Search results for: electronic cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2590

Search results for: electronic cooling

2080 First Principle study of Electronic Structure of Silicene Doped with Galium

Authors: Mauludi Ariesto Pamungkas, Wafa Maftuhin

Abstract:

Gallium with three outer electrons commonly are used as dopants of silicon to make it P type and N type semiconductor respectively. Silicene, one-atom-thick silicon layer is one of emerging two dimension materials after the success of graphene. The effects of Gallium doping on electronic structure of silicine are investigated by using first principle calculation based on Density Functional Theory (DFT) calculation and norm conserving pseudopotential method implemented in ABINIT code. Bandstructure of Pristine silicene is similar to that of graphene. Effect of Ga doping on bandstructure of silicene depend on the position of Ga adatom on silicene

Keywords: silicene, effects of Gallium doping, Density Functional Theory (DFT), graphene

Procedia PDF Downloads 414
2079 Investigation on Ultrahigh Heat Flux of Nanoporous Membrane Evaporation Using Dimensionless Lattice Boltzmann Method

Authors: W. H. Zheng, J. Li, F. J. Hong

Abstract:

Thin liquid film evaporation in ultrathin nanoporous membranes, which reduce the viscous resistance while still maintaining high capillary pressure and efficient liquid delivery, is a promising thermal management approach for high-power electronic devices cooling. Given the challenges and technical limitations of experimental studies for accurate interface temperature sensing, complex manufacturing process, and short duration of membranes, a dimensionless lattice Boltzmann method capable of restoring thermophysical properties of working fluid is particularly derived. The evaporation of R134a to its pure vapour ambient in nanoporous membranes with the pore diameter of 80nm, thickness of 472nm, and three porosities of 0.25, 0.33 and 0.5 are numerically simulated. The numerical results indicate that the highest heat transfer coefficient is about 1740kW/m²·K; the highest heat flux is about 1.49kW/cm² with only about the wall superheat of 8.59K in the case of porosity equals to 0.5. The dissipated heat flux scaled with porosity because of the increasing effective evaporative area. Additionally, the self-regulation of the shape and curvature of the meniscus under different operating conditions is also observed. This work shows a promising approach to forecast the membrane performance for different geometry and working fluids.

Keywords: high heat flux, ultrathin nanoporous membrane, thin film evaporation, lattice Boltzmann method

Procedia PDF Downloads 142
2078 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO

Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez

Abstract:

We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the NaCl (rock-salt) and WZ (wurtzite) phases. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT). Our calculations predict that for Bi concentrations greater than ~70%, the WZ structure is more favorable than the NaCl one and that for x = 0 (pure MgO), x = 0.25 and x = 0.50 of Bi concentration the NaCl structure is more favorable than the WZ one. For x = 0.75 of Bi, a transition from wurtzite towards NaCl is possible, when the pressure is about 22 GPa. Also It has been observed the crystal lattice constant closely follows Vegard’s law, that the bulk modulus and the cohesion energy decrease with the concentration x of Bi.

Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt, wurtzite

Procedia PDF Downloads 499
2077 Theoretical Investigation of Electronic, Structural and Thermoelectric Properties of Mg₂SiSn (110) Surface

Authors: M. Ramesh, Manish K. Niranjan

Abstract:

The electronic, structural and thermoelectric properties of Mg₂SiSn (110) surface are investigated within the framework of first principle density functional theory and semi classical Boltzmann approach. In particular, directional dependent thermoelectric properties such as electrical conductivity, thermal conductivity, Seebeck coefficient and figure of merit are explored. The (110)-oriented Mg₂SiSn surface exhibits narrow indirect band gap of ~0.17 eV. The thermoelectric properties are found to be significant along the y-axis at 300 K and along x-axis at 500 K. The figure of merit (ZT) for hole carrier concentration is found to be significantly large having magnitude 0.83 (along x-axis) at 500 K and 0.26 (y-axis) at 300 K. Our results suggest that Mg₂SiSn (110) surface is promising for various thermoelectric applications due to its overall good thermoelectric properties.

Keywords: thermoelectric, surface science, semiconducting silicide, first principles calculations

Procedia PDF Downloads 208
2076 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study

Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo

Abstract:

The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.

Keywords: electronic, banking, automated teller machines, mobile, deposit

Procedia PDF Downloads 33
2075 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application

Authors: S. Nqayi

Abstract:

Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.

Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics

Procedia PDF Downloads 36
2074 The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method.

Keywords: HVFA concrete, NDT methods, residual strength, non-destructive tests

Procedia PDF Downloads 436
2073 Numerical Investigation into the Effect of Axial Fan Blade Angle on the Fan Performance

Authors: Shayan Arefi, Qadir Esmaili, Seyed Ali Jazayeri

Abstract:

The performance of cooling system affects on efficiency of turbo generators and temperature of winding. Fan blade is one of the most important components of cooling system which plays a significant role in ventilation of generators. Fan performance curve depends on the blade geometry and boundary condition. This paper calculates numerically the performance curve of axial flow fan mounted on turbo generator with 160 MW output power. The numerical calculation was implemented by Ansys-workbench software. The geometrical model of blade was created by bladegen, grid generation and configuration was made by turbogrid and finally, the simulation was implemented by CFX. For the first step, the performance curves consist of pressure rise and efficiency flow rate were calculated in the original angle of blade. Then, by changing the attack angle of blade, the related performance curves were calculated. CFD results for performance curve of each angle show a good agreement with experimental results. Additionally, the field velocity and pressure gradient of flow near the blade were investigated and simulated numerically with varying of angle.

Keywords: turbo generator, axial fan, Ansys, performance

Procedia PDF Downloads 346
2072 Solar Photovoltaic Driven Air-Conditioning for Commercial Buildings: A Case of Botswana

Authors: Taboka Motlhabane, Pradeep Sahoo

Abstract:

The global demand for cooling has grown exponentially over the past century to meet economic development and social needs, accounting for approximately 10% of the global electricity consumption. As global temperatures continue to rise, the demand for cooling and heating, ventilation and air-conditioning (HVAC) equipment is set to rise with it. The increased use of HVAC equipment has significantly contributed to the growth of greenhouse gas (GHG) emissions which aid the climate crisis- one of the biggest challenges faced by the current generation. The need to address emissions caused directly by HVAC equipment and electricity generated to meet the cooling or heating demand is ever more pressing. Currently, developed countries account for the largest cooling and heating demand, however developing countries are anticipated to experience a huge increase in population growth in 10 years, resulting in a shift in energy demand. Developing countries, which are projected to account for nearly 60% of the world's GDP by 2030, are rapidly building infrastructure and economies to meet their growing needs and meet these projections. Cooling, a very energy-intensive process that can account for 20 % to 75% of a building's energy, depending on the building's use. Solar photovoltaic (PV) driven air-conditioning offers a great cost-effective alternative for adoption in both residential and non-residential buildings to offset grid electricity, particularly in countries with high irradiation, such as Botswana. This research paper explores the potential of a grid-connected solar photovoltaic vapor-compression air-conditioning system for the Peter-Smith herbarium at the Okavango Research Institute (ORI) University of Botswana campus in Maun, Botswana. The herbarium plays a critical role in the collection and preservation of botanical data, dating back over 100 years, with pristine collection from the Okavango Delta, a UNESCO world heritage site and serves as a reference and research site. Due to the herbarium’s specific needs, it operates throughout the day and year in an attempt to maintain a constant herbarium temperature of 16°?. The herbarium model studied simulates a variable-air-volume HVAC system with a system rating of 30 kW. Simulation results show that the HVAC system accounts for 68.9% of the building's total electricity at 296 509.60 kWh annually. To offset the grid electricity, a 175.1 kWp nominal power rated PV system requiring 416 modules to match the required power, covering an area of 928 m2 is used to meet the HVAC system annual needs. An economic assessment using PVsyst found that for an installation priced with average solar PV prices in Botswana totalled to be 787 090.00 BWP, with annual operating costs of 30 500 BWP/year. With self-project financing, the project is estimated to have recouped its initial investment within 6.7 years. At an estimated project lifetime of 20 years, the Net Present Value is projected at 1 565 687.00 BWP with a ROI of 198.9%, with 74 070.67 tons of CO2 saved at the end of the project lifetime. This study investigates the performance of the HVAC system to meet the indoor air comfort requirements, the annual PV system performance, and the building model has been simulated using DesignBuilder Software.

Keywords: vapor compression refrigeration, solar cooling, renewable energy, herbarium

Procedia PDF Downloads 110
2071 Assessment of Frying Material by Deep-Fat Frying Method

Authors: Brinda Sharma, Saakshi S. Sarpotdar

Abstract:

Deep-fat frying is popular standard method that has been studied basically to clarify the complicated mechanisms of fat decomposition at high temperatures and to assess their effects on human health. The aim of this paper is to point out the application of method engineering that has been recently improved our understanding of the fundamental principles and mechanisms concerned at different scales and different times throughout the process: pretreatment, frying, and cooling. It covers the several aspects of deep-fat drying. New results regarding the understanding of the frying method that are obtained as a results of major breakthroughs in on-line instrumentation (heat, steam flux, and native pressure sensors), within the methodology of microstructural and imaging analysis (NMR, MRI, SEM) and in software system tools for the simulation of coupled transfer and transport phenomena. Such advances have opened the approach for the creation of significant information of the behavior of varied materials and to the event of latest tools to manage frying operations via final product quality in real conditions. Lastly, this paper promotes an integrated approach to the frying method as well as numerous competencies like those of chemists, engineers, toxicologists, nutritionists, and materials scientists also as of the occupation and industrial sectors.

Keywords: frying, cooling, imaging analysis (NMR, MRI, SEM), deep-fat frying

Procedia PDF Downloads 409
2070 Design Dual Band Band-Pass Filter by Using Stepped Impedance

Authors: Fawzia Al-Sakeer, Hassan Aldeeb

Abstract:

Development in the communications field is proceeding at an amazing speed, which has led researchers to improve and develop electronic circuits by increasing their efficiency and reducing their size to reduce the weight of electronic devices. One of the most important of these circuits is the band-pass filter, which is what made us carry out this research, which aims to use an alternate technology to design a dual band-pass filter by using a stepped impedance microstrip transmission line. We designed a filter that works at two center frequency bands by designing with the ADS program, and the results were excellent, as we obtained the two design frequencies, which are 1 and 3GHz, and the values of insertion loss S11, which was more than 21dB with a small area.

Keywords: band pass filter, dual band band-pass filter, ADS, microstrip filter, stepped impedance

Procedia PDF Downloads 46
2069 Structural Alteration of MoS₂ by Incorporating Fe, Co Composite for an Enhanced Oxygen Evolution Reaction

Authors: Krishnamoorthy Sathiyan, Shanti Gopal Patra, Ronen Bar-Ziv, Tomer Zidki

Abstract:

Developing efficient non-noble metal catalysts that are cheap and durable for oxygen evolution reaction (OER) is a great challenge. Moreover, altering the electronic structure of the catalyst and structural engineering of the materials provide a new direction for enhancing the OER. Herein, we have successfully synthesized Fe and Co incorporated MoS₂ catalysts, which show improved catalytic activity for OER when compared with MoS₂, Fe-MoS₂, and Co-MoS₂. It was found that at an optimal ratio of Fe and Co, the electronic and structural modification of MoS₂ occurs, which leads to change in orientation and thereby enhances the active catalytic sites on the edges, which are more exposed for OER. The nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX), Elemental Mapping, transmission electron microscope (TEM), and high-resolution transmission electron microscope (HR-TEM) analysis. Among all, a particular ratio of FeCo-MoS₂ exhibits a much smaller onset with better catalytic current density. The remarkable catalytic activity is mainly attributed to the synergistic effect from the Fe and Co. Most importantly, our work provides an essential insight in altering the electronic structure of MoS₂ based materials by incorporating promoters such as Co and Fe in an optimal amount, which enhances OER activity.

Keywords: electrocatalysts, molybdenum disulfide, oxygen evolution reaction, transition metals

Procedia PDF Downloads 116
2068 Vortex Separator for More Accurate Air Dry-Bulb Temperature Measurement

Authors: Ahmed N. Shmroukh, I. M. S. Taha, A. M. Abdel-Ghany, M. Attalla

Abstract:

Fog systems application for cooling and humidification is still limited, although these systems require less initial cost compared with that of other cooling systems such as pad-and-fan systems. The undesirable relative humidity and air temperature inside the space which have been cooled or humidified are the main reasons for its limited use, which results from the poor control of fog systems. Any accurate control system essentially needs air dry bulb temperature as an input parameter. Therefore, the air dry-bulb temperature in the space needs to be measured accurately. The Scope of the present work is the separation of the fog droplets from the air in a fogged space to measure the air dry bulb temperature accurately. The separation is to be done in a small device inside which the sensor of the temperature measuring instrument is positioned. Vortex separator will be designed and used. Another reference device will be used for measuring the air temperature without separation. A comparative study will be performed to reach at the best device which leads to the most accurate measurement of air dry bulb temperature. The results showed that the proposed devices improved the measured air dry bulb temperature toward the correct direction over that of the free junction. Vortex device was the best. It respectively increased the temperature measured by the free junction in the range from around 2 to around 6°C for different fog on-off duration.

Keywords: fog systems, measuring air dry bulb temperature, temperature measurement, vortex separator

Procedia PDF Downloads 274
2067 Numerical Investigation of Nanofluid Based Thermosyphon System

Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan

Abstract:

A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.

Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop

Procedia PDF Downloads 459
2066 Electronic and Computer-Assisted Refreshable Braille Display Developed for Visually Impaired Individuals

Authors: Ayşe Eldem, Fatih Başçiftçi

Abstract:

Braille alphabet is an important tool that enables visually impaired individuals to have a comfortable life like those who have normal vision. For this reason, new applications related to the Braille alphabet are being developed. In this study, a new Refreshable Braille Display was developed to help visually impaired individuals learn the Braille alphabet easier. By means of this system, any text downloaded on a computer can be read by the visually impaired individual at that moment by feeling it by his/her hands. Through this electronic device, it was aimed to make learning the Braille alphabet easier for visually impaired individuals with whom the necessary tests were conducted.

Keywords: visually impaired individual, Braille, Braille display, refreshable Braille display, USB

Procedia PDF Downloads 328
2065 Influence of Temperature and Immersion on the Behavior of a Polymer Composite

Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli

Abstract:

This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.

Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical

Procedia PDF Downloads 99
2064 First Principle Studies on the Structural, Electronic and Magnetic Properties of Some BaMn-Based Double Perovskites

Authors: Amel Souidi, S. Bentata, B. Bouadjemi, T. Lantri, Z. Aziz

Abstract:

Perovskite materials which include magnetic elements have relevance due to the technological perspectives in the spintronics industry. In this work, we have investigated the structural, electronic and magnetic properties of double perovskites Ba2MnXO6 with X= Mo and W by using the full-potential linearized augmented plane wave (FP-LAPW) method based on Density Functional Theory (DFT) [1, 2] as implemented in the WIEN2K [3] code. The interchange-correlation potential was included through the generalized gradient approximation (GGA) [4] as well as taking into account the on-site coulomb repulsive interaction in (GGA+U) approach. We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. The results show that the materials crystallize in the 225 space group (Fm-3m) and have a lattice parameter of about 7.97 Å and 7.95 Å for Ba2MnMoO6 and Ba2MnWO6, respectively. The band structures reveal a metallic ferromagnetic (FM) ground state in Ba2MnMoO6 and half-metallic (HM) ferromagnetic (FM) ground state in the Ba2MnWO6 compound, with total magnetic moment equal 2.9951μB (Ba2MnMoO6 ) and 4.0001μB (Ba2MnWO6 ). The GGA+U calculations predict an energy gap in the spin-up bands in Ba2MnWO6. So we estimate that this material with HM-FM nature implies a promising application in spin-electronics technology.

Keywords: double perovskites, electronic structure, first-principles, semiconductors

Procedia PDF Downloads 343
2063 Numerical Simulation of Convective and Transport Processes in the Nocturnal Atmospheric Surface Layer

Authors: K. R. Sreenivas, Shaurya Kaushal

Abstract:

After sunset, under calm & clear-sky nocturnal conditions, the air layer near the surface containing aerosols cools through radiative processes to the upper atmosphere. Due to this cooling, surface air-layer temperature can fall 2-6 degrees C lower than the ground-surface temperature. This unstable convection layer, on the top, is capped by a stable inversion-boundary layer. Radiative divergence, along with the convection within the surface layer, governs the vertical transport of heat and moisture. Micro-physics in this layer have implications for the occurrence and growth of the fog layer. This particular configuration, featuring a convective mixed layer beneath a stably stratified inversion layer, exemplifies a classic case of penetrative convection. In this study, we conduct numerical simulations of the penetrative convection phenomenon within the nocturnal atmospheric surface layer and elucidate its relevance to the dynamics of fog layers. We employ field and laboratory measurements of aerosol number density to model the strength of the radiative cooling. Our analysis encompasses horizontally averaged, vertical profiles of temperature, density, and heat flux. The energetic incursion of the air from the mixed layer into the stable inversion layer across the interface results in entrainment and the growth of the mixed layer, modeling of which is the key focus of our investigation. In our research, we ascertain the appropriate length scale to employ in the Richardson number correlation, which allows us to estimate the entrainment rate and model the growth of the mixed layer. Our analysis of the mixed layer and the entrainment zone reveals a close alignment with previously reported laboratory experiments on penetrative convection. Additionally, we demonstrate how aerosol number density influences the growth or decay of the mixed layer. Furthermore, our study suggests that the presence of fog near the ground surface can induce extensive vertical mixing, a phenomenon observed in field experiments.

Keywords: inversion layer, penetrative convection, radiative cooling, fog occurrence

Procedia PDF Downloads 52
2062 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector

Authors: Loong Qing Zhe, Foo Jing Heng

Abstract:

A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.

Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)

Procedia PDF Downloads 168
2061 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin

Authors: Mohammad Salehi, Mohammad Erfan Doraki

Abstract:

In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.

Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink

Procedia PDF Downloads 102
2060 Molecular Junctions between Graphene Strips: Electronic and Transport Properties

Authors: Adel Belayadi, Ahmed Mougari, Boualem Bourahla

Abstract:

Molecular junctions are currently considered a promising style in the miniaturization of electronic devices. In this contribution, we provide a tight-binding model to investigate the quantum transport properties across-molecular junctions sandwiched between 2D-graphene nanoribbons in the zigzag direction. We investigate, in particular, the effect of embedded atoms such as Gold and Silicon across the molecular junction. The results exhibit a resonance behavior in terms of incident Fermi levels, depending on the molecular junction type. Additionally, the transport properties under a perpendicular magnetic field exhibit an oscillation for the transmittance versus the magnetic field strength.

Keywords: molecular junction, 2D-graphene nanoribbons, quantum transport properties, magnetic field

Procedia PDF Downloads 78
2059 Strategies for E-Waste Management: A Literature Review

Authors: Linh Thi Truc Doan, Yousef Amer, Sang-Heon Lee, Phan Nguyen Ky Phuc

Abstract:

During the last few decades, with the high-speed upgrade of electronic products, electronic waste (e-waste) has become one of the fastest growing wastes of the waste stream. In this context, more efforts and concerns have already been placed on the treatment and management of this waste. To mitigate their negative influences on the environment and society, it is necessary to establish appropriate strategies for e-waste management. Hence, this paper aims to review and analysis some useful strategies which have been applied in several countries to handle e-waste. Future perspectives on e-waste management are also suggested. The key findings found that, to manage e-waste successfully, it is necessary to establish effective reverse supply chains for e-waste, and raise public awareness towards the detrimental impacts of e-waste. The result of the research provides valuable insights to governments, policymakers in establishing e-waste management in a safe and sustainable manner.

Keywords: e-waste, e-waste management, life cycle assessment, recycling regulations

Procedia PDF Downloads 248
2058 Effect on the Integrity of the DN300 Pipe and Valves in the Cooling Water System Imposed by the Pipes and Ventilation Pipes above in an Earthquake Situation

Authors: Liang Zhang, Gang Xu, Yue Wang, Chen Li, Shao Chong Zhou

Abstract:

Presently, more and more nuclear power plants are facing the issue of life extension. When a nuclear power plant applies for an extension of life, its condition needs to meet the current design standards, which is not fine for all old reactors, typically for seismic design. Seismic-grade equipment in nuclear power plants are now generally placed separately from the non-seismic-grade equipment, but it was not strictly required before. Therefore, it is very important to study whether non-seismic-grade equipment will affect the seismic-grade equipment when dropped down in an earthquake situation, which is related to the safety of nuclear power plants and future life extension applications. This research was based on the cooling water system with the seismic and non-seismic grade equipment installed together, as an example to study whether the non-seismic-grade equipment such as DN50 fire pipes and ventilation pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. In the study, the simulation was carried out by ANSYS / LY-DYNA, and Johnson-Cook was used as the material model and failure model. For the experiments, the relative positions of objects in the room were restored by 1: 1. In the experiment, the pipes and valves were filled with water with a pressure of 0.785 MPa. The pressure-holding performance of the pipe was used as a criterion for damage. In addition to the pressure-holding performance, the opening torque was considered as well for the valves. The research results show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long air pipe dropped from a position of 3.6 meters height, they do not affect the integrity of DN300 pipe below. There is no failure phenomenon in the simulation as well. After the experiment, the pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail either. The opening torque change after the experiment is less than 0.5%, but the handwheel of the valve may break, which affects the opening actions. In summary, impacts of the upper pipes and ventilation pipes dropdown on the integrity of the DN300 pipes and valves below in a cooling water system of a typical second-generation nuclear power plant under an earthquake was studied. As a result, the functionality of the DN300 pipeline and the valves themselves are not significantly affected, but the handwheel of the valve or similar articles can probably be broken and need to take care.

Keywords: cooling water system, earthquake, integrity, pipe and valve

Procedia PDF Downloads 98
2057 Electronic/Optoelectronic Property Tuning in Two-Dimensional Transition Metal Dichalcogenides via High Pressure

Authors: Juan Xia, Jiaxu Yan, Ze Xiang Shen

Abstract:

The tuneable interlayer interactions in two-dimensional (2D) transition metal dichlcogenides (TMDs) offer an exciting platform for exploring new physics and applications by material variety, thickness, stacking sequence, electromagnetic filed, and stress/strain. Compared with the five methods mentioned above, high pressure is a clean and powerful tool to induce dramatic changes in lattice parameters and physical properties for 2D TMD materials. For instance, high pressure can strengthen the van der Waals interactions along c-axis and shorten the covalent bonds in atomic plane, leading to the typical first-order structural transition (2Hc to 2Ha for MoS2), or metallization. In particular, in the case of WTe₂, its unique symmetry endows the significant anisotropy and the corresponding unexpected properties including the giant magnetoresistance, pressure-induced superconductivity and Weyl semimetal states. Upon increasing pressure, the Raman peaks for WTe₂ at ~120 cm⁻¹, are gradually red-shifted and totally suppressed above 10 GPa, attributed to the possible structural instability of orthorhombic Td phase under high pressure and phase transition to a new monoclinic T' phase with inversion symmetry. Distinct electronic structures near Fermi level between the Td and T' phases may pave a feasible way to achieve the Weyl state tuning in one material without doping.

Keywords: 2D TMDs, electronic property, high pressure, first-principles calculations

Procedia PDF Downloads 210
2056 Theoretical Study of Structural and Electronic Properties of Matlockite CaFX (X = I and Br) Compounds

Authors: Meriem Harmel, Houari Khachai

Abstract:

The full potential linearized augmented plane wave (FP-LAPW)method within density functional theory is applied to study, for the first time, the structural and electronic properties of CaFI and to compare them with CaFCl and CaFBr, all compounds belonging to the tetragonal PbFCl structure group with space group P4/nmm. We used the generalized gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy and also the Engel– Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Ground state properties such as the lattice parameters, c/a ratio, bulk modulus, pressure derivative of the bulk modulus and cohesive energy are calculated, as well as the optimized internal parameters, by relaxing the atomic position in the force directions. The variations of the calculated interatomic distances and angles between different atomic bonds are discussed. CaFCl was found to have a direct band gap at whereas CaFBr and BaFI have indirect band gaps. From these computed bands, all three materials are found to be insulators having band gaps of 6.28, 5.46, and 4.50 eV, respectively. We also calculated the valence charge density and the total density of states at equilibrium volume for each compound. The results are in reasonable agreement with the available experimental data.

Keywords: DFT, matlockite, structural properties, electronic structure

Procedia PDF Downloads 297
2055 Electronic Waste Analysis And Characterization Study: Management Input For Highly Urbanized Cities

Authors: Jilbert Novelero, Oliver Mariano

Abstract:

In a world where technological evolution and competition to create innovative products are at its peak, problems on Electronic Waste (E-Waste) are now becoming a global concern. E-waste is said to be any electrical or electronic devices that have reached the terminal of its useful life. The major issue are the volume and the raw materials used in crafting E-waste which is non-biodegradable and contains hazardous substances that are toxic to human health and the environment. The objective of this study is to gather baseline data in terms of the composition of E-waste in the solid waste stream and to determine the top 5 E-waste categories in a highly urbanized city. Recommendations in managing these wastes for its reduction were provided which may serve as a guide for acceptance and implementation in the locality. Pasig City was the chosen beneficiary of the research output and through the collaboration of the City Government of Pasig and its Solid Waste Management Office (SWMO); the researcher successfully conducted the Electronic Waste Analysis and Characterization Study (E-WACS) to achieve the objectives. E-WACS that was conducted on April 2019 showed that E-waste ranked 4th which comprises the 10.39% of the overall solid waste volume. Out of 345, 127.24kg which is the total daily domestic waste generation in the city, E-waste covers 35,858.72kg. Moreover, an average of 40 grams was determined to be the E-waste generation per person per day. The top 5 E-waste categories were then classified after the analysis. The category which ranked first is the office and telecommunications equipment that contained the 63.18% of the total generated E-waste. Second in ranking was the household appliances category with 21.13% composition. Third was the lighting devices category with 8.17%. Fourth on ranking was the consumer electronics and batteries category which was composed of 5.97% and fifth was the wires and cables category where it comprised the 1.41% of the average generated E-waste samples. One of the recommendations provided in this research is the implementation of the Pasig City Waste Advantage Card. The card can be used as a privilege card and earned points can be converted to avail of and enjoy services such as haircut, massage, dental services, medical check-up, and etc. Another recommendation raised is for the LGU to encourage a communication or dialogue with the technology and electronics manufacturers and distributors and international and local companies to plan the retrieval and disposal of the E-wastes in accordance with the Extended Producer Responsibility (EPR) policy where producers are given significant responsibilities for the treatment and disposal of post-consumer products.

Keywords: E-waste, E-WACS, E-waste characterization, electronic waste, electronic waste analysis

Procedia PDF Downloads 98
2054 Authentication and Legal Admissibility of 'Computer Evidence from Electronic Voting Machines' in Electoral Litigation: A Qualitative Legal Analysis of Judicial Opinions of Appellate Courts in the USA

Authors: Felix O. Omosele

Abstract:

Several studies have established that electronic voting machines are prone to multi-faceted challenges. One of which is their capacity to lose votes after the ballots might have been cast. Therefore, the international consensus appears to favour the use of electronic voting machines that are accompanied with verifiable audit paper audit trail (VVPAT). At present, there is no known study that has evaluated the impacts (or otherwise) of this verification and auditing on the authentication, admissibility and evidential weight of electronically-obtained electoral data. This legal inquiry is important as elections are sometimes won or lost in courts and on the basis of such data. This gap will be filled by the present research work. Using the United States of America as a case study, this paper employed a qualitative legal analysis of several of its appellate courts’ judicial opinions. This analysis equally unearths the necessary statutory rules and regulations that are important to the research problem. The objective of the research is to highlight the roles played by VVPAT on electoral evidence- as seen from the eyes of the court. The preliminary outcome of this qualitative analysis shows that the admissibility and weight attached to ‘Computer Evidence from e-voting machines (CEEM)’ are often treated with general standards applied to other computer-stored evidence. These standards sometimes fail to embrace the peculiar challenges faced by CEEM, particularly with respect to their tabulation and transmission. This paper, therefore, argues that CEEM should be accorded unique consideration by courts. It proposes the development of a legal standard which recognises verification and auditing as ‘weight enhancers’ for electronically-obtained electoral data.

Keywords: admissibility of computer evidence, electronic voting, qualitative legal analysis, voting machines in the USA

Procedia PDF Downloads 175
2053 Ab Initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: A. Abada, S. Hiadsi, T. Ouahrani, B. Amrani, K. Amara

Abstract:

Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of some Co2- based full Heusler alloys, namely Co2ZrGe and Co2NbB. The calculations show that these compounds are to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 µB per formula unit, well consistent with the Slater-Pauling rule. Our calculations show indirect band gaps of 0.58 eV and 0.47 eV in the minority spin channel of density of states (DOS) for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half metallicity is found to be robust against volume changes and the two alloys kept a 100% of spin polarization at the Fermi level. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronics field.

Keywords: half-metallic ferromagnets, full Heusler alloys, magnetic properties, electronic properties

Procedia PDF Downloads 384
2052 Stabilization of Metastable Skyrmion Phase in Polycrystalline Chiral β-Mn Type Co₇Zn₇Mn₆ Alloy

Authors: Pardeep, Yugandhar Bitla, A. K. Patra, G. A. Basheed

Abstract:

The topological protected nanosized particle-like swirling spin textures, “skyrmion,” has been observed in various ferromagnets with chiral crystal structures like MnSi, FeGe, Cu₂OSeO₃ alloys, however the magnetic ordering in these systems takes place at very low temperatures. For skyrmion-based spintronics devices, the skyrmion phase is required to stabilize in a wide temperature – field (T - H) region. The equilibrium skyrmion phase (SkX) in Co₇Zn₇Mn₆ alloy exists in a narrow T – H region just below transition temperature (TC ~ 215 K) and can be quenched by field cooling as a metastable skyrmion phase (MSkX) below SkX region. To realize robust MSkX at 110 K, field sweep ac susceptibility χ(H) measurements were performed after the zero field cooling (ZFC) and field cooling (FC) process. In ZFC process, the sample was cooled from 320 K to 110 K in zero applied magnetic field and then field sweep measurement was performed (up to 2 T) in positive direction (black curve). The real part of ac susceptibility (χ′(H)) at 110 K in positive field direction after ZFC confirms helical to conical phase transition at low field HC₁ (= 42 mT) and conical to ferromagnetic (FM) transition at higher field HC₂ (= 300 mT). After ZFC, FC measurements were performed i.e., sample was initially cooled in zero fields from 320 to 206 K and then a sample was field cooled in the presence of 15 mT field down to the temperature 110 K. After FC process, isothermal χ(H) was measured in positive (+H, red curve) and negative (-H, blue curve) field direction with increasing and decreasing field upto 2 T. Hysteresis behavior in χ′(H), measured after ZFC and FC process, indicates the stabilization of MSkX at 110 K which is in close agreement with literature. Also, the asymmetry between field-increasing curves measured after FC process in both sides confirm the stabilization of MSkX. In the returning process from the high field polarized FM state, helical state below HC₁ is destroyed and only the conical state is observed. Thus, the robust MSkX state is stabilized below its SkX phase over a much wider T - H region by FC in polycrystalline Co₇Zn₇Mn₆ alloy.

Keywords: skyrmions, magnetic susceptibility, metastable phases, topological phases

Procedia PDF Downloads 86
2051 Model-Viewer for Setting Interactive 3D Objects of Electronic Devices and Systems

Authors: Julio Brégains, Ángel Carro, José-Manuel Andión

Abstract:

Virtual 3D objects constitute invaluable tools for teaching practical engineering subjects at all -from basic to advanced- educational levels. For instance, they can be equipped with animation or informative labels, manipulated by mouse movements, and even be immersed in a real environment through augmented reality. In this paper, we present the investigation and description of a set of applications prepared for creating, editing, and making use of interactive 3D models to represent electric and electronic devices and systems. Several examples designed with the described tools are exhibited, mainly to show their capabilities as educational technological aids, applicable not only to the field of electricity and electronics but also to a much wider range of technical areas.

Keywords: educational technology, Google model viewer, ICT educational tools, interactive teaching, new tools for teaching

Procedia PDF Downloads 48