Search results for: air pollutants
259 Feasibility Study of Mine Tailing’s Treatment by Acidithiobacillus thiooxidans DSM 26636
Authors: M. Gómez-Ramírez, A. Rivas-Castillo, I. Rodríguez-Pozos, R. A. Avalos-Zuñiga, N. G. Rojas-Avelizapa
Abstract:
Among the diverse types of pollutants produced by anthropogenic activities, metals represent a serious threat, due to their accumulation in ecosystems and their elevated toxicity. The mine tailings of abandoned mines contain high levels of metals such as arsenic (As), zinc (Zn), copper (Cu), and lead (Pb), which do not suffer any degradation process, they are accumulated in environment. Abandoned mine tailings potentially could contaminate rivers and aquifers representing a risk for human health due to their high metal content. In an attempt to remove the metals and thereby mitigate the environmental pollution, an environmentally friendly and economical method of bioremediation has been introduced. Bioleaching has been actively studied over the last several years, and it is one of the bioremediation solutions used to treat heavy metals contained in sewage sludge, sediment and contaminated soil. Acidithiobacillus thiooxidans, an extremely acidophilic, chemolithoautotrophic, gram-negative, rod shaped microorganism, which is typically related to Cu mining operations (bioleaching), has been well studied for industrial applications. The sulfuric acid produced plays a major role in bioleaching. Specifically, Acidithiobacillus thiooxidans strain DSM 26636 has been able to leach Al, Ni, V, Fe, Mg, Si, and Ni contained in slags from coal combustion wastes. The present study reports the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in two different mine tailing samples (MT1 and MT2). It was observed that Al, Fe, and Mn were removed in 36.3±1.7, 191.2±1.6, and 4.5±0.2 mg/kg for MT1, and in 74.5±0.3, 208.3±0.5, and 20.9±0.1 for MT2. Besides, < 1.5 mg/kg of Au and Ru were also bioleached from MT1; in MT2, bioleaching of Zn was observed at 55.7±1.3 mg/kg, besides removal of < 1.5 mg/kg was observed for As, Ir, Li, and 0.6 for Os in this residue. These results show the potential of strain DSM 26636 for the bioleaching of metals that came from different mine tailings.Keywords: A. thiooxidans, bioleaching, metals, mine tailings
Procedia PDF Downloads 294258 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column
Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan
Abstract:
Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill
Procedia PDF Downloads 75257 Material Vitalism’s Potential Role in Informing EU Construction and Demolition Waste Policy
Authors: Cameron Jones
Abstract:
Emissions, produced by landfill waste from demolished obsolete buildings, have a damaging effect on both the Earth’s climate and human health. The philosophical theory of material vitalism - the potential for materials to react and emit harmful pollutants - therefore defines this construction and demolition waste (CDW) as having vitality. The European Union’s ‘Circular Economic Action Plan’ (CEAP) aims to mitigate the effects of CDW by prioritising the circularity of building materials. This dissertation examines how the philosophical theory of material vitalism can make an environmentally responsible contribution to CDW policy. The CEAP and Silvertown Quays development are used as case studies for the application of vitalism to policy revision. The study concludes that vitalism has a positive role to play in informing CDW policy, although its contribution is stronger in some areas. This is established by first appraising the aspects that relate to the obsolescence of buildings outlined in the EU’s existing CDW policies. Next, these policy directives are compared with the CE principles employed in the Silvertown Quays development. Subsequently, a keyword analysis model is used to categorise the language used in the CEAP, demonstrating how socio-political approaches to the CE and strategies to address resource scarcity could be strengthened to represent the EU’s policy aspirations more effectively. Recommendations are then made on how material vitalism could be utilised to strengthen legislation, arguing that a notable contribution can be made in most policy areas. Finally, theoretical testing of the impact of these revisions to policy on the case study development identified some practicalities for consideration in improving waste management outcomes.Keywords: vitalism, construction waste, obsolescence, political ecology, exceptionalism
Procedia PDF Downloads 44256 Spatiotemporal Variation Characteristics of Soil pH around the Balikesir City, Turkey
Authors: Çağan Alevkayali, Şermin Tağil
Abstract:
Determination of soil pH surface distribution in urban areas is substantial for sustainable development. Changes on soil properties occur due to functions on performed in agriculture, industry and other urban functions. Soil pH is important to effect on soil productivity which based on sensitive and complex relation between plant and soil. Furthermore, the spatial variability of soil reaction is necessary to measure the effects of urbanization. The objective of this study was to explore the spatial variation of soil pH quality and the influence factors of human land use on soil Ph around Balikesir City using data for 2015 and Geographic Information Systems (GIS). For this, soil samples were taken from 40 different locations, and collected with the method of "Systematic Random" from the pits at 0-20 cm depths, because anthropologic sourced pollutants accumulate on upper layers of soil. The study area was divided into a grid system with 750 x 750 m. GPS was used to determine sampling locations, and Inverse Distance Weighting (IDW) interpolation technique was used to analyze the spatial distribution of pH in the study area and to predict the variable values of un-exampled places with the help from the values of exampled places. Natural soil acidity and alkalinity depend on interaction between climate, vegetation, and soil geological properties. However, analyzing soil pH is important to indirectly evaluate soil pollution caused by urbanization and industrialization. The result of this study showed that soil pH around the Balikesir City was neutral, in generally, with values were between 6.5 and 7.0. On the other hand, some slight changes were demonstrated around open dump areas and the small industrial sites. The results obtained from this study can be indicator of important soil problems and this data can be used by ecologists, planners and managers to protect soil supplies around the Balikesir City.Keywords: Balikesir, IDW, GIS, spatial variability, soil pH, urbanization
Procedia PDF Downloads 322255 Development of a Sensitive Electrochemical Sensor Based on Carbon Dots and Graphitic Carbon Nitride for the Detection of 2-Chlorophenol and Arsenic
Authors: Theo H. G. Moundzounga
Abstract:
Arsenic and 2-chlorophenol are priority pollutants that pose serious health threats to humans and ecology. An electrochemical sensor, based on graphitic carbon nitride (g-C₃N₄) and carbon dots (CDs), was fabricated and used for the determination of arsenic and 2-chlorophenol. The g-C₃N₄/CDs nanocomposite was prepared via microwave irradiation heating method and was dropped-dried on the surface of the glassy carbon electrode (GCE). Transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used for the characterization of structure and morphology of the nanocomposite. Electrochemical characterization was done by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical behaviors of arsenic and 2-chlorophenol on different electrodes (GCE, CDs/GCE, and g-C₃N₄/CDs/GCE) was investigated by differential pulse voltammetry (DPV). The results demonstrated that the g-C₃N₄/CDs/GCE significantly enhanced the oxidation peak current of both analytes. The analytes detection sensitivity was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic and 2-chlorophenol. Experimental conditions which affect the electrochemical response of arsenic and 2-chlorophenol were studied, the oxidation peak currents displayed a good linear relationship to concentration for 2-chlorophenol (R²=0.948, n=5) and arsenic (R²=0.9524, n=5), with a linear range from 0.5 to 2.5μM for 2-CP and arsenic and a detection limit of 2.15μM and 0.39μM respectively. The modified electrode was used to determine arsenic and 2-chlorophenol in spiked tap and effluent water samples by the standard addition method, and the results were satisfying. According to the measurement, the new modified electrode is a good alternative as chemical sensor for determination of other phenols.Keywords: electrochemistry, electrode, limit of detection, sensor
Procedia PDF Downloads 145254 Functionalized Magnetic Iron Oxide Nanoparticles for Extraction of Protein and Metal Nanoparticles from Complex Fluids
Authors: Meenakshi Verma, Mandeep Singh Bakshi, Kultar Singh
Abstract:
Magnetic nanoparticles have received incredible importance in view of their diverse applications, which arise primarily due to their response to the external magnetic field. The magnetic behaviour of magnetic nanoparticles (NPs) helps them in numerous different ways. The most important amongst them is the ease with which they can be purified and also can be separated from the media in which they are present merely by applying an external magnetic field. This exceptional ease of separation of the magnetic NPs from an aqueous media enables them to use for extracting/removing metal pollutants from complex aqueous medium. Functionalized magnetic NPs can be subjected for the metallic impurities extraction if are favourably adsorbed on the NPs surfaces. We have successfully used the magnetic NPs as vehicles for gold and silver NPs removal from the complex fluids. The NPs loaded with gold and silver NPs pollutant fractions has been easily removed from the aqueous media by using external magnetic field. Similarly, we have used the magnetic NPs for extraction of protein from complex media and then constantly washed with pure water to eliminate the unwanted surface adsorbed components for quantitative estimation. The purified and protein loaded magnetic NPs are best analyzed with SDS Page to not only for characterization but also for separating the protein fractions. A collective review of the results indicates that we have synthesized surfactant coated iron oxide NPs and then functionalized these with selected materials. These surface active magnetic NPs work very well for the extraction of metallic NPs from the aqueous bulk and make the whole process environmentally sustainable. Also, magnetic NPs-Au/Ag/Pd hybrids have excellent protein extracting properties. They are much easier to use in order to extract the magnetic impurities as well as protein fractions under the effect of external magnetic field without any complex conventional purification methods.Keywords: magnetic nanoparticles, protein, functionalized, extraction
Procedia PDF Downloads 100253 Biochar - A Multi-Beneficial and Cost-Effective Amendment to Clay Soil for Stormwater Runoff Treatment
Authors: Mohammad Khalid, Mariya Munir, Jacelyn Rice Boyaue
Abstract:
Highways are considered a major source of pollution to storm-water, and its runoff can introduce various contaminants, including nutrients, Indicator bacteria, heavy metals, chloride, and phosphorus compounds, which can have negative impacts on receiving waters. This study assessed the ability of biochar for contaminants removal and to improve the water holding capacity of soil biochar mixture. For this, ten commercially available biochar has been strategically selected. Lab scale batch testing was done at 3% and 6% by the weight of the soil to find the preliminary estimate of contaminants removal along with hydraulic conductivity and water retention capacity. Furthermore, from the above-conducted studies, six best performing candidate and an application rate of 6% has been selected for the column studies. Soil biochar mixture was filled in 7.62 cm assembled columns up to a fixed height of 76.2 cm based on hydraulic conductivity. A total of eight column experiments have been conducted for nutrient, heavy metal, and indicator bacteria analysis over a period of one year, which includes a drying as well as a deicing period. The saturated hydraulic conductivity was greatly improved, which is attributed to the high porosity of the biochar soil mixture. Initial data from the column testing shows that biochar may have the ability to significantly remove nutrients, indicator bacteria, and heavy metals. The overall study demonstrates that biochar could be efficiently applied with clay soil to improve the soil's hydraulic characteristics as well as remove the pollutants from the stormwater runoff.Keywords: biochar, nutrients, indicator bacteria, storm-water treatment, sustainability
Procedia PDF Downloads 121252 Assessment of the Physicochemical Qualities and Prevalence of Vibrio Pathogens in the Final Effluents of Two Wastewater Treatment Plants in Eastern Cape Province, South Africa
Authors: C. A Osunla, A. I. Okoh
Abstract:
Treated wastewater effluent has been found to encompass high levels of pollutants, including disease-causing bacteria such as Vibrio pathogens. The current study was designed to evaluate the physicochemical qualities and prevalence of Vibrio pathogens in treated effluents of two wastewater treatment plants (WWTP) in Eastern Cape Province, South Africa over the period of six months. Parameters measured include pH, temperature, electrical conductivity, salinity, turbidity, total dissolved solid (TDS), dissolved oxygen (DO), and free chlorine; and these parameters were simultaneously monitored in the treated final effluents of the two wastewater treatment plants using standard methods. The ranges of values for the physicochemical are: pH (7.0–8.6), total dissolved solids (286.3–916.5 mg/L), electrical conductivity (572.57–1704.5 mS/m), temperature (10.3–28.6 °C), turbidity (4.02–43.20 NTU), free chlorine (0.00–0.19 mg/L), dissolve oxygen (2.06–6.32 mg/L) and biochemical oxygen demand (0.1–9.0 mg/L). The microbiological assessment for both WWTPs revealed the presence of Vibrio counts ranging between 0 and 8.76×104 CFU/100 mL. The obtained values of the measured parameters and Vibrio loads of the treated wastewater effluents were found outside the compliance levels of the South African guidelines and World Health Organization tolerance limits for effluents intended to be discharged into receiving waterbodies. Hence, we conclude that these WWTPs are important point sources of pollution in surface water with potential public health and ecological risks.Keywords: effluents, public health, South Africa, Vibrio, wastewater
Procedia PDF Downloads 359251 Application and Limitation of Heavy Metal Pollution Indicators in Coastal Environment of Pakistan
Authors: Noor Us Saher
Abstract:
Oceans and Marine areas have a great importance, mainly regarding food resources, fishery products and reliance of livelihood. Aquatic pollution is common due to the incorporation of various chemicals mainly entering from urbanization, industrial and commercial facilities, such as oil and chemical spills. Many hazardous wastes and industrial effluents contaminate the nearby areas and initiate to affect the marine environment. These contaminated conditions may become worse in those aquatic environments situated besides the world’s largest cities, which are hubs of various commercial activities. Heavy metal contamination is one of the most important predicaments for marine environments and during past decades this problem has intensified due to an increase in urbanization and industrialization. Coastal regions of Pakistan are facing severe threats from various organic and inorganic pollutants, especially the estuarine and coastal areas of Karachi city, the most populated and industrialized city situated along the coastline. Metal contamination causes severe toxicity in biota resulting the degradation of Marine environments and depletion of fishery resources and sustainability. There are several abiotic (air, water and sediment) and biotic (fauna and flora) indicators that indicate metal contamination. However, all these indicators have certain limitations and complexities, which delay their implementation for rehabilitation and conservation in the marine environment. The inadequate evidences have presented on this significant topic till the time and this study discussed metal pollution and its consequences along the marine environment of Pakistan. This study further helps in identification of possible hazards for the ecological system and allied resources for management strategies and decision making for sustainable approaches.Keywords: coastal and estuarine environment, heavy metals pollution, pollution indicators, Pakistan
Procedia PDF Downloads 249250 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh
Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin
Abstract:
In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model
Procedia PDF Downloads 150249 Perspective for the Creation of Molecular Imprinted Polymers from Coal Waste
Authors: Alma Khasenovna Zhakina, Arnt Oxana Vasilievna, Vasilets Evgeny Petrovich
Abstract:
The aim of this project is to develop methods for obtaining new molecularly imprinted polymers from coal waste to study their structure, structural and morphological features and properties. Recently, the development of molecularly imprinted polymers has become one of the hot topics for researchers. Modern research indicates the broad prospects of rapidly developing molecular imprinting technologies for creating a new generation of sorption materials. The attractiveness of this area of research lies in the fact that the use of imprinted polymers is not limited to scientific research; they are already being introduced in the chemical, pharmaceutical and biotechnological industries, primarily at the stages of purification of the final product. For the use of molecularly imprinted polymers in the development of sorption material, their ability to selectively remove pollutants, including trace concentrations, is of fundamental importance, and the exceptional stability of polymeric materials under harsh conditions makes it possible to simplify the process of water purification as a whole. The scientific and technical effect is associated with the development of technologies for the production of new molecularly imprinted polymers, the establishment of optimal conditions for their production and the creation of effective imprinted sorbents on their basis for wastewater treatment from heavy metals. The social effect is due to the fact that the use of coal waste as a feedstock for the production of imprinted sorbents will make it possible in the future to create new industries with additional jobs and obtain competitive multi-purpose products. The economic and multiplier effect is associated with the low cost of the final product due to the involvement of local coal waste in the production, reduction of transport, customs and other costs.Keywords: imprinted polymers, coal waste, polymerization, template, customized sorbents
Procedia PDF Downloads 66248 Determination of the Water Needs of Some Crops Irrigated with Treated Water from the Sidi Khouiled Wastewater Treatment Plant in Ouargla, Algeria
Authors: Dalila Oulhaci, Mehdi Benlarbi, Mohammed Zahaf
Abstract:
The irrigation method is fundamental for maintaining a wet bulb around the roots of the crop. This is the case with localized irrigation, where soil moisture can be maintained permanently around the root system between the two water content extremes. Also, one of the oldest methods used since Roman times throughout North Africa and the Near East is based on the frequent dumping of water into porous pottery vases buried in the ground. In this context, these two techniques have been combined by replacing the pottery vase with plastic bottles filled with sand that discharge water through their perforated walls into the surrounding soil. The first objective of this work is the theoretical determination using CLIMWAT and CROPWAT software of the irrigation doses of some crops (palm, wheat, and onion) and experimental by measuring the humidity of the soil before and after watering. The second objective is to determine the purifying power of the sand filter in the bottle. Based on the CROPWAT software results, the date palm needs 18.5 mm in the third decade of December, 57.2 mm in January, and 73.7 mm in February, whereas the doses received by experimentally determined by means of soil moisture before and after irrigation are 19.5 mm respectively, 79.66 mm and 95.66 mm. The onion needs 14.3 mm in the third decade of December of, 59.1 mm in January, and 80 mm in February, whereas the experimental dose received is 15.07 mm, respectively, 64.54 and 86.8 mm. The total requirements for the vegetative period are estimated at 1642.6 mm for date palms, 277.4 mm for wheat, and 193.5 mm for onions. The removal rate of the majority of pollutants from the bottle is 80%. This work covers, on the one hand, the context of water conservation, sustainable development, and protection of the environment, and on the other, the agricultural field.Keywords: irrigation, sand, filter, humidity, bottle
Procedia PDF Downloads 66247 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation
Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev
Abstract:
The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.Keywords: CO and VOCs oxidation, copper oxide, Ceria, gold catalysts
Procedia PDF Downloads 319246 Ecological and Biological Effects of Pollution and Dredging Activities on Fisheries and Fisheries Products in Niger Delta Ecological Zone
Authors: Ikpesu, Thomas Ohwofasa, Babtunde Ilesanmi
Abstract:
The effects of anthropogenic activities on fish and fisheries products in Niger Delta water bodies were investigated. The rivers were selected based on their close proximity to contaminants and dredging activities. Three stations were chosen per river. The stations chosen to depicting downstream and upstream stations were visited and samples collected on monthly basis. The down streams stations are the polluted and heavily dredged sites, where the upstream station is far, without any evidence of pollution or human activities. During these periods, the fishes of the same species were collected and analyzed for morphological and physiological changes, after which they were returned back to the rivers. The physico-chemicals parameters of these stations were also taken. Morphological changes such as skin ulcerations and other lesions, as well as fungi infections were observed in the down streams fishes. The fish in up streams look healthier and bigger (though the age could not be affirmed) than the downstream fishes. The physico-chemical parameters between the up streams and down streams stations vary significantly (p < 0.01). These anthropogenic effects must have interfere with the normal migration pattern of these fishes, because there were changes in the composition of population and species diversity in the samples sites, with the upstream having true species diversity. The release of pollutants into the water in the Niger Delta areas may triggers off naturally occurring bio toxicity cycles and other fish poisoning. There is risk of biomagnifications of these poisons along the tropic level. This makes the normally valuable food resource dangerous for human consumption and thereby instances of human death caused by such poisoning.Keywords: anthropogenic, dredging, fisheries, niger delta, pollution, rivers
Procedia PDF Downloads 308245 Spectroscopic Studies on Solubilization of Polycyclic Aromatic Hydrocarbons in Structurally Different Gemini Surfactants
Authors: Toshikee Yadav, Deepti Tikariha, Jyotsna Lakra, Kallol K. Ghosh
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants that consist of two or more benzene rings. PAHs have low solubility in water. Their slow dissolution can contaminate large amounts of ground water for long period. They are hydrophobic, non-polar and neutral in nature and are known to have potential mutagenic or carcinogenic activity. In current scenario their removal from the environment, water and soil is still a great challenge and scientists worldwide are engaged to invent and design novel separation technology and decontaminating systems. Various physical, chemical, biological and their combined technologies have been applied to remediate organic-contaminated soils and groundwater. Surfactants play a vital role in the solubilization of these hydrophobic organic compounds. In the present investigation Solubilization capabilities of structurally different gemini surfactants i.e. butanediyl-1,4-bis(dimethyldodecylammonium bromide) (C12-4-C12,2Br−), 2-butanol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)-C12,2Br−), 2,3-butanediol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)2-C12,2Br−) for three polycyclic aromatic hydrocarbons (PAHs); phenanthrene (Phe),fluorene (Fluo) and acenaphthene (Ace) have been studied spectrophotometrically at 300 K. The result showed that the solubility of PAHs increases linearly with increasing surfactant concentration, as an implication of association between the PAHs and micelles. Molar solubilization ratio (MSR), micelle–water partition coefficient (Km) and Gibb's free energy of solubilization (ΔG°s) for PAHs have been determined in aqueous medium. (C12-4(OH)2-C12,2Br−) shows the higher solubilization for all PAHs. Findings of the present investigation may be useful to understand the role of appropriate surfactant system for the solubilization of toxic hydrophobic organic compounds.Keywords: gemini surfactant, molar solubilization ratio, polycyclic aromatic hydrocarbon, solubilization
Procedia PDF Downloads 446244 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction
Authors: Sandeep Kaushal
Abstract:
Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS
Procedia PDF Downloads 106243 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction
Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan
Abstract:
The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis
Procedia PDF Downloads 90242 Adsorption of NO and NH3 in MFI and H-ZSM5: Monte Carlo Simulation
Authors: Z. Jamalzadeh, A. Niaei, H. Erfannia
Abstract:
Due to developing industries, the emission of pollutants such as NOx, SOx, and CO2 are rapidly increased. Generally, NOx is attributed to the mono nitrogen oxides of NO and NO2 that is one of the most important atmospheric contaminants. Hence, controlling the emission of nitrogen oxides is environmentally urgent. Selective catalytic reduction of NOx is one of the most common techniques for NOx removal in which zeolites have wide application due to their high performance. In zeolitic processes, the catalytic reaction occurs mostly in the pores. Therefore, investigation of the adsorption phenomena of the molecules in order to gain an insight and understand the catalytic cycle is of important. Hence, in current study, benefiting from molecular simulations, the adsorption phenomena in the nanocatalysts of SCR of NOx process was investigated in order to get a good insight of the catalysts’ behavior. The effect of cation addition to the support in the catalysts’ behavior through adsorption step was explored by Mont Carlo (MC) using Materials Studio Package. Simulation time of 1 Ns accompanying 1 fs time step, COMPASS27 Force Field and the cut off radios of 12.5 Ȧ was applied for performed runs. It was observed that the adsorption capacity increases in the presence of cations. The sorption isotherms demonstrated the behavior of type I isotherm categories and sorption capacity diminished with increase in temperature whereas an increase was observed at high pressures. Besides, NO sorption showed higher sorption capacity than NH3 in H–ZSM5. In this respect, the energy distributions signified that the molecules could adsorb in just one sorption site at the catalyst and the sorption energy of NO was stronger than the NH3 in H-ZSM5. Furthermore, the isosteric heat of sorption data showed nearly same values for the molecules; however, it indicated stronger interactions of NO molecules with H-ZSM5 zeolite compared to the isosteric heat of NH3 which was low in value.Keywords: Monte Carlo simulation, adsorption, NOx, ZSM5
Procedia PDF Downloads 359241 Combined Use of Microbial Consortia for the Enhanced Degradation of Type-IIx Pyrethroids
Authors: Parminder Kaur, Chandrajit B. Majumder
Abstract:
The unrestrained usage of pesticides to meet the burgeoning demand of enhanced crop productivity has led to the serious contamination of both terrestrial and aquatic ecosystem. The remediation of mixture of pesticides is a challenging affair regarding inadvertent mixture of pesticides from agricultural lands treated with various compounds. Global concerns about the excessive use of pesticides have driven the need to develop more effective and safer alternatives for their remediation. We focused our work on the microbial degradation of a mixture of three Type II-pyrethroids, namely Cypermethrin, Cyhalothrin and Deltamethrin commonly applied for both agricultural and domestic purposes. The fungal strains (Fusarium strain 8-11P and Fusarium sp. zzz1124) had previously been isolated from agricultural soils and their ability to biotransform this amalgam was studied. In brief, the experiment was conducted in two growth systems (added carbon and carbon-free) enriched with variable concentrations of pyrethroids between 100 to 300 mgL⁻¹. Parameter optimization (pH, temperature, concentration and time) was done using a central composite design matrix of Response Surface Methodology (RSM). At concentrations below 200 mgL⁻¹, complete removal was observed; however, degradation of 95.6%/97.4 and 92.27%/95.65% (in carbon-free/added carbon) was observed for 250 and 300 mgL⁻¹ respectively. The consortium has been shown to degrade the pyrethroid mixture (300 mg L⁻¹) within 120 h. After 5 day incubation, the residual pyrethroids concentration in unsterilized soil were much lower than in sterilized soil, indicating that microbial degradation predominates in pyrethroids elimination with the half-life (t₁/₂) of 1.6 d and R² ranging from 0.992-0.999. Overall, these results showed that microbial consortia might be more efficient than single degrader strains. The findings will complement our current understanding of the bioremediation of mixture of Type II pyrethroids with microbial consortia and potentially heighten the importance for considering bioremediation as an effective alternative for the remediation of such pollutants.Keywords: bioremediation, fungi, pyrethroids, soil
Procedia PDF Downloads 148240 Promotive Role of 5-Aminolevulinic Acid on Chromium-Induced Morphological, Photosynthetic and Oxidative Changes in Cauliflower (Brassica oleracea Botrytis L.)
Authors: Shafaqat Ali, Rehan Ahmad, Muhammad Rizwan
Abstract:
Chromium (Cr) is one of the most toxic pollutants among heavy metals that adversely affect living organisms and physiological processes in plants. The present study investigated the effect of without and with 15 mg L-1 5-Aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100 and 200 μM) in the growth medium. Results showed that Cr stress decreased the plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD), and caused oxidative stress, as observed by increased level of malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), in both leaves and roots of cauliflower. Chromium concentrations and total Cr uptake increased in roots, stem and leaves of plants with increasing Cr levels in the growth medium. Foliar application of ALA increased plant growth, biomass, photosynthetic pigments and gas exchange characteristics under Cr stress as compared to without ALA application. As compared to Cr stress alone, ALA application decreased the levels of MDA, H2O2 and EL while further enhanced the activities of antioxidant enzymes in both leaves and roots. Chromium concentrations and total Cr uptake decreased by the ALA application as compared to without ALA. These results showed that foliar application of ALA might be effective in reducing Cr uptake and toxicity in cauliflower.Keywords: antioxidant enzymes, cauliflower, photosynthesis, chromium, ALA, hydrogen peroxide, electrolyte leakage
Procedia PDF Downloads 301239 The Impact of Diesel Exhaust Particles on Tight Junction Proteins on Nose and Lung in a Mouse Model
Authors: Kim Byeong-Gon, Lee Pureun-Haneul, Hong Jisu, Jang An-Soo
Abstract:
Background: Diesel exhaust particles (DEPs) lead to trigger airway hyperresponsiveness (AHR) and airway dysfunction or inflammation in respiratory systems. Whether tight junction protein changes can contribute to development or exacerbations of airway diseases remain to be clarified. Objective: The aim of this study was to observe the effect of DEP on tight junction proteins in one airway both nose and lung in a mouse model. Methods: Mice were treated with saline (Sham) and exposed to 100 μg/m³ DEPs 1 hour a day for 5 days a week for 4 weeks and 8 weeks in a closed-system chamber attached to a ultrasonic nebulizer. Airway hyperresponsiveness (AHR) was measured and bronchoalveolar lavage (BAL) fluid, nasal lavage (NAL) fluid, lung and nasal tissue was collected. The effects of DEP on tight junction proteins were estimated using western blot, immunohistochemical in lung and nasal tissue. Results: Airway hyperresponsiveness and number of inflammatory cells were higher in DEP exposure group than in control group, and were higher in 4 and 8 weeks model than in control group. The expression of tight junction proteins CLND4, -5, and -17 in both lung and nasal tissue were significantly increased in DEP exposure group than in the control group. Conclusion: These results suggesting that CLDN4, -5 and -17 may be involved in the airway both nose and lung, suggesting that air pollutants cause to disruption of epithelial and endothelial cell barriers. Acknowledgment: This research was supported by Korea Ministry of Environment (MOE) as 'The Environmental Health Action Program' (2016001360009) and Soonchunhyang University Research Fund.Keywords: diesel exhaust particles, air pollutant, tight junction, Claudin, Airway inflammation
Procedia PDF Downloads 144238 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria
Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu
Abstract:
Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.Keywords: agriculture, bioaccumulation, heavy metal, plant tissues
Procedia PDF Downloads 385237 Phytoremediation of Lead Polluted Soils with Native Weeds in Nigeria
Authors: Comfort Adeoye, Anthony Eneji
Abstract:
Lead pollution by mining, industrial dumping, and other anthropogenic uses are corroding the environment. Efforts being made to control it include physical, chemical and biological methods. The failure of the aforementioned methods are largely due to the fact that they are cumbersome, expensive, and not eco-friendly. Some plant species can be used for remediation of these pollutants. The objective of this work is to investigate the abilities of two native weed species to remediate two lead-polluted soils: a) Battery dumpsite and, (b) Naturally occurring lead mine. Soil samples were taken from the two sites: a) Kumapayi in Ibadan, a battery dumpsite, (b) Zamfara, a natural lead mine. Screen house experiment in Complete Randomized Design (CRD) replicated three times was carried out at I.I.T.A. Unpolluted soils were collected and polluted with various rates of lead concentrations of 0, 0.1, 0.2, and 0.5%. These were planted with weed species. Plant growth parameters were monitored for twelve weeks, after which the plants were harvested. Dry weight and plant uptake of the lead were taken. Analysis of data was carried out using, Genstat, Excel and descriptive statistics. Relative concentration of lead (Pb) in the above and below ground parts of Gomphrena celusoides revealed that a higher amount of Pb is taken up in the root compared with the shoots at different levels of Pb pollution. However, lead uptake at 0.5% > 0.2% > 0.1% > Control. In essence, phytoremediation of Gomphrena is highest at soil pollution of 0.5% and its retention is greater in the root than the shoot.In S. pyramidalis, soil retention ranges from 0.1% > 0.5% > 0.2% > control. Uptake is highest at 0.5% > 0.1% > 0.2 in stem. Uptake in leaves is highest at 0.2%, but none in the 0.5% pollution. Therefore, different plant species exhibited different accumulative mode probably due to their physiological and rooting systems. Gomphrena spp. rooting system is tap root,while that of S.pyramidalis is fibrous.Keywords: grass, lead, phytoremediation, pollution
Procedia PDF Downloads 325236 Historical Analysis of the Landscape Changes and the Eco-Environment Effects on the Coastal Zone of Bohai Bay, China
Authors: Juan Zhou, Lusan Liu, Yanzhong Zhu, Kuixuan Lin, Wenqian Cai, Yu Wang, Xing Wang
Abstract:
During the past few decades, there has been an increase in the number of coastal land reclamation projects for residential, commercial and industrial purposes in more and more coastal cities of China, which led to the destruction of the wetlands and loss of the sensitive marine habitats. Meanwhile, the influences and nature of these projects attract widespread public and academic concern. For identifying the trend of landscape (esp. Coastal reclamation) and ecological environment changes, understanding of which interacted, and offering a general science for the development of regional plans. In the paper, a case study was carried out in Bohai Bay area, based on the analysis of remote sensing data. Land use maps were created for 1954, 1970, 1981, 1990, 2000 and 2010. Landscape metrics were calculated and illustrated that the degree of reclamation changes was linked to the hydrodynamic environment and macrobenthos community. The results indicated that the worst of the loss of initial areas occurred during 1954-1970, with 65.6% lost mostly to salt field; to 2010, Coastal reclamation area increased more than 200km² as artificial landscape. The numerical simulation of tidal current field in 2003 and 2010 respectively showed that the flow velocity in offshore became faster (from 2-5 cm/s to 10-20 cm/s), and the flow direction seem to go astray. These significant changes of coastline were not conducive to the spread of pollutants and degradation. Additionally, the dominant macrobenthos analysis from 1958 to 2012 showed that Musculus senhousei (Benson, 1842) spread very fast and had been the predominant species in the recent years, which was a disturbance tolerant species.Keywords: Bohai Bay, coastal reclamation, landscape change, spatial patterns
Procedia PDF Downloads 290235 Determination of Heavy Metal Levels in Carissa spinarum and Toddalia asiatica Used as Herbal Medicines in Kisii and Nyamira Counties Region, Kenya
Authors: Moses A. Guto Maobe, Leonard Gitu, Erastus Gatebe
Abstract:
The plants Carissa spinarum and Toddalia asiatica have historically been used as herbal medicines in Kisii and Nyamira Counties region, Kenya. But, there is limited study about heavy metal contents in their different plant parts. Such information is necessary for proper use of the two plant species as herbal medicines. So, precise determination of heavy metal contents in different part of these herbs is required for quality, efficacy and safety use in the treatment of ailments. The main aim of this study was to standardize the two herbs of interest. The objective of this study was to evaluate the levels of heavy metal contents in the root of Carissa spinarum and Toddalia asiatica. A wet digestion method with concentrated nitric-hydrochloric acid was used for the dissolution of each herb part prior to elemental analysis. Standard solutions of various concentrations of each pure metal of analytical grade arsenic (As), cadmium (Cd) and mercury (Hg) were prepared and used. The analysis of As, Cd and Hg in each of two herbs was conducted by atomic absorption spectroscopy (AAS) Shimadzu model No. 6200. Data obtained from root of Carissa spinarum indicated concentration (mgkg⁻¹) of Arsenic (As), Cadmium (Cd) and Mercury (Hg) were 0.87 x 10⁻³, 7.02 x 10⁻⁶ and 0.66 x 10⁻³ respectively. Results obtained from root of Toddalia asiatica showed concentration (mgkg⁻¹) of Arsenic (As), Cadmium (Cd) and Mercury (Hg) were 1.33 x 10⁻³, 7.32 x 10⁻⁶ and 1.13 x 10⁻³, respectively. The permissible limits set by WHO for As, Cd and Hg in herbs are (mgkg⁻¹) < 1 - 5, < 0.3 – 1 and < 0.1- 0.5 respectively. The concentrations of As, Cd, and Hg determined were relatively higher in the root of Toddalia asiatica than the root of Carissa spinarum. It was concluded that levels of heavy metal contents of As, Cd, and Hg in the root of Carissa spinarum and Toddalia asiatica were within permissible limits set by WHO/FAO.Keywords: heavy metals, Carissa spinarum, Toddalia asiatica, wet digestion, pollutants, AAS
Procedia PDF Downloads 168234 Distribution and Historical Trends of PAHs Deposition in Recent Sediment Cores of the Imo River, SE Nigeria
Authors: Miranda I. Dosunmu, Orok E. Oyo-Ita, Inyang O. Oyo-Ita
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are a class of priority listed organic pollutants due to their carcinogenicity, mutagenity, acute toxicity and persistency in the environment. The distribution and historical changes of PAHs contamination in recent sediment cores from the Imo River were investigated using gas chromatography coupled with mass spectrometer. The concentrations of total PAHs (TPAHs) ranging from 402.37 ng/g dry weight (dw) at the surface layer of the Estuary zone (ESC6; 0-5 cm) to 92,388.59 ng/g dw at the near surface layer of the Afam zone (ASC5; 5-10 cm) indicate that PAHs contamination was localized not only between sample sites but also within the same cores. Sediment-depth profiles for the four (Afam, Mangrove, Estuary and illegal Petroleum refinery) cores revealed irregular distribution patterns in the TPAH concentrations except the fact that these levels became maximized at the near surface layers (5-10 cm) corresponding to a geological time-frame of about 1996-2004. This time scale coincided with the period of intensive bunkering and oil pipeline vandalization by the Niger Delta militant groups. Also a general slight decline was found in the TPAHs levels from near the surface layers (5-10 cm) to the most recent top layers (0-5 cm) of the cores, attributable to the recent effort by the Nigerian government in clamping down the illegal activity of the economic saboteurs. Therefore, the recent amnesty period granted to the militant groups should be extended. Although mechanism of perylene formation still remains enigmatic, examination of its distributions down cores indicates natural biogenic, pyrogenic and petrogenic origins for the compound at different zones. Thus, the characteristic features of the Imo River environment provide a means of tracing diverse origins for perylene.Keywords: perylene, historical trend, distribution, origin, Imo River
Procedia PDF Downloads 251233 [Keynote Speech]: Determination of Naturally Occurring and Artificial Radionuclide Activity Concentrations in Marine Sediments in Western Marmara, Turkey
Authors: Erol Kam, Z. U. Yümün
Abstract:
Natural and artificial radionuclides cause radioactive contamination in environments, just as the other non-biodegradable pollutants (heavy metals, etc.) sink to the sea floor and accumulate in sediments. Especially the habitat of benthic foraminifera living on the surface of sediments or in sediments at the seafloor are affected by radioactive pollution in the marine environment. Thus, it is important for pollution analysis to determine the radionuclides. Radioactive pollution accumulates in the lowest level of the food chain and reaches humans at the highest level. The more the accumulation, the more the environment is endangered. This study used gamma spectrometry to investigate the natural and artificial radionuclide distribution of sediment samples taken from living benthic foraminifera habitats in the Western Marmara Sea. The radionuclides, K-40, Cs-137, Ra-226, Mn 54, Zr-95+ and Th-232, were identified in the sediment samples. For this purpose, 18 core samples were taken from depths of about 25-30 meters in the Marmara Sea in 2016. The locations of the core samples were specifically selected exclusively from discharge points for domestic and industrial areas, port locations, and so forth to represent pollution in the study area. Gamma spectrometric analysis was used to determine the radioactive properties of sediments. The radionuclide concentration activity values in the sediment samples obtained were Cs-137=0.9-9.4 Bq/kg, Th-232=18.9-86 Bq/kg, Ra-226=10-50 Bq/kg, K-40=24.4–670 Bq/kg, Mn 54=0.71–0.9 Bq/kg and Zr-95+=0.18–0.19 Bq/kg. These values were compared with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data, and an environmental analysis was carried out. The Ra-226 series, the Th-232 series, and the K-40 radionuclides accumulate naturally and are increasing every day due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to the UNSCEAR values, the K-40, and Th-232 series values were found to be high in almost all the locations.Keywords: Ra-226, Th-232, K-40, Cs-137, Mn 54, Zr-95+, radionuclides, Western Marmara Sea
Procedia PDF Downloads 421232 Quaternized PPO/PSF Anion Exchange Membranes Doped with ZnO-Nanoparticles for Fuel Cell Application
Authors: P. F. Msomi, P. T. Nonjola, P. G. Ndungu, J. Ramontja
Abstract:
In view of the projected global energy demand and increasing levels of greenhouse gases and pollutants issues have inspired an intense search for alternative new energy technologies, which will provide clean, low cost and environmentally friendly solutions to meet the end user requirements. Alkaline anion exchange membrane fuel cells (AAEMFC) have been recognized as ideal candidates for the generation of such clean energy for future stationary and mobile applications due to their many advantages. The key component of the AAEMFC is the anion exchange membrane (AEM). In this report, a series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anionic exchange membranes (AEM) were successfully fabricated and characterized for alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. The characteristic properties of the QPPO/PSF and QPPO/PSF-ZnO blend membrane were investigated with X-ray diffraction (XRD), thermogravimetric analysis (TGA) scanning electron microscope (SEM) and contact angle (CA). To confirm successful quaternisation, FT-IR spectroscopy and proton nuclear magnetic resonance (1H NMR) were used. Other properties such as ion exchange capacity (IEC), water uptake, contact angle and ion conductivity (IC) were also undertaken to check if the prepared nanocomposite materials are suitable for fuel cell application. The membrane intrinsic properties were found to be enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a highest IEC of 3.72 mmol/g and a 30-fold IC increase of the nanocomposite due to its lower methanol permeability. The above results indicate that QPPO/PSF-ZnO is a good candidate for AAEMFC application.Keywords: anion exchange membrane, fuel cell, zinc oxide nanoparticle, nanocomposite
Procedia PDF Downloads 428231 Assessment of Air Pollution in Kindergartens due to Indoor Radon Concentrations
Authors: Jana Djounova
Abstract:
The World Health Organization proposes an average annual reference level of 100 Bq/m³ to minimize health risks due to radon exposure in buildings. However, if this cannot be achieved under the country's specific conditions, the chosen reference level should not exceed 300 Bq/m³. The World Health Organization recognized the relationship between indoor radon exposure and lung cancer, even at low doses. Radon in buildings is one of the most important indoor air pollutants, with harmful effects on the health of the population and especially children. This study presents the assessment of indoor radon concentration as air pollution and analyzes the exposure to radon of children and workers. Assessment of air pollution and exposure to indoor radon concentrations under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018 in kindergartens in two districts of Bulgaria (Razgrad and Silistra). Kindergartens were considered for the following reasons: 1these buildings are generally at the ground and/or the first floor, where radon concentration is generally higher than at upper floors; 2these buildings are attended by children, a population generally considered more sensitive to ionizing radiation, although little data is available for radon exposure. The measurements of indoor radon concentrations were performed with passive methods (CR-39 track detectors) for the period from February to May 2015. One hundred fifty-six state kindergartens on the territories of two districts in Bulgaria have been studied. The variations of radon in the children's premises vary from 9 to 1087 Bq/m³. The established arithmetic mean value of radon levels in the kindergartens in Silistra is 139 Bq/m³ and in Razgrad 152 Bq/m³, respectively. The percentage of kindergarteners, where the radon in premises exceeds the Bulgarian reference level of 300 Bq/m³, was 19%. The exposure of children and workers in those kindergartens is high, so remediation measures of air pollution had been recommended. The difference in radon concentration in kindergartens in two districts was statistically analyzed to assess the influence of geography and geology and the differenceKeywords: air pollution, radon, kindergartens, detectors
Procedia PDF Downloads 200230 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters
Authors: Natalia Fijol, Aji P. Mathew
Abstract:
We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid
Procedia PDF Downloads 115