Search results for: antibiotics residues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 887

Search results for: antibiotics residues

377 Gas Phase Extraction: An Environmentally Sustainable and Effective Method for The Extraction and Recovery of Metal from Ores

Authors: Kolela J Nyembwe, Darlington C. Ashiegbu, Herman J. Potgieter

Abstract:

Over the past few decades, the demand for metals has increased significantly. This has led to a decrease and decline of high-grade ore over time and an increase in mineral complexity and matrix heterogeneity. In addition to that, there are rising concerns about greener processes and a sustainable environment. Due to these challenges, the mining and metal industry has been forced to develop new technologies that are able to economically process and recover metallic values from low-grade ores, materials having a metal content locked up in industrially processed residues (tailings and slag), and complex matrix mineral deposits. Several methods to address these issues have been developed, among which are ionic liquids (IL), heap leaching, and bioleaching. Recently, the gas phase extraction technique has been gaining interest because it eliminates many of the problems encountered in conventional mineral processing methods. The technique relies on the formation of volatile metal complexes, which can be removed from the residual solids by a carrier gas. The complexes can then be reduced using the appropriate method to obtain the metal and regenerate-recover the organic extractant. Laboratory work on the gas phase have been conducted for the extraction and recovery of aluminium (Al), iron (Fe), copper (Cu), chrome (Cr), nickel (Ni), lead (Pb), and vanadium V. In all cases the extraction revealed to depend of temperature and mineral surface area. The process technology appears very promising, offers the feasibility of recirculation, organic reagent regeneration, and has the potential to deliver on all promises of a “greener” process.

Keywords: gas-phase extraction, hydrometallurgy, low-grade ore, sustainable environment

Procedia PDF Downloads 133
376 Conditions of the Anaerobic Digestion of Biomass

Authors: N. Boontian

Abstract:

Biological conversion of biomass to methane has received increasing attention in recent years. Grasses have been explored for their potential anaerobic digestion to methane. In this review, extensive literature data have been tabulated and classified. The influences of several parameters on the potential of these feedstocks to produce methane are presented. Lignocellulosic biomass represents a mostly unused source for biogas and ethanol production. Many factors, including lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have used to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effects on cellulose, hemicellulose and lignin, the three main components of lignocellulosic biomass. Solid-state anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. An increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content may increase biogas yield but have negative impact on production efficiency. Focus is placed on substrate pretreatment in anaerobic digestion (AD) as a means of increasing biogas yields using today’s diversified substrate sources.

Keywords: anaerobic digestion, lignocellulosic biomass, methane production, optimization, pretreatment

Procedia PDF Downloads 379
375 In Vitro Antioxidant and Cytotoxic Activities Against Human Oral Cancer and Human Laryngeal Cancer of Limonia acidissima L. Bark Extracts

Authors: Kriyapa lairungruang, Arunporn Itharat

Abstract:

Limonia acidissima L. (LA) (Common name: wood apple, Thai name: ma-khwit) is a medicinal plant which has long been used in Thai traditional medicine. Its bark is used for treatment of diarrhea, abscess, wound healing and inflammation and it is also used in oral cancer. Thus, this research aimed to investigate antioxidant and cytotoxic activities of the LA bark extracts produced by various extraction methods. Different extraction procedures were used to extract LA bark for biological activity testing: boiling in water, maceration with 95% ethanol, maceration with 50% ethanol and water boiling of each the 95% and the 50% ethanolic residues. All extracts were tested for antioxidant activity using DPPH radical scavenging assay, cytotoxic activity against human laryngeal epidermoid carcinoma (HEp-2) cells and human oral epidermoid carcinoma (KB) cells using sulforhodamine B (SRB) assay. The results found that the 95% ethanolic extract of LA bark showed the highest antioxidant activity with EC50 values of 29.76±1.88 µg/ml. For cytotoxic activity, the 50% ethanolic extract showed the best cytotoxic activity against HEp-2 and KB cells with IC50 values of 9.55±1.68 and 18.90±0.86 µg/ml, respectively. This study demonstrated that the 95% ethanolic extract of LA bark showed moderate antioxidant activity and the 50% ethanolic extract provided potent cytotoxic activity against HEp-2 and KB cells. These results confirm the traditional use of LA for the treatment of oral cancer and laryngeal cancer, and also support its ongoing use.

Keywords: antioxidant activity, cytotoxic activity, Laryngeal epidermoid carcinoma, Limonia acidissima L., oral epidermoid carcinoma

Procedia PDF Downloads 478
374 Descriptive Study of Adverse Drug Reactions in a Paediatric Hospital in Mongolia from 2015 to 2019

Authors: Khaliun Nyambayar, Nomindari Azzaya, Batkhuyag Purevjav

Abstract:

Pharmacovigilance was officially introduced in Mongolia in 2003, in accordance with the Health Minister Order 183 for the registry of adverse drug reactions (ADR), approved in 2006 and was reviewed in 2010. This study was designed to evaluate the incidence and common types of adverse drug reactions among hospitalized children, the frequency of adverse drug reaction reported by health care providers, and the follow-up processes resulting from adverse drug reactions. A retrospective study of paediatric patients who experienced an adverse drug reaction from 2015 to 2019, extracted from the “yellow” card at the State Research Center for Maternal and Child Health, (city). A total of 417 adverse drug reactions were reported with an overall incidence was 80 (21.5%). Adverse reactions resulting from the use of antibiotics (particularly gentamycin, cephalosporins, and vancomycin) were usually mild. ADR’s were reported by physicians and nurses (93.8%), pharmacists (6.25%). Although documentation of physician notification occurred for 93% of adverse drug reactions, only 29% of cases were documented in the patient's medical chart, 13% included follow-up education for individuals involved, and 10% were updated in the allergy profile of the hospital computer system. Measures to improve the detection and reporting of adverse drug reactions by all health care professionals should be improved, to enhance our understanding of the nature and impact of these reactions in children.

Keywords: adverse drug reaction, pediatric, yellow card, Mongolia

Procedia PDF Downloads 113
373 Effects of Different Mechanical Treatments on the Physical and Chemical Properties of Turmeric

Authors: Serpa A. M., Gómez Hoyos C., Velásquez-Cock J. A., Ruiz L. F., Vélez Acosta L. M., Gañan P., Zuluaga R.

Abstract:

Turmeric (Curcuma Longa L) is an Indian rhizome known for its biological properties, derived from its active compounds such as curcuminoids. Curcumin, the main polyphenol in turmeric, only represents around 3.5% of the dehydrated rhizome and extraction yields between 41 and 90% have been reported. Therefore, for every 1000 tons of turmeric powder used for the extraction of curcumin, around 970 tons of residues are generated. The present study evaluates the effect of different mechanical treatments (waring blender, grinder and high-pressure homogenization) on the physical and chemical properties of turmeric, as an alternative for the transformation of the entire rhizome. Suspensions of turmeric (10, 20 y 30%) were processed by waring blender during 3 min at 12000 rpm, while the samples treated by grinder were processed evaluating two different Gaps (-1 and -1,5). Finally, the process by high-pressure homogenization, was carried out at 500 bar. According to the results, the luminosity of the samples increases with the severity of the mechanical treatment, due to the stabilization of the color associated with the inactivation of the oxidative enzymes. Additionally, according to the microstructure of the samples, the process by grinder (Gap -1,5) and by high-pressure homogenization allowed the largest size reduction, reaching sizes up to 3 m (measured by optical microscopy). This processes disrupts the cells and breaks their fragments into small suspended particles. The infrared spectra obtained from the samples using an attenuated total reflectance accessory indicates changes in the 800-1200 cm⁻¹ region, related mainly to changes in the starch structure. Finally, the thermogravimetric analysis shows the presence of starch, curcumin and some minerals in the suspensions.

Keywords: characterization, mechanical treatments, suspensions, turmeric rhizome

Procedia PDF Downloads 163
372 Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery

Authors: Abdul Musaweer Habib, Habibul Hasan Mazumder, Saiful Islam, Sohel Sikder, Omar Faruk Sikder

Abstract:

The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum.

Keywords: colorectal cancer, drug target, Fusobacterium nucleatum, homology modeling, ligands

Procedia PDF Downloads 388
371 Isolation and Characterization of Ant-Salmonella Lactic Acid Bacteria from Dairy Products

Authors: Najie Hassanzade, Mohammad Rabbani Khorasgani

Abstract:

Dairy products have been regarded as the natural source of lactic acid bacteria with potential characteristics of probiotics; therefore, a lot of research and practical works have been carried out about the isolation of lactic acid bacteria (LAB) from dairy products, especially traditional yogurt and related products. Interest in traditional dairy products continues in the area of isolation of new LAB that can complement or replace currently used starters and/or that can be candidates as beneficial microorganisms for prevention or treatment purposes. In this perspective, such products are potentially good candidates for isolating new strains of probiotics. On the other hand, some infectious diseases such as salmonellosis have expressed resistance against many antibiotics; therefore, many attempts have been performed to use an alternative approach to overcome antibiotic resistance. The current research focuses on the isolation of LAB from dairy products, especially traditional dairy products and screening of them for anti-Salmonella activities. Twenty-five samples, including 15 sheep milk samples, one camel milk sample and seven cow milk samples from different areas of Iran and 2 yogurt samples from Herat, Afghanistan are collected. 20 bacteria are isolated by culturing the samples on MRS agar specific medium; among them 4 Lactobacillus strains, including 3L. plantarum strains and one L.gasseri strain, are identified by analyzing the biochemical tests and PCR tests in which 27F and 1492R primers are used. Then, their effects against Salmonella typhimurium using the well-diffusion method are evaluated.

Keywords: lactic acid bacteria, probiotics, dairy products Salmonella

Procedia PDF Downloads 261
370 In Vivo Evaluation of the Therapeutic Effect on Intestinal Disorders by Thermophilic Streptococcus Isolated from Camel Milk

Authors: A. T. Laiche, M. L. Tlil, Benine B., S. Bechoua

Abstract:

The aim of this study is to isolate and select, from camel milk from El-Oued region in Algeria, a strains of lactic acid bacteria and possessing probiotic properties ; and to evaluate their potential effect on intestinal disorders in Wistar ratsmThe results relating to the selection of probiotic strains confirms that the Thermophilic streptococcus exhibits the best probiotic activity performance, with a resistance important to different degrees of pH and to bile salts, and a remarkable antibacterial activity and resistance to antibiotics compared to the other four isolated strains. In the in vivo study, diseases are induced in rats at the level of the digestive system, it was reported that the administration of Escherichia coli and castor oil caused an intestinal disorders. The microscopic observation of the histological section of the intestine showed a damaged intestinal structure and some symptoms of its irritation, including a decrease in the height of the villi and the presence of others destroyed cells, and after treatment with Streptococcus thermophilus, the microscopic observation of the cut of the histological section of the intestine showed almost complete disappearance of the mentioned symptoms, The dosage of the hematological parameters by complete blood count (CBC) is in agreement with the results of the histological sections.

Keywords: camel milk, probiotic, pathogenic bacteria, intestinal disorders, lactic acid bacteria

Procedia PDF Downloads 158
369 An Innovative Equipment for ICU Infection Control

Authors: Ankit Agarwal

Abstract:

Background: To develop a fully indigenous equipment which is an innovation in critical care, which can effectively scavenge contaminated ICU ventilator air. Objectives: Infection control in ICUs is a concern the world over. Various modalities from simple hand hygiene to costly antibiotics exist. However, one simple and scientific fact has been unnoticed till date, that the air exhaled by patients harboring MDR and other microorganisms, is released by ventilators into ICU atmosphere itself. This increases infection in ICU atmosphere and poses risk to other patients. Material and Methods: Some parts of the ventilator are neither disposable nor sterilizable. Over time, microorganisms accumulate in ventilator and act as a source of infection and also contaminate ICU air. This was demonstrated by exposing microbiological culture plates to air from expiratory port of ventilator, whereby dense growth of pathogenic microorganisms was observed. The present prototype of the equipment is totally self-made. It has a mechanism of controlled negative pressure, active and passive systems and various alarms and is versatile to be used with any ventilator. Results: This equipment captures the whole of contaminated exhaled air from the expiratory port of the ventilator and directs it out of the ICU space. Thus, it does not allow contaminated ventilator air to release into the ICU atmosphere. Therefore, there is no chance of exposure of other patients to contaminated air. Conclusion: The equipment is first of its kind the world over and is already under patent process. It has rightly been called ICU Ventilator Air Removal System (ICU VARS). It holds a chance that this technique will gain widespread acceptance shall find use in all the ventilators in most of the ICUs throughout the world.

Keywords: innovative, ICU Infection Control, microorganism, negative pressure

Procedia PDF Downloads 352
368 Use of Cow Dung Residues of Biogas Plants for Sustainable Development of Rural Communities in Pakistan

Authors: Sumra Siddique Abbasi, Cheng Shikun

Abstract:

Biogas technology has rapidly developed in agriculture sector to upgrade and improve the life of farmers by providing them alternative and cost-effective energy source. Main purpose of this study is to understand the advantages of biogas plants by livestock owners either they are household-based livestock owners or may own farms for livestock. Similarly, a pertinent and major purpose of this research is to examine the factors affecting the decision to adopt biogas technologies at the household level. Based on the result, both public and private sector organization can make decisions related to the installation of biogas projects. Biogas is major energy source which can be used as an alternative and renewable energy source. This energy production technology can contribute in uplifting the lifestyle of farmers and can contribute into sustainable development of rural communities in Pakistan. People with livestock in any community in Pakistan can get benefit from biogas plants and it will contribute in sustainable development program which generates socio economic benefits, heath upgradation, cost effective energy source and positive impact on climate change or environmental issues. This study was conductive using survey method and descriptive analysis. One hundred fifty (150) farmers were the respondents who participated in survey. These farmers were from Layyah district of Punjab and were selected using snowball sampling technique. To generate the results, SPSS tool was used for data analysis.

Keywords: biogas plant, animal dunk, renewable energy, pakistan

Procedia PDF Downloads 72
367 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke

Authors: Kyou Hee Shim, Hwa Sung Shin

Abstract:

When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.

Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration

Procedia PDF Downloads 227
366 Fluctuation of Serum Creatinine: Preoperative and Postoperative Evaluation of Chronic Kidney Disease Patients

Authors: Chowdhury Md. Navim Kabir

Abstract:

Renal impairment is one of the most severe non-communicable diseases around the world. Especially patients with diagnosed/newly diagnosed renal impairment who need surgery are more focused on preoperative and postoperative preparation. Serum creatinine is the prime biochemical marker for assessing renal function, and the level of impairment is widely measured by this marker as well as Glomerular Filtration Rate (GFR). Objective: Factors responsible for fluctuating serum creatinine during preoperative and postoperative periods and minimizing the process of serum creatinine is the ultimate goal of this study. Method: 37 patients participated in this cross-sectional study who were previously diagnosed/newly diagnosed. They were admitted to different tertiary-level hospitals for emergency or elective surgery. Fifteen patients were admitted in the renal function impairment stage and 22 were admitted as normal patients’. Values of creatinine at the pre-admission stage and 2nd/3rd post-admission follow-up were compared. Results: 0.41 was the average of 22 patients' creatinine between pre-admission and 2nd/3rd follow-up. The responsible factor like prolonged staying, immobilization, co-morbidities, different preoperative antibiotics and Non-Steroidal Anti Inflammatory Drugs (NSAIDs) were also inducers for creatinine elevation. After postoperative hemodialysis rapid decrease of creatinine is seen in normal patients, but this decrease is very much minor in Chronic Kidney Disease (CKD) diagnosed patients.

Keywords: CKD, Meropenam, NSAID, comorbidities, immobilized

Procedia PDF Downloads 73
365 Changing Trends in the Use of Induction Agents for General Anesthesia for Cesarean Section

Authors: Mahmoud Hassanin, Amita Gupta

Abstract:

Background: During current practice, Thiopentone is not cost-effectively added to resources wastage, risk of drug error with antibiotics, short shelf life, infection risk, and risk of delay while preparing during category one cesarean section. There is no significant difference or preference to the other alternative as per current use. Aims and Objectives: Patient safety, Cost-effective use of trust resources, problem awareness, Consider improvising on the current practice. Methods: In conjunction with the local department survey results, many studies support the change. Results: More than 50%(15 from 29) are already using Propofol, more than 75% of the participant are willing to shift to Propofol if it becomes standard, and the cost analysis also revealed that Thiopentone 10 X500=£60 Propofol 10X200= £5.20, Cost of Thiopentone/year =£2190. Approximately GA in a year =35-40 could cost approximately £20 Propofol, given it is a well-established practice. We could save not only money, but it will be environmentally friendly also to avoid adding any carbon footprints. Recommendation: Thiopentone is rarely used as an induction agent for the category one Caesarean section in our obstetric emergency theatres. Most obstetric anesthetists are using Propofol. Keep both Propofol and thiopentone(powder not withdrawn) in the cat one cesarean section emergency drugs tray ready until the department completely changes the practice protocol. A further retrospective study is required to compare the outcomes for these induction agents through the local database.

Keywords: thiopentone, propofol, category 1 caesarean, induction agents

Procedia PDF Downloads 143
364 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases

Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman

Abstract:

To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.

Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases

Procedia PDF Downloads 377
363 Repeated Batch Production of Biosurfactant from Pseudomonas mendocina NK41 Using Agricultural and Agro-Industrial Wastes as Substate

Authors: Natcha Ruamyat, Nichakorn Khondee

Abstract:

The potential of an alkaliphilic bacteria isolated from soil in Thailand to utilized agro-industrial and agricultural wastes for the production of biosurfactants was evaluated in this study. Among five isolates, Pseudomonas mendocina NK41 used soapstock as substrate showing a high biosurfactant concentration of 7.10 g/L, oil displacement of 97.8 %, and surface tension reduction to 29.45 mN/m. Various agricultural residues were applied as mixed substrates with soapstock to enhance the synthesis of biosurfactants. The production of biosurfactant and bacterial growth was found to be the highest with coconut oil cake as compared to Sacha inchi shell, coconut kernel cake, and durian shell. The biodegradability of agro-industrial wastes was better than agricultural wastes, which allowed higher bacterial growth. The pretreatment of coconut oil cake by combined alkaline and hydrothermal method increased the production of biosurfactant from 12.69 g/L to 13.82 g/L. The higher microbial accessibility was improved by the swelling of the alkali-hydrothermal pretreated coconut oil cake, which enhanced its porosity and surface area. The pretreated coconut oil cake was reused twice in the repeated batch production, showing higher biosurfactant concentration up to 16.94 g/L from the second cycle. These results demonstrated the capability of using lignocellulosic wastes from agricultural and agro-industrial activities to produce a highly valuable biosurfactant. High biosurfactant yield with low-cost substrate reveals its potential towards further commercialization of biosurfactant on large-scale production.

Keywords: alkaliphilic bacteria, agricultural/agro-industrial wastes, biosurfactant, combined alkaline-hydrothermal pretreatment

Procedia PDF Downloads 257
362 Stenotrophomonas maltophilia: The Major Carbapenem Resistance Bacteria from Waste Water Treatment Plant of Pig Farm

Authors: Young-Ji Kim, Jin-Hyeong Park, Hong-Seok Kim, Jung-Whan Chon, Kwang-Yeop Kim, Dong-Hyeon Kim, Il-Byeong Kang, Da-Na Jeong, Jin-Hyeok Yim, Ho-Seok Jang, Kwang-Young Song, Kun-Ho Seo

Abstract:

Stenotrophomonas maltophilia is one of the emerging opportunistic pathogens, and also known to have extensive drug resistance intrinsically including carbepenems which is last resort for most serious infections. One possible way for S. maltophilia to infect human is via wastewater treatment plant (WWTP). In the period between October 2016 and February 2017, effluent samples of WWTP from 3 different pig farms were collected once a month and screened for isolation of S. maltophilia. Total 16 strains of S. maltophilia were isolated and, the antibiotic susceptibility phenotypes were determined by Vitek 2 system for 16 antibiotics, ampicillin (AMP), amoxicillin/clavulanic acid (AMC), piperacillin/tazobactam (TZP), cefazolin (CZ), cefoxitin (FOX), cefotaxime (CTX), ceftazidime (CAZ), cefepime (FEP), aztreonam (AZT), ertapenem (ETP), imipenem (IMP), amikacin (AK), gentamicin (GN), ciprofloxacin (CIP), tigecycline (TGC) and trimethoprim/sulfamethoxazole (SXT). All isolates showed high resistance to AMP (100%), CZ (100%), FOX (100%), CTX (100%), CAZ (100%), FEP (94%), AZT (100%), ETP (100%), IMP (100%), AK (100%), GN (100%) whereas were susceptible to CIP (0%), TGC (0%), SXT (6%). All strains harbored at least one of the antibiotic resistance determinant such as spgM, rmlA, and rpfF. Some isolates had similar MLST (multilocus sequence typing) types with clinical isolates, suggesting WWTP could have potential role in the transmission of S. maltophilia to aquatic environment and, possibly, to humans.

Keywords: Stenotrophomonas maltophilia, Carbapenem resistance, waste water treatment plant, pig farm

Procedia PDF Downloads 463
361 Central Palmar Necrosis Following Steroid Injections for the Treatment of Carpal Tunnel Syndrome: A Case Report

Authors: M. Ridwanul Hassan, Samuel George

Abstract:

Aims: Steroid injections are commonly used as a diagnostic tool or an alternative to surgical management of carpal tunnel syndrome (CTS) and are generally safe. Ischaemia is a rare complication with very few cases reported in the literature. Methods: We report a case of a 50-year-old female that presented with a necrotic wound to her left palm one month after a steroid injection into the carpal tunnel. She had a 2-year history of CTS in her left hand that was treated with six previous steroid injections in primary care during this period. The wound evolved from a blister to a necrotic ulcer which led to a painful, hollow defect in the centre of her palm. She did not report any history of trauma, nor did she have any co-morbidities. Clinical photographs were taken. Results: On examination, she had a 0.5 cmx1 cm defect in the palm of her left hand down to aponeurosis. There was purulent discharge in the wound with surrounding erythema but no spreading cellulitis. She had full function of her fingers but was very tender on movements and at rest. She was admitted for intravenous antibiotics and underwent a debridement, washout, and carpal tunnel release the next day. The defect was packed to heal by secondary intention and has now fully healed one month following her operation. Conclusions: This is an extremely rare complication of steroid injections to the carpal tunnel and may have been avoided by earlier referral for surgery rather than treatment using multiple steroid injections.

Keywords: hand surgery, complication, rare, carpal tunnel syndrome

Procedia PDF Downloads 113
360 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases

Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher

Abstract:

Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.

Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases

Procedia PDF Downloads 242
359 A Prospective Study of a Modified Pin-In-Plaster Technique for Treatment of Distal Radius Fractures

Authors: S. alireza Mirghasemi, Shervin Rashidinia, Mohammadsaleh Sadeghi, Mohsen Talebizadeh, Narges Rahimi Gabaran, S. Shahin Eftekhari, Sara Shahmoradi

Abstract:

Purpose: There are various pin-in-plaster methods for treating distal radius fractures. This study is meant to introduce a modified technique of pin-in-plaster. Materials and methods: Fifty-four patients with distal radius fractures were followed up for one year. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than 7 days after injury. Range of motion and functional results were evaluated. Radiographic parameters including radial inclination, tilt, and height, were measured preoperatively and postoperatively. Results: The average radial tilt was 10.6° and radial height was 10.2 mm at the sixth month postoperatively. Three cases of pin tract infection were recorded, who were treated totally with oral antibiotics. There was no case of pin loosening. Of total 73 patients underwent surgery, three cases of radial nerve irritation were recorded at the time of cast removal. All of them resolved at the 6th month follow up. No median nerve compression and carpal tunnel syndrome have found. We also had no case of tendon injury. Conclusion: Our modified technique is effective to restore anatomic congruity and maintain reduction.

Keywords: distal radius fracture, percutaneous pinning, pin-in-plaster, modified method of pin-in-plaster, operative treatment

Procedia PDF Downloads 509
358 In-Vitro Dextran Synthesis and Characterization of an Intracellular Glucosyltransferase from Leuconostoc Mesenteroides AA1

Authors: Afsheen Aman, Shah Ali Ul Qader

Abstract:

Dextransucrase [EC 2.4.1.5] is a glucosyltransferase that catalysis the biosynthesis of a natural biopolymer called dextran. It can catalyze the transfer of D-glucopyranosyl residues from sucrose to the main chain of dextran. This unique biopolymer has multiple applications in several industries and the key utilization of dextran lies on its molecular weight and the type of branching. Extracellular dextransucrase from Leuconostoc mesenteroides is most extensively studied and characterized. Limited data is available regarding cell-bound or intracellular dextransucrase and on the characterization of dextran produced by in-vitro reaction of intracellular dextransucrase. L. mesenteroides AA1 is reported to produce extracellular dextransucrase that catalyzes biosynthesis of a high molecular weight dextran with only α-(1→6) linkage. Current study deals with the characterization of an intracellular dextransucrase and in vitro biosynthesis of low molecular weight dextran from L. mesenteroides AA1. Intracellular dextransucrase was extracted from cytoplasm and purified to homogeneity for characterization. Kinetic constants, molecular weight and N-terminal sequence analysis of intracellular dextransucrase reveal unique variation with previously reported extracellular dextransucrase from the same strain. In vitro synthesized biopolymer was characterized using NMR spectroscopic techniques. Intracellular dextransucrase exhibited Vmax and Km values of 130.8 DSU ml-1 hr-1 and 221.3 mM, respectively. Optimum catalytic activity was detected at 35°C in 0.15 M citrate phosphate buffer (pH-5.5) in 05 minutes. Molecular mass of purified intracellular dextransucrase is approximately 220.0 kDa on SDS-PAGE. N-terminal sequence of the intracellular enzyme is: GLPGYFGVN that showed no homology with previously reported sequence for the extracellular dextransucrase. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions and this biopolymer can be hydrolyzed into different molecular weight fractions for various applications.

Keywords: characterization, dextran, dextransucrase, leuconostoc mesenteroides

Procedia PDF Downloads 396
357 Effect of Falcaria vulgaris in Wound Healing and Immune Response of Common Carp (Cyprinus carpio)

Authors: N. Choobkar, M. Rezaeimanesh, A. M. Emami Rad, M. Ghaeni, H. Norouzi, S. Pahlavani, M. S. Tamasoki, E. Nezafatian

Abstract:

Antibiotics are used to increase the immune and wound healing in many animals . But due to the residual effects of a drug , researchers sought to replace them with natural materials such as Plant extracts. Falcaria vulgaris is the most attractive sources of the new drugs. Falcaria vulgaris (locally named Ghazzyaghi/Poghazeh) is a member of Umbelliferae family which grows near farmlands and is consumed as a vegetable in some regions of Iran. In the West of the country, in the wound healing and irregularities in the digestive system is also used. There were no scientific reports available in literature in support of the traditional claims of F. vulgaris in fish. The present study is therefore an attempt to assess the efficacy of this indigenous herb for its healing effect in common carp (Cyprinus carpio). Falcaria vulgaris at concentrations of 0, 2 and 10 % with Lophag foods used on wound healing of common carp and immune response, and weight grow and survival during periods of 21 days with feeding 2 times per day on the basis of body weight. The results showed that, compared with the control group, using of concentration 10 % F. vulgaris have significant effect on wound healing and stimulates the immune system by increasing white blood cells (WBC) and weight grow and survival of carp. The herb can used in wound healing, increased resistance to disease and weight grow in fish and the beneficial effects of this combination goes back to man.

Keywords: common carp, falcaria vulgaris, immune response, wound healing

Procedia PDF Downloads 591
356 Biophysical Characterization of Archaeal Cyclophilin Like Chaperone Protein

Authors: Vineeta Kaushik, Manisha Goel

Abstract:

Chaperones are proteins that help other proteins fold correctly, and are found in all domains of life i.e., prokaryotes, eukaryotes and archaea. Various comparative genomic studies have suggested that the archaeal protein folding machinery appears to be highly similar to that found in eukaryotes. In case of protein folding; slow rotation of peptide prolyl-imide bond is often the rate limiting step. Formation of the prolyl-imide bond during the folding of a protein requires the assistance of other proteins, termed as peptide prolyl cis-trans isomerases (PPIases). Cyclophilins constitute the class of peptide prolyl isomerases with a wide range of biological function like protein folding, signaling and chaperoning. Most of the cyclophilins exhibit PPIase enzymatic activity and play active role in substrate protein folding which classifies them as a category of molecular chaperones. Till date, there is not very much data available in the literature on archaeal cyclophilins. We aim to compare the structural and biochemical features of the cyclophilin protein from within the three domains to elucidate the features affecting their stability and enzyme activity. In the present study, we carry out in-silico analysis of the cyclophilin proteins to predict their conserved residues, sites under positive selection and compare these proteins to their bacterial and eukaryotic counterparts to predict functional divergence. We also aim to clone and express these proteins in heterologous system and study their biophysical characteristics in detail using techniques like CD and fluorescence spectroscopy. Overall we aim to understand the features contributing to the folding, stability and dynamics of the archaeal cyclophilin proteins.

Keywords: biophysical characterization, x-ray crystallography, chaperone-like activity, cyclophilin, PPIase activity

Procedia PDF Downloads 213
355 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis of α-Aminophosphonates from Amino Acids Esters

Authors: Sarra Boughaba

Abstract:

α-aminophosphonates have found a wide range of applications in organic and medicinal chemistry; they are considered as pharmacological agents, anti-inflammatory antitumor agents, and antibiotics. A number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution, utilization of organic solvents, and expensive catalysts. In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this context, an efficient and eco-friendly protocol has been described for the synthesis of α-aminophosphonates via one pot, three component reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of amino acids esters, various aromatic aldehydes and triethylphosphite under solvent-free conditions, the corresponding α-aminophosphonates were formed in good yields as racemic or diastereomericmixture. All the new products were systematically characterized by IR, MS, and ¹H, ¹³C-³¹P-NMR analyses. This method offers advantages such as simplicity workup with the green aspects by avoiding expensive catalysts and toxic solvents, good yields, short reaction times.

Keywords: amino acids esters, α-aminophosphonates, H₆P₂W₁₈O₆₂.14H₂O catalyst, green chemistry

Procedia PDF Downloads 127
354 Development and Efficacy Assessment of an Enteric Coated Porous Tablet Loaded with F4 Fimbriae for Oral Vaccination against Enterotoxigenic Escherichia coli Infections

Authors: Atul Srivastava, D. V. Gowda

Abstract:

Enterotoxigenic Escherichia coli (ETEC) infection is one of the major causes contributing to the development of diarrhoea in adults and children in developing countries. To date, no preventive/treatment strategy showed promising results, which could be due to the lack of potent vaccines, and/or due to the development of resistance of ETEC to antibiotics. Therefore, in the present investigation, a novel porous Sodium Alginate (SA) tablet formulation loaded with F4 fimbriae antigen was developed and tested for efficacy against ETEC infections in piglet models. Pre-compression parameters of the powder mixes and post compression parameters of tablets have been evaluated and results were found to be satisfactory. Loading of F4 fimbrial antigens in to the tablets was achieved by inducing pores in the tablets via the sublimation of camphor followed by incubation with purified F4 fimbriae. The loaded tablets have been coated with Eudragit L100 to protect the F4 fimbriae from (a) highly acidic gastric environment; (b) proteolytic cleavage by pepsin; and (c) to promote subsequent release in the intestine. Evaluation of developed F4 fimbrial tablets in a Pig model demonstrated induction of mucosal immunity, and a significant reduction of F4+ E. coli in faeces. Therefore, F4 fimbriae loaded porous tablets could be a novel oral vaccination candidate to induce mucosal and systemic immunity against ETEC infections.

Keywords: porous tablets, sublimation, f4 fimbriae, eudragit l100, vaccination

Procedia PDF Downloads 341
353 Influence of Menstrual Cycle on the Pharmacokinetics of Antibiotics

Authors: Sandhyarani Guggilla

Abstract:

For several reasons no two individuals can be considered identical and hence individualization of therapy is the current trend in treating the patients. Influence of menstrual cycle on the pharmacokinetics of Doxycycline. Twelve healthy female volunteers have been included in the study after obtaining written informed consent. The age ranged from 16 to 25 years. Experimental design: The volunteer selection and recruitment will be carried out after obtaining informed consent from each volunteer. The drug administration will be done to each volunteer at 7 a.m along with a glass of water after an overnight fasting on 3rd, 13th and 23rd day of menstrual cycle. These saliva samples will be stored under frozen conditions until HPLC analysis. Results: In the present study the changes in estrogen levels during ovulatory phase have not shown any influence onAUCo-t of Doxycycline. Only AUCo-t of doxycycline showed an increasing trend with increasing levels of estrogen in ovulatory phase, but not in other phases. Even though the FSH levels differed significantly among volunteers during different phases FSH does not seem to influence the overall pharmacokinetic behavior of Doxycycline during different phases. The present study indicated only the trend that the hormone levels may influence the pharmacokinetic behavior of the Doxycycline. Conclusion: In the present study the changes in hormones have shown an increasing C-max, increasing AUCo-t of Doxycycline pharmacokinetics significantly in follicular phase than ovulatory and luteal phases among volunteers during different phases. In other pharmacokinetic properties like clearance, biological half-life, volume of distribution, mean residence time the change was not significant.

Keywords: menstrual cycle, doxycycline, estrogen, FSH, ovulatory phase

Procedia PDF Downloads 267
352 Spectrum of Causative Pathogens and Resistance Rates to Antibacterial Agents in Bacterial Prostatitis

Authors: kamran Bhatti

Abstract:

Objective: To evaluate spectrum and resistance rates to antibacterial agents in causative pathogens of bacterial prostatitis in patients from Southern Europe, the Middle East, and Africa. Materials: 1027 isolates from cultures of urine or expressed prostatic secretion, post-massage urine or seminal fluid, or urethral samples were considered. Results: Escherichia coli (32%) and Enterococcus spp. (21%) were the most common isolates. Other Gram-negative, Gram-positive, and atypical pathogens accounted for 22%, 20%, and 5%, respectively. Resistance was <15% for piperacillin/tazobactam and carbapenems (both Gram-negative and -positive pathogens); <5% for glycopeptides against Gram-positive; 7%, 14%, and 20% for aminoglycosides, fosfomycin, and macrolides against Gram-negative pathogens, respectively; 10% for amoxicillin/clavulanate against Gram-positive pathogens; <20% for cephalosporins and fluoroquinolones against to Gram-negative pathogens (higher against Gram-positive pathogens); none for macrolides against atypical pathogens, but 20% and 27% for fluoroquinolones and tetracyclines. In West Africa, the resistance rates were generally higher, although the highest rates for ampicillin, cephalosporins, and fluoroquinolones were observed in the Gulf area. Lower rates were observed in Southeastern Europe. Conclusions: Resistance to antibiotics is a health problem requiring local health authorities to combat this phenomenon. Knowledge of the spectrum of pathogens and antibiotic resistance rates is crucial to assess local guidelines for the treatment of prostatitis.

Keywords: enterobacteriacae; escherichia coli, gram-positive pathogens, antibiotic, bacterial prostatitis, resistance

Procedia PDF Downloads 64
351 Genome-Wide Identification and Characterization of MLO Family Genes in Pumpkin (Cucurbita maxima Duch.)

Authors: Khin Thanda Win, Chunying Zhang, Sanghyeob Lee

Abstract:

Mildew resistance locus o (Mlo), a plant-specific gene family with seven-transmembrane (TM), plays an important role in plant resistance to powdery mildew (PM). PM caused by Podosphaera xanthii is a widespread plant disease and probably represents the major fungal threat for many Cucurbits. The recent Cucurbita maxima genome sequence data provides an opportunity to identify and characterize the MLO gene family in this species. Total twenty genes (designated CmaMLO1 through CmaMLO20) have been identified by using an in silico cloning method with the MLO gene sequences of Cucumis sativus, Cucumis melo, Citrullus lanatus and Cucurbita pepo as probes. These CmaMLOs were evenly distributed on 15 chromosomes of 20 C. maxima chromosomes without any obvious clustering. Multiple sequence alignment showed that the common structural features of MLO gene family, such as TM domains, a calmodulin-binding domain and 30 important amino acid residues for MLO function, were well conserved. Phylogenetic analysis of the CmaMLO genes and other plant species reveals seven different clades (I through VII) and only clade IV is specific to monocots (rice, barley, and wheat). Phylogenetic and structural analyses provided preliminary evidence that five genes belonged to clade V could be the susceptibility genes which may play the importance role in PM resistance. This study is the first comprehensive report on MLO genes in C. maxima to our knowledge. These findings will facilitate the functional analysis of the MLOs related to PM susceptibility and are valuable resources for the development of disease resistance in pumpkin.

Keywords: Mildew resistance locus o (Mlo), powdery mildew, phylogenetic relationship, susceptibility genes

Procedia PDF Downloads 181
350 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples

Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman

Abstract:

Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.

Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer

Procedia PDF Downloads 301
349 Exploring the Optimum Temperature and Diet for Growth and Gastric Emptying Time of Juvenile Malabar Blood Snapper (Lutjanus malabaricus)

Authors: Sabuj Kanti Mazumder, Mazlan Abd Ghaffar, Simon Kumar Das

Abstract:

In this study, we analyzed the effects of water temperature and diet on the growth properties and gastric emptying period of juvenile Malabar blood snapper (Lutjanus malabaricus) over a 30day experimental period. Fish were collected from a local hatchery of Pulau Ketam, Selangor, Malaysia and immediately transferred to flow-through sea water system and subjected to four different temperatures (22, 26, 30, and 34 °C) and two diets (formulated pellet and shrimp). Body weight gain, food consumption, food conversion ratio, food consumption efficiency, specific growth rate, relative growth rate, daily growth rate, and gastric emptying period were significantly influenced by temperature and diet (P<0.05). The best food conversion ratio was with the shrimp group recorded at 30°C (1.33±0.08). The highest growth rate was observed in the shrimp group at 30°C (3.97±0.57% day-1), and the lowest was observed in the formulated pellet group at 22°C (1.63±0.29% day-1). No significant difference was observed between the groups subjected to temperatures of 26 and 30°C. Similarly, the lowest gastric emptying period was detected in the shrimp group at 30°C (16h), where the proportion of meal residues in the stomach decreased from 100% to less than 8% after 12h of starvation. A significantly longer gastric emptying period was observed in the formulated pellet group at 22°C (28h). Overall, the best results were observed on shrimp group subjected to a 30°C temperature. The data obtained from this study suggest that a shrimp diet fed on L. malabaricus at 30°C will optimize the commercial production of this commercially important fish species.

Keywords: aquaculture, diet, digestion rate, growth, Malabar blood snapper

Procedia PDF Downloads 286
348 Identification of Two Novel Carbapenemase Gene Variants from a Carbapenem-Resistant Aeromonas Veronii Environmental Isolate

Authors: Rafael Estrada, Cristian Ruiz Rueda

Abstract:

Carbapenems are last-resort antibiotics used in clinical settings to treat antibiotic-resistant bacterial infections. Thus, the emergence and spread of resistance to carbapenems is a major public health concern. Here, we have studied a carbapenem-resistant Aeromonas veronii strain previously isolated from a water sample from Sam Simeon Creek (Hearst San Simeon State Park, CA). Analysis of this isolate using disk-diffusion, CarbaNP, eCIM and mCIM assays revealed that it was resistant to amoxicillin-clavulanic acid and all carbapenems tested and that this isolate produced a potentially novel carbapenemase of the Metallo-β-lactamase family. Whole genome sequencing analysis revealed that this A. veronii isolate carries a novel variant of the blacₚₕₐ class β-carbapenemase gene that was closely related to the blacₚₕₐ₇ gene of Aeromonas jandaei. This isolate also carried a novel variant of the blaₒₓₐ class D carbapenemase gene that was most closely related to the blaₒₓₐ-₉₁₂ gene found in other Aeromonas veronii isolates. Finally, we also identified a novel class C β-lactamase gene moderately related to the blaFₒₓ-₁₇ gene of Providencia stuartii and other blaFₒₓ variants identified in Klebsiella pneumoniae, Escherichia coli and other Enterobacteriaceae. Overall, our findings reveal that environmental isolates are an important reservoir of multiple carbapenemases and other β-lactamases of clinical significance.

Keywords: β-lactamases, carbapenem, antibiotic-resistant, aeromonas veronii

Procedia PDF Downloads 92