Search results for: computer assisted learning
9175 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application
Authors: Jui-Chien Hsieh
Abstract:
Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network
Procedia PDF Downloads 1149174 Risk-Based Computer Auditing and Measures of Prevention
Authors: Mohammad Hadi Khorashadi Zadeh, Amin Karkon, Seyd Mohammad Reza Mashhoori
Abstract:
the technology of Computer audit played a major role in the progress and prospects of a proper application to improve the quality and efficiency of audit work. But due to the technical complexity and the specific risks of computer audit, it should be shown effective in audit and preventive action. Mainly through research in this paper, we proposes the causes of audit risk in a computer environment and the risk of further proposals for measures to control, to some extent reduce the risk of computer audit and improve the audit quality.Keywords: computer auditing, risk, measures to prevent, information technology
Procedia PDF Downloads 4909173 Disparity of Learning Styles and Cognitive Abilities in Vocational Education
Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi, Tee Tze Kiong
Abstract:
This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education. Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. The study discovered that students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.Keywords: learning styles, cognitive abilities, dimension of learning styles, learning preferences
Procedia PDF Downloads 4049172 E–Learning System in Virtual Learning Environment to Develop Problem Solving Ability and Team Learning for Learners in Higher Education
Authors: Noawanit Songkram
Abstract:
This paper is a report on the findings of a study conducted on e–learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education. The methodology of this study was R&D research. The subjects were 18 undergraduate students in Faculty of Education, Chulalongkorn University in the academic year of 2013. The research instruments were a problem solving ability assessment, a team learning evaluation form, and an attitude questionnaire. The data was statistically analyzed using mean, standard deviation, one way repeated measure ANOVA and t–test. The research findings discovered the e –learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education consisted of five components:(1) online collaborative tools, (2) active learning activities, (3) creative thinking, (4) knowledge sharing process, (5) evaluation and nine processes which were (1) preparing in group working, (2) identifying interested topic, (3) analysing interested topic, (4) collecting data, (5) concluding idea (6) proposing idea, (7) creating workings, (8) workings evaluation, (9) sharing knowledge from empirical experience.Keywords: e-learning system, problem solving ability, team leaning, virtual learning environment
Procedia PDF Downloads 4389171 Size-Controlled Synthesis of Bismuth Nanoparticles by Temperature Assisted Pulsed Laser Deposition
Authors: Ranjit A. Patil, Yung Liou, Yuan-Ron Ma
Abstract:
It has been observed that when the size of metals such as, Au, Zn, Ag, Cu, Te, and metal oxides is reduced to several nano-meters, it starts to show further interesting properties. These new properties boost the use of nano-structures to produce attractive functional materials or used as promising building blocks in electronic devices. Present work describes the synthesis of bismuth (Bi) nanoparticles (NP’s) having uniform morphology, high crystallinity, and single phase purity by the temperature assisted pulsed laser deposition (TAPLD). Pulsed Laser deposition (PLD) technique is one of the promising methods to synthesize nano-structures. It can provide the stable nucleation sites in orders of magnitudes higher than for MBE and sputtering deposition. The desired size of purely metallic Bi NP’s of can be easily controlled by adjusting the temperature of the substrate varying from 1000 C to 250 0C. When the temperatures of the substrate raised step wise the average size of Bi NP’s appeared to be increased by maintaining the uniform distribution of NP’s on the Si surfaces. The diameter range of NP’s is ~33-84 nm shows size distribution constrained in the limited range. The EDS results show that the 0D Bi NP’s synthesized at high temperature (250 0C) at a high vacuum still remained in a metallic phase. Moreover, XRD, TEM and SAED results showed that these Bi NP’s are hexagonal in crystalline in a space group R -3 m and no traces of bismuth oxide, confirming that Bi NP’s synthesized at wide range of temperatures persisted of the pure Bi-metallic phase.Keywords: metal nano particles, bismuth, pulsed laser deposition (PLD), nano particles, temperature assisted growth
Procedia PDF Downloads 3499170 E-Learning Approaches Based on Artificial Intelligence Techniques: A Survey
Authors: Nabila Daly, Hamdi Ellouzi, Hela Ltifi
Abstract:
In last year’s, several recent researches’ that focus on e-learning approaches having as goal to improve pedagogy and student’s academy level assessment. E-learning-related works have become an important research file nowadays due to several problems that make it impossible for students join classrooms, especially in last year’s. Among those problems, we note the current epidemic problems in the word case of Covid-19. For those reasons, several e-learning-related works based on Artificial Intelligence techniques are proposed to improve distant education targets. In the current paper, we will present a short survey of the most relevant e-learning based on Artificial Intelligence techniques giving birth to newly developed e-learning tools that rely on new technologies.Keywords: artificial intelligence techniques, decision, e-learning, support system, survey
Procedia PDF Downloads 2259169 Review of Currently Adopted Intelligent Programming Tutors
Authors: Rita Garcia
Abstract:
Intelligent Programming Tutors, IPTs, are supplemental educational devices that assist in teaching software development. These systems provide customized learning allowing the user to select the presentation pace, pedagogical strategy, and to recall previous and additional teaching materials reinforcing learning objectives. In addition, IPTs automatically records individual’s progress, providing feedback to the instructor and student. These tutoring systems have an advantage over Tutoring Systems because Intelligent Programming Tutors are not limited to one teaching strategy and can adjust when it detects the user struggling with a concept. The Intelligent Programming Tutor is a category of Intelligent Tutoring Systems, ITS. ITS are available for many fields in education, supporting different learning objectives and integrate into other learning tools, improving the student's learning experience. This study provides a comparison of the IPTs currently adopted by the educational community and will focus on the different teaching methodologies and programming languages. The study also includes the ability to integrate the IPT into other educational technologies, such as massive open online courses, MOOCs. The intention of this evaluation is to determine one system that would best serve in a larger ongoing research project and provide findings for other institutions looking to adopt an Intelligent Programming Tutor.Keywords: computer education tools, integrated software development assistance, intelligent programming tutors, tutoring systems
Procedia PDF Downloads 3189168 The Link Between Knowledge Management, Organizational Learning and Collective Competence
Authors: Amira Khelil, Habib Affes
Abstract:
The XXIst century is characterized by promoting teamwork as one of the main drivers of firms` performance. Collective competence is becoming crucial in developing and maintaining a firm’s competitive advantage, as well as its contributions to organizational innovation. In other words, the improvement of collective competence for a firm is no longer a choice, but rather an obligation. Learning capabilities of a firm in the context of knowledge management are assumed to be the main drivers of collective competence. Although there are some efforts to consider these concepts together; they are mostly discussed separately in the management theory. Thus, this paper aims to offer a holistic approach for development collective competence on the basis of Knowledge Management and Organizational Learning Capabilities. A theoretical model that defines a relationship between knowledge management, organizational learning and collective competence is presented at the end of this paper.Keywords: collective competence, exploitation learning, exploration learning, knowledge management, organizational learning capabilities
Procedia PDF Downloads 5119167 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning
Procedia PDF Downloads 2669166 Pros and Cons of Distance Learning in Europe and Perspective for the Future
Authors: Aleksandra Ristic
Abstract:
The Coronavirus Disease – 2019 hit Europe in February 2020, and infections took place in four waves. It left consequences and demanded changes for the future. More than half of European countries responded quickly by declaring a state of emergency and introducing various containment measures that have had a major impact on individuals’ lives in recent years. Closing public lives was largely achieved by limited access and/or closing public institutions and services, including the closure of educational institutions. Teaching in classrooms converted to distance learning. In the research, we used a quantitative study to analyze various factors of distance learning that influenced pupils in different segments: teachers’ availability, family support, entire online conference learning, successful distance learning, time for themselves, reliable sources, teachers’ feedback, successful distance learning, online participation classes, motivation and teachers’ communication and theoretical review of the importance of digital skills, e-learning Index, World comparison of e-learning in the past, digital education plans for the field of Europe. We have gathered recommendations and distance learning solutions to improve the learning process by strengthening teachers and creating more tiered strategies for setting and achieving learning goals by the children.Keywords: availability, digital skills, distance learning, resources
Procedia PDF Downloads 1039165 Development of Microwave-Assisted Alkalic Salt Pretreatment Regimes for Enhanced Sugar Recovery from Corn Cobs
Authors: Yeshona Sewsynker
Abstract:
This study presents three microwave-assisted alkalic salt pretreatments to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of salt concentration (0-15%), microwave power intensity (0-800 W) and pretreatment time (2-8 min) on reducing sugar yield from corn cobs were investigated. Pretreatment models were developed with the high coefficient of determination values (R2>0.85). Optimization gave a maximum reducing sugar yield of 0.76 g/g. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in the lignocellulosic structure after pretreatment. A 7-fold increase in the sugar yield was observed compared to previous reports on the same substrate. The developed pretreatment strategy was effective for enhancing enzymatic saccharification from lignocellulosic wastes for microbial biofuel production processes and value-added products.Keywords: pretreatment, lignocellulosic biomass, enzymatic hydrolysis, delignification
Procedia PDF Downloads 5009164 Learning Environments in the Early Years: A Case Study of an Early Childhood Centre in Australia
Authors: Mingxi Xiao
Abstract:
Children’s experiences in the early years build and shape the brain. The early years learning environment plays a significantly important role in children’s development. A well-constructed environment will facilitate children’s physical and mental well-being. This case study used an early learning centre in Australia called SDN Hurstville as an example, describing the learning environment in the centre, as well as analyzing the functions of the affordances. In addition, this report talks about the sustainability of learning in the centre, and how the environment supports cultural diversity and indigenous learning. The early years for children are significant. Different elements in the early childhood centre should work together to help children develop better. This case study found that the natural environment and the artificial environment are both critical to children; only when they work together can children have better development in physical and mental well-being and have a sense of belonging when playing and learning in the centre.Keywords: early childhood center, early childhood education, learning environment, Australia
Procedia PDF Downloads 2479163 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3069162 Hate Speech Detection Using Deep Learning and Machine Learning Models
Authors: Nabil Shawkat, Jamil Saquer
Abstract:
Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification
Procedia PDF Downloads 1399161 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 1289160 Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur
Authors: Roukia Hammoudi, Chabrouk Farid, Dehak Karima, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj
Abstract:
The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity
Procedia PDF Downloads 6039159 Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur
Authors: Roukia Hammoudi, Dehak Karima, Chabrouk Farid, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj
Abstract:
The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity
Procedia PDF Downloads 5959158 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 1969157 Problems Associated with Fibre-Reinforced Composites Ultrasonically-Assisted Drilling
Authors: Sikiru Oluwarotimi Ismail, Hom Nath Dhakal, Anish Roy, Dong Wang, Ivan Popov
Abstract:
The ultrasonically-assisted drilling (UAD) is a non-traditional technique which involves the superimposition of a high frequency and low amplitude vibration, usually greater than 18kHz and less than 20µm respectively, on a drill bit along the feed direction. UAD has remarkable advantages over the conventional drilling (CD), especially the high drilling-force reduction. Force reduction improves the quality of the drilled holes, reduces power consumption rate and cost of production. Nevertheless, in addition to the setbacks of UAD including expensiveness of set-up, unpredicted results and chipping effects, this paper presents the problems of insignificant force reduction and poor surface quality during UAD of hemp fibre-reinforced composites (HFRCs), a natural composite, with polycaprolactone (PCL) matrix. The experimental results obtained depict that HFRCs/PCL samples have more burnt chip-materials attached on the drilled holes during UAD than CD. This effect produced a very high surface roughness (Ra), up to 13µm. In a bid to reduce these challenges, different drilling parameters (feed rates and cutting speeds, frequencies and amplitudes for UAD), conditions (dry machining and airflow cooling) and diameters of drill bits (3mm and 6mm of high speed steel), as well as HFRCs/PCL samples of various fibre aspect ratios, including 0 (neat), 19, 26, 30 and 38 have been used. However, the setbacks still persisted. Evidently, the benefits of UAD are not obtainable for the drilling of the HFRCs/PCL laminates. These problems occurred due to the 60 °C melting temperature of PCL, quite lower than 56-90.2 °C and 265–290.8 °C composite-tool interface temperature during CD and UAD respectively.Keywords: force reduction, hemp fibre-reinforced composites, ultrasonically-assisted drilling, surface quality
Procedia PDF Downloads 4389156 Students Perception of a Gamified Student Engagement Platform as Supportive Technology in Learning
Authors: Pinn Tsin Isabel Yee
Abstract:
Students are increasingly turning towards online learning materials to supplement their education. One such approach would be the gamified student engagement platforms (GSEPs) to instill a new learning culture. Data was collected from closed-ended questions via content analysis techniques. About 81.8% of college students from the Monash University Foundation Year agreed that GSEPs (Quizizz) was an effective tool for learning. Approximately 85.5% of students disagreed that games were a waste of time. GSEPs were highly effective among students to facilitate the learning process.Keywords: engagement, gamified, Quizizz, technology
Procedia PDF Downloads 1099155 The Effectiveness of a Courseware in 7th Grade Chemistry Lesson
Authors: Oguz Ak
Abstract:
In this study a courseware for the learning unit of `Properties of matters` in chemistry course is developed. The courseware is applied to 15 7th grade (about age 14) students in real settings. As a result of the study it is found that the students` grade in the learning unit significantly increased when they study the courseware themselves. In addition, the score improvements of the students who found the courseware is usable is not significantly higher than the score improvements of the students who did not found it usable.Keywords: computer based instruction, effect of courseware and usability of courseware, 7th grade
Procedia PDF Downloads 4619154 Examining E-learning Capability in Chinese Higher Education: A Case Study of Hong Kong
Authors: Elson Szeto
Abstract:
Over the past 15 years, digital technology has ubiquitously penetrated societies around the world. New values of e-learning are emerging in the preparation of future talents, while e-learning is a key driver of widening participation and knowledge transfer in Chinese higher education. As a vibrant, Chinese society in Asia, Hong Kong’s new generation university students, perhaps the digital natives, have been learning with e-learning since their basic education. They can acquire new knowledge with the use of different forms of e-learning as a generic competence. These students who embrace this competence further their study journeys in higher education. This project reviews the Government’s policy of Information Technology in Education which has largely put forward since 1998. So far, primary to secondary education has embraced advantages of e-learning capability to advance the learning of different subject knowledge. Yet, e-learning capacity in higher education is yet to be fully examined in Hong Kong. The study reported in this paper is a pilot investigation into e-learning capacity in Chinese higher education in the region. By conducting a qualitative case study of Hong Kong, the investigation focuses on (1) the institutional ICT settings in general; (2) the pedagogic responses to e-learning in specific; and (3) the university students’ satisfaction of e-learning. It is imperative to revisit the e-learning capacity for promoting effective learning amongst university students, supporting new knowledge acquisition and embracing new opportunities in the 21st century. As a pilot case study, data will be collected from individual interviews with the e-learning management team members of a university, teachers who use e-learning for teaching and students who attend courses comprised of e-learning components. The findings show the e-learning capacity of the university and the key components of leveraging e-learning capability as a university-wide learning settings. The findings will inform institutions’ senior management, enabling them to effectively enhance institutional e-learning capacity for effective learning and teaching and new knowledge acquisition. Policymakers will be aware of new potentials of e-learning for the preparation of future talents in this society at large.Keywords: capability, e-learning, higher education, student learning
Procedia PDF Downloads 2759153 Factors of English Language Learning and Acquisition at Bisha College of Technology
Authors: Khlaid Albishi
Abstract:
This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.Keywords: language acquisition, language learning, factors, Bisha college
Procedia PDF Downloads 5029152 ILearn, a Pathway to Progress
Authors: Reni Francis
Abstract:
Learning has transcended the classroom boundaries to create a learner centric, interactive, and integrative teaching learning environment. This study analysed the impact of iLearn on the teaching, learning, and evaluation among 100 teacher trainees. The objectives were to cater to the different learning styles of the teacher trainees, to incorporate innovative teaching learning activities, to assist in peer tutoring, to implement different evaluation processes. i: Identifying the learning styles among the teacher trainees through VARK Learning style checklist was followed by planning the teaching-learning process to meet the learning styles of the teacher trainees. L: Leveraging innovations in teaching- learning by planning and creating modules incorporating innovative teaching learning and hence the concept based year plan was prepared. E: Engage learning through constructivism using different teaching methodology to engage the teacher trainees in the learning process through Workshop, Round Robin, Gallery walk, Co-Operative learning, Think-Pair-Share, EDMODO, Course Networking, Concept Map, Brainstorming Sessions, Video Clippings. A: Assessing the learning through an Open Book assignment, Closed book assignment, and Multiple Choice Questions and Seminar presentation. R: Remediation through peer tutoring through Mentor-mentee approach in the tutorial groups, Group work, Library Hours. N: Norming new standards. This was done in the form of extended remediation and tutorials to understand the need of the teacher trainee and support them for further achievements in learning through Face to face interaction, Supervised Study Circle, Mobile (Device) learning. The findings of the study revealed the positive impact of iLearn towards student achievement and enhanced social skills.Keywords: academic achievement, innovative strategy, learning styles, social skills
Procedia PDF Downloads 3569151 Unsupervised Learning of Spatiotemporally Coherent Metrics
Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun
Abstract:
Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.Keywords: machine learning, pattern clustering, pooling, classification
Procedia PDF Downloads 4569150 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks
Procedia PDF Downloads 3349149 Ultrasound-Assisted Extraction of Carotenoids from Tangerine Peel Using Ostrich Oil as a Green Solvent and Optimization of the Process by Response Surface Methodology
Authors: Fariba Tadayon, Nika Gharahgolooyan, Ateke Tadayon, Mostafa Jafarian
Abstract:
Carotenoid pigments are a various group of lipophilic compounds that generate the yellow to red colors of many plants, foods and flowers. A well-known type of carotenoids which is pro-vitamin A is β-carotene. Due to the color of citrus fruit’s peel, the peel can be a good source of different carotenoids. Ostrich oil is one of the most valuable foundations in many branches of industry, medicine, cosmetics and nutrition. The animal-based ostrich oil could be considered as an alternative and green solvent. Following this study, wastes of citrus peel will recycle by a simple method and extracted carotenoids can increase properties of ostrich oil. In this work, a simple and efficient method for extraction of carotenoids from tangerine peel was designed. Ultrasound-assisted extraction (UAE) showed significant effect on the extraction rate by increasing the mass transfer rate. Ostrich oil can be used as a green solvent in many studies to eliminate petroleum-based solvents. Since tangerine peel is a complex source of different carotenoids separation and determination was performed by high-performance liquid chromatography (HPLC). In addition, the ability of ostrich oil and sunflower oil in carotenoid extraction from tangerine peel and carrot was compared. The highest yield of β-carotene extracted from tangerine peel using sunflower oil and ostrich oil were 75.741 and 88.110 (mg/L), respectively. Optimization of the process was achieved by response surface methodology (RSM) and the optimal extraction conditions were tangerine peel powder particle size of 0.180 mm, ultrasonic intensity of 19 W/cm2 and sonication time of 30 minutes.Keywords: β-carotene, carotenoids, citrus peel, ostrich oil, response surface methodology, ultrasound-assisted extraction
Procedia PDF Downloads 3169148 Expansion of Subjective Learning at Japanese Universities: Experiential Learning Based on Social Participation
Authors: Kumiko Inagaki
Abstract:
Qualitative changes to the undergraduate education have recently become the focus of attention in Japan. This is occurring against the backdrop of declining birthrate and increasing university enrollment, as well as drastic societal changes of advance toward globalization and a knowledge-based society. This paper describes the cases of Japanese universities that promoted various forms of experiential learning around the theme of social participation. The opportunity of learning through practical experience, where students turn their attention to social problems and take pains to consider means of resolving them, creates opportunities to demonstrate “human power” applicable to all sorts of activities the following graduation, thereby guaranteeing students’ continuous growth throughout their careers.Keywords: career education, experiential learning, subjective learning, university education
Procedia PDF Downloads 3119147 Blended Learning and English Language Teaching: Instructors' Perceptions and Aspirations
Authors: Rasha Alshaye
Abstract:
Blended learning has become an innovative model that combines face-to-face with e-learning approaches. The Saudi Electronic University (SEU) has adopted blended learning as a flexible approach that provides instructors and learners with a motivating learning environment to stimulate the teaching and learning process. This study investigates the perceptions of English language instructors, teaching the four English language skills at Saudi Electronic University. Four main domains were examined in this study; challenges that the instructors encounter while implementing the blended learning approach, enhancing student-instructor interaction, flexibility in teaching, and the lack of technical skills. Furthermore, the study identifies and represents the instructors’ aspirations and plans to utilize this approach in enhancing the teaching and learning experience. Main findings indicate that instructors at Saudi Electronic University experience some challenges while teaching the four language skills. However, they find the blended learning approach motivating and flexible for them and their students. This study offers some important understandings into how instructors are applying the blended learning approach and how this process can be enriched.Keywords: blended learning, English language skills, English teaching, instructors' perceptions
Procedia PDF Downloads 1419146 Analyzing Log File of Community Question Answering for Online Learning
Authors: Long Chen
Abstract:
With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training
Procedia PDF Downloads 441