Search results for: artery wall shear stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5919

Search results for: artery wall shear stress

5409 Experimental Procedure of Identifying Ground Type by Downhole Test: A Case Study

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Evaluating the shear wave velocity (V_s) and primary wave velocity (Vₚ) is necessary to identify the ground type of the site. Identifying the soil type based on different codes can affect the dynamic analysis of geotechnical properties. This study aims to separate the underground layers at the project site based on the shear wave and primary wave velocity (Sₚ) in different depths and determine dynamic elastic modulus based on the shear wave velocity. Bandar Anzali is located in a tectonically very active area. Several active faults surround the study site. In this case, a field investigation of downhole testing is conducted as a geophysics method to identify the ground type.

Keywords: downhole, geophysics, shear wave velocity, case-study

Procedia PDF Downloads 113
5408 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

Authors: B. Engel, H. Hassan

Abstract:

Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

Keywords: rotary draw bending, material properties, neutral axis shifting, wall thickness distribution

Procedia PDF Downloads 375
5407 The Droplet Generation and Flow in the T-Shape Microchannel with the Side Wall Fluctuation

Authors: Yan Pang, Xiang Wang, Zhaomiao Liu

Abstract:

Droplet microfluidics, in which nanoliter to picoliter droplets acted as individual compartments, are common to a diverse array of applications such as analytical chemistry, tissue engineering, microbiology and drug discovery. The droplet generation in a simplified two dimension T-shape microchannel with the main channel width of 50 μm and the side channel width of 25 μm, is simulated to investigate effects of the forced fluctuation of the side wall on the droplet generation and flow. The periodic fluctuations are applied on a length of the side wall in the main channel of the T-junction with the deformation shape of the double-clamped beam acted by the uniform force, which varies with the flow time and fluctuation periods, forms and positions. The fluctuations under most of the conditions expand the distribution range of the droplet size but have a little effect on the average size, while the shape of the fixed side wall changes the average droplet size chiefly. Droplet sizes show a periodic pattern along the relative time when the fluctuation is forced on the side wall near the T-junction. The droplet emerging frequency is not varied by the fluctuation of the side wall under the same flow rate and geometry conditions. When the fluctuation period is similar with the droplet emerging period, the droplet size shows a nice stability as the no fluctuation case.

Keywords: droplet generation, droplet size, flow flied, forced fluctuation

Procedia PDF Downloads 260
5406 Prediction of Turbulent Separated Flow in a Wind Tunel

Authors: Karima Boukhadia

Abstract:

In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser.

Keywords: asymmetric diffuser, separation, reattachment, tilt angle, separation zone

Procedia PDF Downloads 552
5405 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete

Procedia PDF Downloads 271
5404 Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel

Authors: Md Tanvir Rahman, Mahbube Subhani, Mahmud Ashraf, Paul Kremer

Abstract:

Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood.

Keywords: rolling shear modulus, shear deflection, ratio of shear modulus and rolling shear modulus, timber

Procedia PDF Downloads 99
5403 Directional Dependence of the Stress-Strain Behavior of Reinforced Sand

Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz

Abstract:

The technique of reinforcing soil is an efficient, reliable and cost-effective alternative way for improving the performance of soil in civil engineering applications. Despite the anisotropic states of stresses induced within soil elements by many geotechnical structures such as footings, highways and offshore, most of the previous studies have been carried out under isotropic conditions. The anisotropic stress state in term of the inclined principal stress and the inequality of the intermediate and minor principal stresses cannot be investigated using conventional devices. Therefore, the advanced hollow cylinder apparatus, used in this work, provides a great opportunity to simulate such anisotropic stress states. To date, very little consideration has been given to how the direction of principal stress α and intermediate principal stress ratio b can affect the performance of the reinforced sand. This study presented that the anisotropic conditions of α and b resulted in significant variations in the deviator stress and volumetric strain of sand reinforced with geosynthetics. Anisotropic effect has been decreased by adding clay content.

Keywords: anisotropy, reinforced sand, direction of principal stress, intermediate principal stress ratio

Procedia PDF Downloads 168
5402 Anatomical Adaptations of Three Astragalus Species under Salt Stress

Authors: Faycal Boughalleb, Raoudha Abdellaoui

Abstract:

The effect of NaCl stress on root and leaf anatomy was investigated in three Astragalus species grown in 0-300 mM NaCl for 30 days under greenhouse conditions. Root cross section and cortex thickness was reduced under salt stress in both species while A. tenuifolius showed thinner cortex and the root cross section was unchanged. The epidermis stele thickness was unaffected by salinity in A. armatus and A. tenuifolius and was reduced in A. mareoticus with smaller xylem vessel size. In addition, vessel density and wall thickness of xylem was increased under salt conditions in the studies species. The entire lamina and mesophyll of the three species were thinner in salt-stressed plants. A. armatus and A. tenuifolius showed the higher thickness with increased size of the lower epidermis. NaCl (300 mM) reduced leaf water content by 41.5 % in A. mareoticus while it was unchanged in the other species. The size of the vascular bundle increased under salinity in A. tenuifolius leaves and it was unchanged in the other ones. A longer distance between leaf vascular bundle was occurred in A. mareoticus. The effects of NaCl on root and leaf ultrastructure are discussed in relation to the degree of salt resistance of these species. The unchanged biomass production under salt stress confirmed the higher tolerance oft A. tenuifolius to salinity. A. armatus was moderately salt tolerant with decrease of biomass production by 14.2 % while A. mareoticus was considered as salt sensitive plant when the decrease in biomass production reached 56.8%.

Keywords: Astragalus species, leaf ultrastructure, root anatomy, salt stress

Procedia PDF Downloads 366
5401 Comparison of Numerical Results of Lambda Wing under Different Turbulence Models and Wall Y+

Authors: Hsien Hao Teng

Abstract:

This study uses numerical simulation to analyze the aerodynamic characteristics of the 53-degree Lambda wing with a sweep angle and mainly discusses the numerical simulation results and physical characteristics of the wall y+. Use the commercial software Fluent to execute Mach number 0.15; when the angle of attack attitude is between 0 degrees and 27 degrees, the physical characteristics of the overall aerodynamic force are analyzed, especially when the fluid separation and vortex structure changes are discussed under the condition of high angle of attack, it will affect The instability of pitching moment. In the numerical calculation, the use of wall y+ and turbulence model will affect the prediction of vortex generation and the difference in structure. The analysis results are compared with experimental data to discuss the trend of the aerodynamic characteristics of the Lambda wing.

Keywords: lambda wing, wall function, turbulence model, computational fluid dynamics

Procedia PDF Downloads 217
5400 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion

Authors: L. Mouzai, M. Bouhadef

Abstract:

Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.

Keywords: flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion

Procedia PDF Downloads 173
5399 Nonlinear Analysis with Failure Using the Boundary Element Method

Authors: Ernesto Pineda Leon, Dante Tolentino Lopez, Janis Zapata Lopez

Abstract:

The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good.

Keywords: boundary element method, failure, plasticity, probability

Procedia PDF Downloads 280
5398 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 383
5397 Analysis for Shear Spinning of Tubes with Hard-To-Work Materials

Authors: Sukhwinder Singh Jolly

Abstract:

Metal spinning is one such process in which the stresses are localized to a small area and the material is made to flow or move over the mandrel with the help of spinning tool. Spinning of tubular products can be performed by two techniques, forward spinning and backward spinning. Many researchers have studied the process both experimentally and analytically. An effort has been made to apply the process to the spinning of thin wall, highly precision, small bore long tube in hard-to-work materials such as titanium.

Keywords: metal spinning, hard-to-work materials, roller diameter, power consumption

Procedia PDF Downloads 369
5396 Growth Analysis in Wheat as Influenced by Water Stress and Variety in Sokoto, Sudan Savannah, Nigeria

Authors: M. B. Sokoto, I. U. Abubakar

Abstract:

The study was carried out on effect of water stress and variety on growth of wheat (Triticum aestivum L.), during 2009/10 and 2010/11 dry seasons. The treatments consisted of factorial combination of water stress at three critical growth stage which was imposed by withholding water at (Tillering, Flowering, Grain filling) and Control (No stress) and two varieties (Star 11 TR 77173/SLM and Kauze/Weaver) laid out in a split-plot design with three replications. Water stress was assigned to the main-plot while variety was assigned to the sub-plots. Result revealed significant (P<0.05) effect of water stress, water stress at tillering significantly (P<0.05) reduced plant height, LAI, CGR, and NAR. Variety had a significant effect on plant height, LAI, CGR and NAR. In conclusion water stress at tillering was observed to be most critical growth stage in wheat, and water stress at this period should be avoided because it results to decrease in growth components in wheat. Wheat should be sown in November or at least first week of December in this area and other area with similar climate. Star II TR 77173/LM is recommended variety for the area.

Keywords: wheat, growth, water stress, variety, Sudan savannah

Procedia PDF Downloads 307
5395 Soil Reinforcement by Fibers Using Triaxial Compression Test

Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima

Abstract:

In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.

Keywords: soil, monotonic, triaxial test, root fiber, undrained

Procedia PDF Downloads 387
5394 Reducing Component Stress during Encapsulation of Electronics: A Simulative Examination of Thermoplastic Foam Injection Molding

Authors: Constantin Ott, Dietmar Drummer

Abstract:

The direct encapsulation of electronic components is an effective way of protecting components against external influences. In addition to achieving a sufficient protective effect, there are two other big challenges for satisfying the increasing demand for encapsulated circuit boards. The encapsulation process should be both suitable for mass production and offer a low component load. Injection molding is a method with good suitability for large series production but also with typically high component stress. In this article, two aims were pursued: first, the development of a calculation model that allows an estimation of the occurring forces based on process variables and material parameters. Second, the evaluation of a new approach for stress reduction by means of thermoplastic foam injection molding. For this purpose, simulation-based process data was generated with the Moldflow simulation tool. Based on this, component stresses were calculated with the calculation model. At the same time, this paper provided a model for estimating the forces occurring during overmolding and derived a solution method for reducing these forces. The suitability of this approach was clearly demonstrated and a significant reduction in shear forces during overmolding was achieved. It was possible to demonstrate a process development that makes it possible to meet the two main requirements of direct encapsulation in addition to a high protective effect.

Keywords: encapsulation, stress reduction, foam-injection-molding, simulation

Procedia PDF Downloads 106
5393 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 174
5392 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni

Abstract:

The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 232
5391 Comparison of Volume of Fluid Model: Experimental and Empirical Results for Flows over Stacked Drop Manholes

Authors: Ramin Mansouri

Abstract:

The manhole is one of the types of structures that are installed at the site of change direction or change in the pipe diameter or sewage pipes as well as in step slope areas to reduce the flow velocity. In this study, the flow characteristics of hydraulic structures in a manhole structure have been investigated with a numerical model. In this research, the types of computational grid coarse, medium, and fines have been used for simulation. In order to simulate flow, k-ε model (standard, RNG, Realizable) and k-w model (standard SST) are used. Also, in order to find the best wall conditions, two types of standard and non-equilibrium wall functions were investigated. The turbulent model k-ε has the highest correlation with experimental results or all models. In terms of boundary conditions, constant speed is set for the flow input boundary, the output pressure is set in the boundaries which are in contact with the air, and the standard wall function is used for the effect of the wall function. In the numerical model, the depth at the output of the second manhole is estimated to be less than that of the laboratory and the output jet from the span. In the second regime, the jet flow collides with the manhole wall and divides into two parts, so hydraulic characteristics are the same as large vertical shaft hydraulic characteristics. In this situation, the turbulence is in a high range since it can be seen more energy loss in it. According to the results, energy loss in numerical is estimated at 9.359%, which is more than experimental data.

Keywords: manhole, energy, depreciation, turbulence model, wall function, flow

Procedia PDF Downloads 50
5390 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 29
5389 The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load

Authors: Fauziah Aziz, Mohd.fadzil Arshad, Hazrina Mansor, Sedat Kömürcü

Abstract:

Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall.

Keywords: interlocking concrete block, compressive resistance, concrete masonry unit, masonry

Procedia PDF Downloads 142
5388 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 152
5387 Bi-Axial Stress Effects on Barkhausen-Noise

Authors: G. Balogh, I. A. Szabó, P.Z. Kovács

Abstract:

Mechanical stress has a strong effect on the magnitude of the Barkhausen-noise in structural steels. Because the measurements are performed at the surface of the material, for a sample sheet, the full effect can be described by a biaxial stress field. The measured Barkhausen-noise is dependent on the orientation of the exciting magnetic field relative to the axis of the stress tensor. The sample inhomogenities including the residual stress also modifies the angular dependence of the measured Barkhausen-noise. We have developed a laboratory device with a cross like specimen for bi-axial bending. The measuring head allowed performing excitations in two orthogonal directions. We could excite the two directions independently or simultaneously with different amplitudes. The simultaneous excitation of the two coils could be performed in phase or with a 90 degree phase shift. In principle this allows to measure the Barkhausen-noise at an arbitrary direction without moving the head, or to measure the Barkhausen-noise induced by a rotating magnetic field if a linear superposition of the two fields can be assumed.

Keywords: Barkhausen-noise, bi-axial stress, stress measuring, stress dependency

Procedia PDF Downloads 270
5386 Relationship of Workplace Stress and Mental Wellbeing among Health Professionals

Authors: Rabia Mushtaq, Uroosa Javaid

Abstract:

It has been observed that health professionals are at higher danger of stress in light of the fact that being a specialist is physically and emotionally demanding. The study aimed to investigate the relationship between workplace stress and mental wellbeing among health professionals. Sample of 120 male and female health professionals belonging to two age groups, i.e., early adulthood and middle adulthood, was employed through purposive sampling technique. Job stress scale, mindful attention awareness scale, and Warwick Edinburgh mental wellbeing scales were used for the measurement of study variables. Results of the study indicated that job stress has a significant negative relationship with mental wellbeing among health professionals. The current study opened the door for more exploratory work on mindfulness among health professionals. Yielding outcomes helped in consolidating adapting procedures among workers to improve their mental wellbeing and lessen the job stress.

Keywords: health professionals, job stress, mental wellbeing, mindfulness

Procedia PDF Downloads 144
5385 Cadaveric Study of Lung Anatomy: A Surgical Overview

Authors: Arthi Ganapathy, Rati Tandon, Saroj Kaler

Abstract:

Introduction: A thorough knowledge of variations in lung anatomy is of prime significance during surgical procedures like lobectomy, pneumonectomy, and segmentectomy of lungs. The arrangement of structures in the lung hilum act as a guide in performing such procedures. The normal pattern of arrangement of hilar structures in the right lung is eparterial bronchus, pulmonary artery, hyparterial bronchus and pulmonary veins from above downwards. In the left lung, it is pulmonary artery, principal bronchus and pulmonary vein from above downwards. The arrangement of hilar structures from anterior to posterior in both the lungs is pulmonary vein, pulmonary artery, and principal bronchus. The bronchial arteries are very small and usually the posterior most structures in the hilum of lungs. Aim: The present study aims at reporting the variations in hilar anatomy (arrangement and number) of lungs. Methodology: 75 adult formalin fixed cadaveric lungs from the department of Anatomy AIIMS New Delhi were observed for variations in the lobar anatomy. Arrangement of pulmonary hilar structures was meticulously observed, and any deviation in the pattern of presentation was recorded. Results: Among the 75 adult lung specimens observed 36 specimens were of right lung and the rest of left lung. Seven right lung specimens showed only 2 lobes with an oblique fissure dividing them and one left lung showed 3 lobes. The normal pattern of arrangement of hilar structures was seen in 22 right lungs and 23 left lungs. Rest of the lung specimens (14 right and 16 left) showed a varied pattern of arrangement of hilar structures. Some of them showed alterations in the sequence of arrangement of pulmonary artery, pulmonary veins, bronchus, and others in the number of these structures. Conclusion: Alterations in the pattern of arrangement of structures in the lung hilum are quite frequent. A compromise in knowledge of such variations will result in inadvertent complications like intraoperative bleeding during surgical procedures.

Keywords: fissures, hilum, lobes, pulmonary

Procedia PDF Downloads 200
5384 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: buckling, low yield point steel, plates, steel plate shear walls, yielding

Procedia PDF Downloads 376
5383 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders

Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari

Abstract:

There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.

Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame

Procedia PDF Downloads 212
5382 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.

Keywords: crack-tip deformations, static loading, stress concentration, stress intensity factor

Procedia PDF Downloads 120
5381 Stress and Dysfunctional Eating Behavior in COVID-19 Pandemic: A Gender Perspective

Authors: Vanshika Chutani, Priya Bhatnagar

Abstract:

The pandemic has brought us to a standpoint where stress as a physical, cognitive, and behavioral construct is inevitable. The current research provides an overview of the relationship between stress and dysfunctional eating behavior during the challenging time of the COVID-19 pandemic. The present paper also aims to highlight the gender-specific differences in perception of stress and its correlation with dysfunctional eating behavior in the COVID-19 pandemic. Perceived Stress Scale-10 (PSS) and Adult Eating Behavior questionnaire (AEBQ) were used on a heterogeneous sample between 20-40 years. The research was conducted on 50 participants, 25 male, and 25 female. Quantitative analysis was done with SPSS 22.0. The results of the investigation revealed a significant difference in stress level, t(48)=2.01, p<0.01, with women (M=22.24. SD=5.23) having a higher stress level than men (M=19.04, SD=4.89). There was no significant difference in dysfunctional eating behavior between males and females. There was a significant positive correlation between stress and dysfunctional eating behavior in females, whereas, in males, there was no significant positive correlation between stress and dysfunctional eating behavior. The research extrapolates that the pandemic led to elevated stress levels in both genders and gender differences existed, and males & females responded differently on dysfunctional eating behavior. The research has also outlined intervention to help individuals cope with stress and dysfunctional eating behavior. The findings of the research propose the execution of different intervention programs and psychological first aid to help individuals who are predisposed to develop eating disorders.

Keywords: stress, dysfunctional eating behavior, gender-specific differences, COVID-19

Procedia PDF Downloads 167
5380 Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options

Authors: David Glew, Felix Thomas, Matthew Brooke-Peat

Abstract:

Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes.

Keywords: condensation risk, hygrothermal simulation, internal wall insulation, thermal bridging

Procedia PDF Downloads 135