Search results for: particle flow code
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7329

Search results for: particle flow code

2019 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing

Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall

Abstract:

Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.

Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear

Procedia PDF Downloads 298
2018 Evaluation of Urban Transportation Systems: Comparing and Selecting the Most Efficient Transportation Solutions

Authors: E. Azizi Asiyabar

Abstract:

The phenomenon of migration to larger cities has brought about a range of consequences, including increased travel demand and the necessity for smooth traffic flow to expedite transportation. Regrettably, insufficient urban transportation infrastructure has given rise to various issues, including air pollution, heightened fuel consumption, and wasted time. To address traffic-related problems and the economic, social, and environmental challenges that ensue, a well-equipped, efficient, fast, cost-effective, and high-capacity transportation system is imperative, with a focus on reliability. This study undertakes a comprehensive examination of rail transportation systems and subsequently compares their advantages and limitations. The findings of this investigation reveal that hybrid monorails exhibit lower maintenance requirements and associated costs when compared to other types of monorails, standard trains, and urban light rail systems. Given their favorable attributes in terms of pollution reduction, increased transportation speed, and enhanced quality of service, hybrid monorails emerge as a highly recommended and suitable option.

Keywords: comparing, most efficient, selecting, urban transportation

Procedia PDF Downloads 81
2017 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
2016 Spray Characteristics of a Urea Injector Chamber to Improve NOx Conversion Efficiency for Diesel Engines Fueled with Biodiesels

Authors: Kazem Bashirnezhad, Seyed Ahmad Kebriyaee, saeed hoseyngholizadeh moghadam

Abstract:

The urea–SCR catalyst system has the advantages of high NOx conversion efficiency and a wide range of operating conditions. The key factors for successful implementation of urea–SCR technology is good mixing of urea (ammonia) and gas to reduce ammonia slip. Urea mixer components are required to facilitate evaporation and mixing, because it is difficult to evaporate urea in the liquid state; the injection parameters are the most critical factors affecting mixer performance. In this study, The effect of urea injection on NOx emissions in a six-cylinder, four-stroke internal combustion engine fueled with B80 biodiesel has been experimentally investigated. The results reveal that urea injection leads to a reduction of NOx emissions of B80 biodiesel fuel. Moreover, the influence of injection parameters on NOx reductions has been studied. The findings show that by increasing the injection temperature, more reduction in NOx emissions has been occurred. Also, urea mass flow rate increment leads to more NOx reduction. The same result has been obtained by an increase in spray angle.

Keywords: urea, NOx emissions, diesel engines, biodiesels

Procedia PDF Downloads 495
2015 The Tradition of Drinking Tuak in Batak Society againts the Law of Alcohol Usage in Indonesia

Authors: Siti Hazar Sitorus, Marini Kristina Situmeang, Mukhammad Fatkhullah, Arfan Fadli

Abstract:

This study aims to examine how the Batak tribe in the Village Lumban Sitorus Parmaksian District, Toba Samosir (Tobasa) interpret the culture of drinking Tuak as a social interaction. This research uses qualitative method with case study approach. Through this approach, the researchers obtained primary data by looking at and observing the social interaction that occurs when the activity of drinking tuak takes place on the daily life of the Batak Toba community in the village of Lumban Sitorus. The technique of data collecting is done by observation and in-depth interview. This study focuses on Batak Toba community, especially men who daily drink tuak. The results obtained from this study is Batak Toba society has a habit of drinking Tuak (a type of alcoholic beverage derived from water sapphire juice that is fermented). In Batak Toba society, tuak is not only considered as an alcoholic drink which is usually drunk in the afternoon at lapotuak (tuak shop), but tuak is also understood as a drink of honor in a traditional party at Toba Batak society. On the other hand, the activity of drinking of tuak was also considered as a medium or a means of connecting the formation of a sense of solidarity among the people of LumbanSitorous Village. In its existence, drinking tuak is defined as a mean that can facilitate the establishment to open communication with fellow members of Batak Toba community, such as at leisure, birth party, death or as medicine. Specifically, tuak in a special sense in Batak Toba society is also a symbol of intimacy, gratitude, and respect which is manifested in the activity of daily drinking tuak. In Indonesia, if we refer to the Criminal Code in articles 300 and 536 it is clear that whoever intentionally sells and consumes intoxicating / alcoholic drinks will be subject to a maximum jail term of one year. It became interesting then when looking at Indonesia as a country that has a diversity of cultures in which the law implies the prohibition of alcoholic / intoxicating beverages. However, the existence of drinking of tuak as a drink that categorized intoxicating in Batak Toba society still continues to.

Keywords: tradition of drinking tuak, meaning of tuak, Batak society, cultural studies

Procedia PDF Downloads 225
2014 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products

Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis

Abstract:

About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.

Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products

Procedia PDF Downloads 427
2013 Technical Assessment of Utilizing Electrical Variable Transmission Systems in Hybrid Electric Vehicles

Authors: Majid Vafaeipour, Mohamed El Baghdadi, Florian Verbelen, Peter Sergeant, Joeri Van Mierlo, Kurt Stockman, Omar Hegazy

Abstract:

The Electrical Variable Transmission (EVT), an electromechanical device, can be considered as an alternative solution to the conventional transmission system utilized in Hybrid Electric Vehicles (HEVs). This study present comparisons in terms of fuel consumption, power split, and state of charge (SoC) of an HEV containing an EVT to a conventional parallel topology and a series topology. To this end, corresponding simulations of these topologies are all performed in presence of control strategies enabling battery charge-sustaining and efficient power split. The power flow through the components of the vehicle are attained, and fuel consumption results of the considered cases are compared. The investigation of the results indicates utilizing EVT can provide significant added values in HEV configurations. The outcome of the current research paves its path for implementation of design optimization approaches on such systems in further research directions.

Keywords: Electrical Variable Transmission (EVT), Hybrid Electric Vehicle (HEV), parallel, series, modeling

Procedia PDF Downloads 238
2012 Facile Surfactant-Assisted Green Synthesis of Stable Biogenic Gold Nanoparticles with Potential Antibacterial Activity

Authors: Sneha Singh, Abhimanyu Dev, Vinod Nigam

Abstract:

The major issue which decides the impending use of gold nanoparticles (AuNPs) in nanobiotechnological applications is their particle size and stability. Often the AuNPs obtained biomimetically are considered useless owing to their instability in the aqueous medium and thereby limiting the widespread acceptance of this facile green synthesis procedure. So, the use of nontoxic surfactants is warranted to stabilize the biogenic nanoparticles (NPs). But does the surfactant only play a role in stabilizing by being adsorbed to the NPs surface or can it have any other significant contribution in synthesis process and controlling their size as well as shape? Keeping this idea in mind, AuNPs were synthesized by using surfactant treated (lechate) and untreated (cell lysate supernatant) Bacillus licheniformis cell extract. The cell extracts mediated reduction of chloroauric acid (HAuCl 4) in the presence of non-ionic surfactant, Tween 20 (TW20), and its effect on the AuNPs stability was studied. Interestingly, the surfactant used in the study served as potential alternative to harvest cellular enzymes involved in bioreduction process in a hassle free condition. The surfactants ability to solubilize/leach membrane proteins and simultaneously stabilizing the AuNPs could have advantage from process point of view as it will reduce the time and economics involve in the nanofabrication of biogenic NPs. The synthesis was substantiated with UV-Vis spectroscopy, Dynamic light scattering study, FTIR spectroscopy, and Transmission electron microscopy. The Zeta potential of AuNPs solutions was measured routinely to corroborate the stability observations recorded visually. Highly stable, ultra-small AuNPs of 2.6 nm size were obtained from the study. Further, the biological efficacy of the obtained AuNPs as potential antibacterial agent was evaluated against Bacilllus subtilis, Pseudomonas aeruginosa, and Escherichia coli by observing the zone of inhibition. This potential of AuNPs of size < 3 nm as antibacterial agent could pave way for development of new antimicrobials and overcoming the problems of antibiotics resistance

Keywords: antibacterial, bioreduction, nanoparticles, surfactant

Procedia PDF Downloads 236
2011 Numerical Study of Sloshing in a Flexible Tank

Authors: Wissem Tighidet, Faïçal Naït Bouda, Moussa Allouche

Abstract:

The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation.

Keywords: arbitrary lagrangian-eulerian, fluid-structure interaction, sloshing, volume of fluid

Procedia PDF Downloads 105
2010 Mathematical Modeling of Drip Emitter Discharge of Trapezoidal Labyrinth Channel

Authors: N. Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the emitter discharge is investigated in this work. The impact of the dentate angle, the dentate spacing, and the dentate height are studied among the geometric parameters of the labyrinth channel. Numerical simulations of the water flow movement are performed according to central cubic composite design using Commercial codes GAMBIT and FLUENT. Inlet pressure of the dripper is set up to be 1 bar. The objective of this paper is to derive a mathematical model of the emitter discharge depending on the dentate angle, the dentate spacing, the dentate height of the labyrinth channel. As a result, the obtained mathematical model is a second-order polynomial reporting 2-way interactions among the geometric parameters. The dentate spacing has the most important and positive influence on the emitter discharge, followed by the simultaneous impact of the dentate spacing and the dentate height. The dentate angle in the observed interval has no significant effect on the emitter discharge. The obtained model can be used as a basis for a future emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model.

Procedia PDF Downloads 184
2009 N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene

Authors: Tony K. Joseph, Balasubramanian Vathilingam, Stephane Morin

Abstract:

Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference.

Keywords: cracking, catalyst, evaluation, ethylene, heptane, propylene

Procedia PDF Downloads 136
2008 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation

Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov

Abstract:

The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.

Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood

Procedia PDF Downloads 150
2007 Airborne Particulate Matter Passive Samplers for Indoor and Outdoor Exposure Monitoring: Development and Evaluation

Authors: Kholoud Abdulaziz, Kholoud Al-Najdi, Abdullah Kadri, Konstantinos E. Kakosimos

Abstract:

The Middle East area is highly affected by air pollution induced by anthropogenic and natural phenomena. There is evidence that air pollution, especially particulates, greatly affects the population health. Many studies have raised a warning of the high concentration of particulates and their affect not just around industrial and construction areas but also in the immediate working and living environment. One of the methods to study air quality is continuous and periodic monitoring using active or passive samplers. Active monitoring and sampling are the default procedures per the European and US standards. However, in many cases they have been inefficient to accurately capture the spatial variability of air pollution due to the small number of installations; which eventually is attributed to the high cost of the equipment and the limited availability of users with expertise and scientific background. Another alternative has been found to account for the limitations of the active methods that is the passive sampling. It is inexpensive, requires no continuous power supply, and easy to assemble which makes it a more flexible option, though less accurate. This study aims to investigate and evaluate the use of passive sampling for particulate matter pollution monitoring in dry tropical climates, like in the Middle East. More specifically, a number of field measurements have be conducted, both indoors and outdoors, at Qatar and the results have been compared with active sampling equipment and the reference methods. The samples have been analyzed, that is to obtain particle size distribution, by applying existing laboratory techniques (optical microscopy) and by exploring new approaches like the white light interferometry to. Then the new parameters of the well-established model have been calculated in order to estimate the atmospheric concentration of particulates. Additionally, an extended literature review will investigate for new and better models. The outcome of this project is expected to have an impact on the public, as well, as it will raise awareness among people about the quality of life and about the importance of implementing research culture in the community.

Keywords: air pollution, passive samplers, interferometry, indoor, outdoor

Procedia PDF Downloads 398
2006 The Use of Hec Ras One-Dimensional Model and Geophysics for the Determination of Flood Zones

Authors: Ayoub El Bourtali, Abdessamed Najine, Amrou Moussa Benmoussa

Abstract:

It is becoming more and more necessary to manage flood risk, and it must include all stakeholders and all possible means available. The goal of this work is to map the vulnerability of the Oued Derna-region Tagzirt flood zone in the semi-arid region. This is about implementing predictive models and flood control. This allows for the development of flood risk prevention plans. In this study, A resistivity survey was conducted over the area to locate and evaluate soil characteristics in order to calculate discharges and prevent flooding for the study area. The development of a one-dimensional (1D) hydrodynamic model of the Derna River was carried out in HEC-RAS 5.0.4 using a combination of survey data and spatially extracted cross-sections and recorded river flows. The study area was hit by several extreme floods, causing a lot of property loss and loss of life. This research focuses on the most recent flood events, based on the collected data, the water level, river flow and river cross-section were analyzed. A set of flood levels were obtained as the outputs of the hydraulic model and the accuracy of the simulated flood levels and velocity.

Keywords: derna river, 1D hydrodynamic model, flood modelling, HEC-RAS 5.0.4

Procedia PDF Downloads 312
2005 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 312
2004 Determination of Material Constants and Zener-Hollomon Parameter of AA2017 Aluminium Alloy under Hot Compression Test

Authors: C. H. Shashikanth, M. J. Davidson, V. Suresh Babu

Abstract:

The formability of metals depends on a number of variables such as strain, strain rate, and temperature. Though most of the metals are formable at room temperature, few are not. To evaluate the workability of such metals at elevated temperatures, thermomechanical experiments should be carried out to find out the forming temperatures and strain rates. Though a number of constitutive relations are available to correlate the material parameters and the corresponding formability at elevated temperatures, the constitutive rule proposed by Arrhenius has been used in this work. Thus, in the present work, the material constants such as A (constant), α (stress multiplier), β (constant), and n (stress exponent) of AA 2017 has been found by conducting a series of hot compression tests at different temperatures such as 400°C, 450°C, 500°C, and 550°C and at different strain rates such as 0.16, 0.18, and 0.2. True stress (σt), true strains (εt) deformation activation energy (Q), and the Zener-Hollomon parameter (Z value) were also calculated. The results indicate that the value of ln (Z) decreases as the temperature increases and it increases as the strain rate increases.

Keywords: hot compression test, aluminium alloy, flow stress, activation energy

Procedia PDF Downloads 621
2003 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications

Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita

Abstract:

Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.

Keywords: microbioreactor, cell-culture, fermentation, microfluidics

Procedia PDF Downloads 416
2002 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil

Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas

Abstract:

This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.

Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils

Procedia PDF Downloads 144
2001 A Theory of Vertical Partnerships Model as Responsive Failure in Alternative Arrangement for Infrastructural Development in the Third World Countries: A Comparative Public Administration Analysis

Authors: Cyril Ekuaze

Abstract:

This paper was instigated by a set of assumption drawn at the introduction to a research work on alternative institutional arrangements for sustaining rural infrastructure in developing countries. Of one of such assumption is the one held that, a problem facing developing countries is the sustaining of infrastructural investment long enough to allow the facility to at least repay the cost of the development as been due to insufficient maintenance. On the contrary, this work argues that, most international partnerships relation with developing nations in developing infrastructures is “vertical modeling” with the hierarchical authority and command flow from top to bottom. The work argued that where international donor partners/agencies set out infrastructural development agenda in the developing nations without cognizance of design suitability and capacity for maintenance by the recipient nations; and where public administrative capacity building in the field of science, technology and engineering requisite for design, development and sustenance of infrastructure in the recipient countries are negated, prospective output becomes problematic.

Keywords: vertical partnerships, responsive failure, infrastructural development, developing countries

Procedia PDF Downloads 329
2000 Alternating Electric fields-Induced Senescence in Glioblastoma

Authors: Eun Ho Kim

Abstract:

Innovations have conjured up a mode of treating GBM cancer cells in the newly diagnosed patients in a period of 4.9 months at an improved median OS, which brings along only a few minor side effects in the phase III of the clinical trial. This mode has been termed the Alternating Electric Fields (AEF). The study at hand is aimed at determining whether the AEF treatment is beneficial in sensitizing the GBM cancer cells through the process of increasing the AEF –induced senescence. The methodology to obtain the findings for this research ranged across various components, such as obtaining and testing SA-β-gal staining, flow cytometry, Western blotting, morphology, and Positron Emission Tomography (PET) / Computed Tomography (CT), immunohistochemical staining and microarray. The number of cells that displayed a senescence-specific morphology and positive SA-ß-Gal activity gradually increased up to 5 days. These results suggest that p16, p21 and p27 are essential regulators of AEF -induced senescence via NF-κB activation. The results showed that the AEF treatment is functional in enhancing the AEF –induced senescence in the GBM cells via an apoptosis- independent mechanism. This research concludes that this mode of treatment is a trustworthy protocol that can be effectively employed to overcome the limitations of the conventional mode of treatment on GBM.

Keywords: alternating electric fields, senescence, glioblastoma, cell death

Procedia PDF Downloads 93
1999 Evaluation of Anticancer and Antioxidant Activity of Purified Lovastatin from Aspergillus terreus (KM017963)

Authors: Bhargavi Santebennur Dwarakanath, Praveen Vadakke Kamath, Savitha Janakiraman

Abstract:

Cervical cancer is one of the leading causes of mortality in women and is the second most common malignancy worldwide. Lovastatin, a non polar, anticholesterol drug which also exerts antitumour activity in vitro. In the present study, lovastatin from Aspergillus terreus (KM017963) was purified by adsoprtion chromatography and evaluated for its anticancer and anti-oxidant properties in human cervical cancer cell lines (HeLa). The growth inhibitory and proapoptotic effects of purified lovastatin on HeLa cell lines were investigated by determining its influence on cytotoxicity, Mitochondrial Membrane Potential (MMP), DNA fragmentation and antioxidant property (Hydroxy radical scavenging effect and the levels of total reduced glutathione). Flow cytometry analysis by propidium iodide staining confirmed the induction of apoptotic cell death and revealed cell cycle arrest at G0/G1 phase. Results of the study give leads for anticancer effects of lovastatin and its potential efficacy in the chemotherapy of cervical cancer.

Keywords: apoptosis, Aspergillus terreus, cervical cancer, lovastatin

Procedia PDF Downloads 307
1998 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries

Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi

Abstract:

Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.

Keywords: critical raw materials, energy storage, sodium metal halide, battery

Procedia PDF Downloads 110
1997 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

Authors: Roman Major, Klaudia Trembecka- Wojciga, Juergen Markus Lackner, Boguslaw Major

Abstract:

The future and the development of science is therefore seen in interdisciplinary areas such as bio medical engineering. Self-assembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as micro structure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.

Keywords: bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings

Procedia PDF Downloads 478
1996 National Assessment for Schools in Saudi Arabia: Score Reliability and Plausible Values

Authors: Dimiter M. Dimitrov, Abdullah Sadaawi

Abstract:

The National Assessment for Schools (NAFS) in Saudi Arabia consists of standardized tests in Mathematics, Reading, and Science for school grade levels 3, 6, and 9. One main goal is to classify students into four categories of NAFS performance (minimal, basic, proficient, and advanced) by schools and the entire national sample. The NAFS scoring and equating is performed on a bounded scale (D-scale: ranging from 0 to 1) in the framework of the recently developed “D-scoring method of measurement.” The specificity of the NAFS measurement framework and data complexity presented both challenges and opportunities to (a) the estimation of score reliability for schools, (b) setting cut-scores for the classification of students into categories of performance, and (c) generating plausible values for distributions of student performance on the D-scale. The estimation of score reliability at the school level was performed in the framework of generalizability theory (GT), with students “nested” within schools and test items “nested” within test forms. The GT design was executed via a multilevel modeling syntax code in R. Cut-scores (on the D-scale) for the classification of students into performance categories was derived via a recently developed method of standard setting, referred to as “Response Vector for Mastery” (RVM) method. For each school, the classification of students into categories of NAFS performance was based on distributions of plausible values for the students’ scores on NAFS tests by grade level (3, 6, and 9) and subject (Mathematics, Reading, and Science). Plausible values (on the D-scale) for each individual student were generated via random selection from a statistical logit-normal distribution with parameters derived from the student’s D-score and its conditional standard error, SE(D). All procedures related to D-scoring, equating, generating plausible values, and classification of students into performance levels were executed via a computer program in R developed for the purpose of NAFS data analysis.

Keywords: large-scale assessment, reliability, generalizability theory, plausible values

Procedia PDF Downloads 18
1995 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing

Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren

Abstract:

Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 255
1994 Strategies for Community Openness and Social Integration in Urban Villages in Chinese County Cities - Based on a Multi-Case Study in Chongqing

Authors: Ren Guangchun

Abstract:

The village in the city is surrounded by formal cities but retains distinct social and morphological characteristics of the countryside, and has the ability of self-growth. County is the basic unit of urban-rural integration development, and urban village is the key focus of integration. At present, the flow of urban and rural factors in Chongqing does not match the development needs of urban villages. Based on the multi-case study of Chongqing 's districts and counties, this paper studies the characteristics of its geospatial advantages, composite functions, open spatial structure, pluralistic social structure, and reciprocity. From the aspects of community governance, social relations and space construction, this paper analyzes the dilemma of lack of subjectivity and social atomization faced by the interaction between urban villages and cities, and explores the strategies of community opening and social integration in urban villages, so as to present diversified landscapes and value spaces.

Keywords: gated community, open community, city update, Urban village

Procedia PDF Downloads 56
1993 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method

Authors: Ali Rahnamoun, Adri van Duin

Abstract:

The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.

Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica

Procedia PDF Downloads 419
1992 Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen

Authors: Ashish Kumar, Sanjeev Kumar Suman

Abstract:

This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay.

Keywords: Cloisite-15A, complex shear modulus, phase angle, rutting resistance

Procedia PDF Downloads 394
1991 Kirigami Designs for Enhancing the Electromechanical Performance of E-Textiles

Authors: Braden M. Li, Inhwan Kim, Jesse S. Jur

Abstract:

One of the fundamental challenges in the electronic textile (e-textile) industry is the mismatch in compliance between the rigid electronic components integrated onto soft textile platforms. To address these problems, various printing technologies using conductive inks have been explored in an effort to improve the electromechanical performance without sacrificing the innate properties of the printed textile. However, current printing methods deposit densely layered coatings onto textile surfaces with low through-plane wetting resulting in poor electromechanical properties. This work presents an inkjet printing technique in conjunction with unique Kirigami cut designs to address these issues for printed smart textiles. By utilizing particle free reactive silver inks, our inkjet process produces conformal and micron thick silver coatings that surround individual fibers of the printed smart textile. This results in a highly conductive (0.63 Ω sq-1) printed e-textile while also maintaining the innate properties of the textile material including stretchability, flexibility, breathability and fabric hand. Kirigami is the Japanese art of paper cutting. By utilizing periodic cut designs, Kirigami imparts enhanced flexibility and delocalization of stress concentrations. Kirigami cut design parameters (i.e., cut spacing and length) were correlated to both the mechanical and electromechanical properties of the printed textiles. We demonstrate that designs using a higher cut-out ratio exponentially softens the textile substrate. Thus, our designs achieve a 30x improvement in the overall stretchability, 1000x decrease in elastic modulus, and minimal resistance change over strain regimes of 100-200% when compared to uncut designs. We also show minimal resistance change of our Kirigami inspired printed devices after being stretched to 100% for 1000 cycles. Lastly, we demonstrate a Kirigami-inspired electrocardiogram (ECG) monitoring system that improves stretchability without sacrificing signal acquisition performance. Overall this study suggests fundamental parameters affecting the performance of e-textiles and their scalability in the wearable technology industry

Keywords: kirigami, inkjet printing, flexible electronics, reactive silver ink

Procedia PDF Downloads 143
1990 Workaholism: A Study of Iranian Journalists at Gender, Career, and Educational Diversity

Authors: Minavand Mohammad, Maghsoudi Masoud, Mousavi Mahdis, Vahed Zahra, Hamidi Shabnam

Abstract:

While workaholism in organizations has received considerable popular attention, our understanding of it on the basis of research proof is limited. This comes from the deficiency of both appropriate definitions and measures of the concept. The purpose of this paper is to investigate gender, career and educational diversity in three workaholism components among Iranian journalists. Data were collected from 243 journalists (110 men and 133 women) using nameless completed questionnaires, with a 48 percent response rate. No gender differences found between male and female respondents, so there seems no consistency with previous findings. Furthermore, the results showed that different levels of jobs and education score correspondingly on the measures of work involvement, feeling driven to work and work enjoyment. All data are gathered using self report questionnaires. It is not evident the extent to which these findings would generalize to men and women in other vocations. This investigation has a contribution to the small but growing literature on flow and optimal experience in media organizations in Iran.

Keywords: gender, career, education, workaholism, Iranian journalists, work involvement, work enjoyment, feeling driven to work

Procedia PDF Downloads 387