation program conducted along the Danube River in the Little Plain.

Keywords: site characterization, groundwater flow, numerical modeling, sand boil

Procedia PDF Downloads 95
916 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach

Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre

Abstract:

The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.

Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast

Procedia PDF Downloads 217
915 Analysis and Quantification of Historical Drought for Basin Wide Drought Preparedness

Authors: Joo-Heon Lee, Ho-Won Jang, Hyung-Won Cho, Tae-Woong Kim

Abstract:

Drought is a recurrent climatic feature that occurs in virtually every climatic zone around the world. Korea experiences the drought almost every year at the regional scale mainly during in the winter and spring seasons. Moreover, extremely severe droughts at a national scale also occurred at a frequency of six to seven years. Various drought indices had developed as tools to quantitatively monitor different types of droughts and are utilized in the field of drought analysis. Since drought is closely related with climatological and topographic characteristics of the drought prone areas, the basins where droughts are frequently occurred need separate drought preparedness and contingency plans. In this study, an analysis using statistical methods was carried out for the historical droughts occurred in the five major river basins in Korea so that drought characteristics can be quantitatively investigated. It was also aimed to provide information with which differentiated and customized drought preparedness plans can be established based on the basin level analysis results. Conventional methods which quantifies drought execute an evaluation by applying a various drought indices. However, the evaluation results for same drought event are different according to different analysis technique. Especially, evaluation of drought event differs depend on how we view the severity or duration of drought in the evaluation process. Therefore, it was intended to draw a drought history for the most severely affected five major river basins of Korea by investigating a magnitude of drought that can simultaneously consider severity, duration, and the damaged areas by applying drought run theory with the use of SPI (Standardized Precipitation Index) that can efficiently quantifies meteorological drought. Further, quantitative analysis for the historical extreme drought at various viewpoints such as average severity, duration, and magnitude of drought was attempted. At the same time, it was intended to quantitatively analyze the historical drought events by estimating the return period by derived SDF (severity-duration-frequency) curve for the five major river basins through parametric regional drought frequency analysis. Analysis results showed that the extremely severe drought years were in the years of 1962, 1988, 1994, and 2014 in the Han River basin. While, the extreme droughts were occurred in 1982 and 1988 in the Nakdong river basin, 1994 in the Geumg basin, 1988 and 1994 in Youngsan river basin, 1988, 1994, 1995, and 2000 in the Seomjin river basin. While, the extremely severe drought years at national level in the Korean Peninsula were occurred in 1988 and 1994. The most damaged drought were in 1981~1982 and 1994~1995 which lasted for longer than two years. The return period of the most severe drought at each river basin was turned out to be at a frequency of 50~100 years.

Keywords: drought magnitude, regional frequency analysis, SPI, SDF(severity-duration-frequency) curve

Procedia PDF Downloads 406
914 Reliability of Clinical Coding in Accurately Estimating the Actual Prevalence of Adverse Drug Event Admissions

Authors: Nisa Mohan

Abstract:

Adverse drug event (ADE) related hospital admissions are common among older people. The first step in prevention is accurately estimating the prevalence of ADE admissions. Clinical coding is an efficient method to estimate the prevalence of ADE admissions. The objective of the study is to estimate the rate of under-coding of ADE admissions in older people in New Zealand and to explore how clinical coders decide whether or not to code an admission as an ADE. There has not been any research in New Zealand to explore these areas. This study is done using a mixed-methods approach. Two common and serious ADEs in older people, namely bleeding and hypoglycaemia were selected for the study. In study 1, eight hundred medical records of people aged 65 years and above who are admitted to hospital due to bleeding and hypoglycemia during the years 2015 – 2016 were selected for quantitative retrospective medical records review. This selection was made to estimate the proportion of ADE-related bleeding and hypoglycemia admissions that are not coded as ADEs. These files were reviewed and recorded as to whether the admission was caused by an ADE. The hospital discharge data were reviewed to check whether all the ADE admissions identified in the records review were coded as ADEs, and the proportion of under-coding of ADE admissions was estimated. In study 2, thirteen clinical coders were selected to conduct qualitative semi-structured interviews using a general inductive approach. Participants were selected purposively based on their experience in clinical coding. Interview questions were designed in a way to investigate the reasons for the under-coding of ADE admissions. The records review study showed that 35% (Cl 28% - 44%) of the ADE-related bleeding admissions and 22% of the ADE-related hypoglycemia admissions were not coded as ADEs. Although the quality of clinical coding is high across New Zealand, a substantial proportion of ADE admissions were under-coded. This shows that clinical coding might under-estimate the actual prevalence of ADE related hospital admissions in New Zealand. The interviews with the clinical coders added that lack of time for searching for information to confirm an ADE admission, inadequate communication with clinicians, along with coders’ belief that an ADE is a small thing might be the potential reasons for the under-coding of the ADE admissions. This study urges the coding policymakers, auditors, and trainers to engage with the unconscious cognitive biases and short-cuts of the clinical coders. These results highlight that further work is needed on interventions to improve the clinical coding of ADE admissions, such as providing education to coders about the importance of ADEs, education to clinicians about the importance of clear and confirmed medical records entries, availing pharmacist service to improve the detection and clear documentation of ADE admissions and including a mandatory field in the discharge summary about external causes of diseases.

Keywords: adverse drug events, bleeding, clinical coders, clinical coding, hypoglycemia

Procedia PDF Downloads 130
913 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 123
912 EhfadHaya (SaveLife) / AateHayah (GiveLife) Blood Donor Website

Authors: Sameer Muhammad Aslam, Nura Said Mohsin Al-Saifi

Abstract:

This research shows the process of creating a blood donation website for Oman. Blood donation is a widespread, crucial, ongoing process, so it is important that this website is easy to use. Several automated blood management systems are available, but none provides an effective algorithm that takes into account variables such as frequency of donation, donation date, and gender. In Oman, the Ministry of Health maintains a blood bank and keeps donors informed about the need for blood through a website. They also inform donors and the wider public where and when is their next blood donation event. The website's main goals are to educate the community about the benefits of blood donation. It also manages donor and receiver documentation and encourages voluntary blood donation by providing easy access to information about blood types and blood distribution in various hospitals in Oman, based on hospital needs.

Keywords: Oman, blood bank, blood donors, donor website

Procedia PDF Downloads 217
911 Tornadic Waterspout Impacts on Coastal Zones

Authors: Matthew J. Glanville, Christian J. Rohr

Abstract:

Coastal waterspout activity is known to occur globally over a wide climatic range. This study has focussed on recent tornadic waterspout activity along the temperate New South Wales coastline of Australia. Recent tornadic waterspout impacts were surveyed at Kurnell, Kiama, and Lennox Head in coastal New South Wales and are thought to have formed either wholly or partly offshore. It is proposed that a warm, moist layer of air at the sea surface creates more unstable atmospheric conditions than would an approaching supercell path over land, and hence a greater propensity to generate a tornadic event. Measured and observed wind velocities in the vicinity of 60 ms-1 associated with the observed tornadic waterspouts are considerably higher in magnitude than the basic wind speed presented in AS1170.2 for an estimated return period of 2000 years in Region A.

Keywords: coastal, survey, tornadic, waterspout

Procedia PDF Downloads 225
910 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms

Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann

Abstract:

Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.

Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI

Procedia PDF Downloads 180
909 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System

Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli

Abstract:

Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.

Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 129
908 Evaluate the Influence of Culture on the Choice of Capital Structure Management Companies

Authors: Sahar Jami, Iman Valizadeh

Abstract:

The purpose of the study: The aim of this study was to evaluate the influence of culture on the choice of capital structure management companies are listed in the Tehran Stock Exchange. Methods: This study was a cross-document using data after the event (Retrospective) in 1394 was performed. To select a sample of elimination sampling (screening) is used to determine the sample size was 123 companies. Results: The results showed that the variables of culture, return on equity, a significant positive impact on the capital structure (ROA, QTobins) and financial leverage and firm size variables and a significant negative impact on the capital structure (ROA, QTobins).

Keywords: culture management, capital structure, ROA, QTobins, variables of culture

Procedia PDF Downloads 467
907 Geophysical Methods of Mapping Groundwater Aquifer System: Perspectives and Inferences From Lisana Area, Western Margin of the Central Main Ethiopian Rift

Authors: Esubalew Yehualaw Melaku, Tigistu Haile Eritro

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Lisana area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 79
906 Dividend Initiations and IPO Long-Run Performance

Authors: Nithi Sermsiriviboon, Somchai Supattarakul

Abstract:

Dividend initiations are an economically significant event that has important implications for a firm’s future financial capacity. Given that the market’s expectation of a consistent payout, managers of IPO firms must approach the initial dividend decision cautiously. We compare the long run performance of IPO firms that initiated dividends with those of similarly matched non-payers. We found that firms which initiated dividends perform significantly better up to three years after the initiation date. Moreover, we measure investor reactions by 2-day around dividend announcement date cumulative abnormal return. We evidence no statistically significant differences between cumulative abnormal returns (CAR) of IPO firms and cumulative abnormal returns of Non-IPO firms, indicating that investors do not respond to dividend announcement of IPO firms more than they do to the dividend announcement of Non-IPO firms.

Keywords: dividend, initial public offerings, long-run performance, finance

Procedia PDF Downloads 236
905 Science School Was Burned: A Case Study of Crisis Management in Thailand

Authors: Proud Arunrangsiwed

Abstract:

This study analyzes the crisis management and image repair strategies during the crisis of Mahidol Wittayanusorn School (MWIT) library burning. The library of this school was burned by a 16-year-old-male student on June 6th, 2010. This student blamed the school that the lesson was difficult, and other students were selfish. Although no one was in the building during the fire, it had caused damage to the building, books and electronic supplies around 130 million bahts (4.4 million USD). This event aroused many discourses arguing about the education system and morality. The strategies which were used during crisis were denial, shift the blame, bolstering, minimization, and uncertainty reduction. The results of using these strategies appeared after the crisis. That was the numbers of new students, who registered for the examination to get into this school in the later years, have remained the same.

Keywords: school, crisis management, violence, image repair strategies, uncertainty, burn

Procedia PDF Downloads 471
904 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 156
903 Board Structure, Composition, and Firm Performance: A Theoretical and Empirical Review

Authors: Suleiman Ahmed Badayi

Abstract:

Corporate governance literature is very wide and involves several empirical studies conducted on the relationship between board structure, composition and firm performance. The separation of ownership and control in organizations were aimed at reducing the losses suffered by the investors in the event of financial scandals. This paper reviewed the theoretical and empirical literature on the relationship between board composition and its impact on firm performance. The findings from the studies provide different results while some are of the view that board structure is related to firm performance, many empirical studies indicates no relationship. However, others found a U-shape relationship between firm performance and board structure. Therefore, this study argued that board structure is not much significant to determine the financial performance of a firm.

Keywords: board structure, composition, firm performance, corporate governance

Procedia PDF Downloads 566
902 The Names of the Traditional Motif of Batik Solo

Authors: Annisa D. Febryandini

Abstract:

Batik is a unique cultural heritage that strongly linked with its community. As a product of current culture in Solo, Batik Solo not only has a specific design and color to represent the cultural identity, cultural values, and spirituality of the community, but also has some specific names given by its community which are not arbitrary. This qualitative research paper uses the primary data by interview method as well as the secondary data to support it. Based on the data, this paper concludes that the names consist of a word or words taken from a current name of things in Javanese language. They indicate the cultural meaning such as a specific event, a hope, and the social status of the people who use the motif. Different from the other research, this paper takes a look at the names of traditional motif of Batik Solo which analyzed linguistically to reveal the cultural meaning.

Keywords: traditional motif, Batik, solo, anthropological linguistics

Procedia PDF Downloads 277
901 A Decision Support System for Flight Disruptions Management

Authors: Burak Erkayman, Emin Gundogar, Hayrettin Evirgen, Murat Sarı

Abstract:

With the increasing competition in recent years, airline companies tend to manage their operations aiming fewer losses in a robust manner. Airline operations are complex operations and have the necessity of being performed just in time and more knock-on relevant elements in the event of a disruption. In this study a knowledge based decision support system is suggested and software is developed. The developed software includes knowledge bases which are based on expert experience and government regulations, model bases and data bases. The results of the suggested approach are presented and improvable aspects of the approach are discussed.

Keywords: knowledge based systems, irregular operations, decision support systems, flight disruptions management

Procedia PDF Downloads 315
900 Study of Seismic Behavior of an Earth Dam with Sealing Walls: The Case of Kef Eddir’s Dam, Tipaza, Algeria

Authors: M. Boumaiza, S. Mohamadi, B. Moussai

Abstract:

In this article the study of the seismic response of an earth dam with sealing walls has been made by introducing the effect of the change of position and depth of the sealing wall and the effect of non-linear behavior of soil of the foundation by taking into account the variation of the viscous damping and shear modulus in each layer of soil on the seismic response of the dam. As a case study, we take the Algerian dam Kef-Eddir which lies in the far west of the territory of the Wilaya of Tipaza (wadi Eddamous), classified according to the RPA 2003 as a high seismicity zone (zone III). With a height of 71m above the foundation and a width of 478m. The seismic event applied to the rock, is the earthquake of Chenoua (29 October, 1989), with a magnitude Mw=6 that hit the region.

Keywords: earth dam, earthquake, sealing walls, viscous damping

Procedia PDF Downloads 607
899 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?

Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq

Abstract:

Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.

Keywords: Cox regression, neural networks, survival, cancer.

Procedia PDF Downloads 201
898 Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review

Authors: Melissa Langevin, Natalie Ward, Colleen Fitzgibbons, Christa Ramsey, Melanie Hogue, Anna Theresa Lobos

Abstract:

Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews.

Keywords: adverse events, patient safety, pediatrics, root cause analysis, simulation

Procedia PDF Downloads 152
897 Comparison Between Bispectral Index Guided Anesthesia and Standard Anesthesia Care in Middle Age Adult Patients Undergoing Modified Radical Mastectomy

Authors: Itee Chowdhury, Shikha Modi

Abstract:

Introduction: Cancer is beginning to outpace cardiovascular disease as a cause of death affecting every major organ system with profound implications for perioperative management. Breast cancer is the most common cancer in women in India, accounting for 27% of all cancers. The small changes in analgesic management of cancer patients can greatly improve prognosis and reduce the risk of postsurgical cancer recurrence as opioid-based analgesia has a deleterious effect on cancer outcomes. Shortened postsurgical recovery time facilitates earlier return to intended oncological therapy maximising the chance of successful treatment. Literature reveals that the role of BIS since FDA approval has been assessed in various types of surgeries, but clinical data on its use in oncosurgical patients are scanty. Our study focuses on the role of BIS-guided anaesthesia for breast cancer surgery patients. Methods: A prospective randomized controlled study in patients aged 36-55years scheduled for modified radical mastectomy was conducted in 51 patients in each group who met the inclusion and exclusion criteria, and randomization was done by sealed envelope technique. In BIS guided anaesthesia group (B), sevoflurane was titrated to keep the BIS value 45-60, and thereafter if the patient showed hypertension/tachycardia, an opioid was given. In standard anaesthesia care (group C), sevoflurane was titrated to keep MAC in the range of 0.8-1, and fentanyl was given if the patient showed hypertension/tachycardia. Intraoperative opioid consumption was calculated. Postsurgery recovery characteristics, including Aldrete score, were assessed. Patients were questioned for pain, PONV, and recall of the intraoperative event. A comparison of age, BMI, ASA, recovery characteristics, opioid, and VAS score was made using the non-parametric Mann-Whitney U test. Categorical data like intraoperative awareness of surgery and PONV was studied using the Chi-square test. A comparison of heart rate and MAP was made by an independent sample t-test. #ggplot2 package was used to show the trend of the BIS index for all intraoperative time points for each patient. For a statistical test of significance, the cut-off p-value was set as <0.05. Conclusions: BIS monitoring led to reduced opioid consumption and early recovery from anaesthesia in breast cancer patients undergoing MRM resulting in less postoperative nausea and vomiting and less pain intensity in the immediate postoperative period without any recall of the intraoperative event. Thus, the use of a Bispectral index monitor allows for tailoring of anaesthesia administration with a good outcome.

Keywords: bispectral index, depth of anaesthesia, recovery, opioid consumption

Procedia PDF Downloads 127
896 The Concentration of Formaldehyde in Rainwater and Typhoon Rainwater at Sakai City, Japan

Authors: Chinh Nguyen Nhu Bao, Hien To Thi, Norimichi Takenaka

Abstract:

Formaldehyde (HCHO) concentrations in rainwater including in tropical storms in Sakai City, Osaka, Japan have been measured continuously during rain event by developed chemiluminescence method. The level of formaldehyde was ranged from 15 µg/L to 500 µg/L. The high concentration of HCHO in rainwater is related to the wind direction from the south and west sides of Sakai City where manufactures related to chemicals, oil-refinery, and steel. The in-situ irradiated experiment on rainwater sample was conducted to prove the aqueous phase photo-production of HCHO and the degradation of HCHO. In the daytime, the aqueous phase photolysis is the source of HCHO in rainwater (4.52 ± 5.74 µg/L/h for UV light source in-situ condition, 2.84-8.96 µg/L/h under sunlight). However, in the night time, the degradation is the function of microorganism.

Keywords: chemiluminescence, formaldehyde, rainwater, typhoon

Procedia PDF Downloads 165
895 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects

Authors: Preeda Sansakorn, Min An

Abstract:

In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.

Keywords: safety risk assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects

Procedia PDF Downloads 492
894 The Effect of Social Media Influencer on Boycott Participation through Attitude toward the Offending Country in a Situational Animosity Context

Authors: Hsing-Hua Stella Chang, Mong-Ching Lin, Cher-Min Fong

Abstract:

Using surrogate boycotts as a coercive tactic to force the offending party into changing its approaches has been increasingly significant over the last several decades, and is expected to increase in the future. Research shows that surrogate boycotts are often triggered by controversial international events, and particular foreign countries serve as the offending party in the international marketplace. In other words, multinational corporations are likely to become surrogate boycott targets in overseas markets because of the animosity between their home and host countries. Focusing on the surrogate boycott triggered by a severe situation animosity, this research aims to examine how social media influencers (SMIs) serving as electronic key opinion leaders (EKOLs) in an international crisis facilitate and organize a boycott, and persuade consumers to participate in the boycott. This research suggests that SMIs could be a particularly important information source in a surrogate boycott sparked by a situation of animosity. This research suggests that under such a context, SMIs become a critical information source for individuals to enhance and update their understanding of the event because, unlike traditional media, social media serve as a platform for instant and 24-hour non-stop information access and dissemination. The Xinjiang cotton event was adopted as the research context, which was viewed as an ongoing inter-country conflict, reflecting a crisis, which provokes animosity against the West. Through online panel services, both studies recruited Mainland Chinese nationals to be respondents to the surveys. The findings show that: 1. Social media influencer message is positively related to a negative attitude toward the offending country. 2. Attitude toward the offending country is positively related to boycotting participation. To address the unexplored question – of the effect of social media influencer influence on consumer participation in boycotts, this research presents a finer-grained examination of boycott motivation, with a special focus on a situational animosity context. This research is split into two interrelated parts. In the first part, this research shows that attitudes toward the offending country can be socially constructed by the influence of social media influencers in a situational animosity context. The study results show that consumers perceive different strengths of social pressure related to various levels of influencer messages and thus exhibit different levels of attitude toward the offending country. In the second part, this research further investigates the effect of attitude toward the offending country on boycott participation. The study findings show that such attitude exacerbated the effect of social media influencer messages on boycott participation in a situation of animosity.

Keywords: animosity, social media marketing, boycott, attitude toward the offending country

Procedia PDF Downloads 112