Search results for: pyramidal optical flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6439

Search results for: pyramidal optical flow

1159 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 350
1158 Polarimetric Study of System Gelatin / Carboxymethylcellulose in the Food Field

Authors: Sihem Bazid, Meriem El Kolli, Aicha Medjahed

Abstract:

Proteins and polysaccharides are the two types of biopolymers most frequently used in the food industry to control the mechanical properties and structural stability and organoleptic properties of the products. The textural and structural properties of these two types of blend polymers depend on their interaction and their ability to form organized structures. From an industrial point of view, a better understanding of mixtures protein / polysaccharide is an important issue since they are already heavily involved in processed food. It is in this context that we have chosen to work on a model system composed of a fibrous protein mixture (gelatin)/anionic polysaccharide (sodium carboxymethylcellulose). Gelatin, one of the most popular biopolymers, is widely used in food, pharmaceutical, cosmetic and photographic applications, because of its unique functional and technological properties. Sodium Carboxymethylcellulose (NaCMC) is an anionic linear polysaccharide derived from cellulose. It is an important industrial polymer with a wide range of applications. The functional properties of this anionic polysaccharide can be modified by the presence of proteins with which it might interact. Another factor may also manage the interaction of protein-polysaccharide mixtures is the triple helix of the gelatin. Its complex synthesis method results in an extracellular assembly containing several levels. Collagen can be in a soluble state or associate into fibrils, which can associate in fiber. Each level corresponds to an organization recognized by the cellular and metabolic system. Gelatin allows this approach, the formation of gelatin gel has triple helical folding of denatured collagen chains, this gel has been the subject of numerous studies, and it is now known that the properties depend only on the rate of triple helices forming the network. Chemical modification of this system is quite controlled. Observe the dynamics of the triple helix may be relevant in understanding the interactions involved in protein-polysaccharides mixtures. Gelatin is central to any industrial process, understand and analyze the molecular dynamics induced by the triple helix in the transitions gelatin, can have great economic importance in all fields and especially the food. The goal is to understand the possible mechanisms involved depending on the nature of the mixtures obtained. From a fundamental point of view, it is clear that the protective effect of NaCMC on gelatin and conformational changes of the α helix are strongly influenced by the nature of the medium. Our goal is to minimize the maximum the α helix structure changes to maintain more stable gelatin and protect against denaturation that occurs during such conversion processes in the food industry. In order to study the nature of interactions and assess the properties of mixtures, polarimetry was used to monitor the optical parameters and to assess the rate of helicity gelatin.

Keywords: gelatin, sodium carboxymethylcellulose, interaction gelatin-NaCMC, the rate of helicity, polarimetry

Procedia PDF Downloads 314
1157 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding

Procedia PDF Downloads 333
1156 Effect of External Radiative Heat Flux on Combustion Characteristics of Rigid Polyurethane Foam under Piloted-Ignition and Radiative Auto-Ignition Modes

Authors: Jia-Jia He, Lin Jiang, Jin-Hua Sun

Abstract:

Rigid polyurethane foam (RPU) has been extensively applied in building insulation system, yet with high flammability for being easily ignited by high temperature spark or radiative heat flux from other flaming materials or surrounding building facade. Using a cone calorimeter by Fire Testing Technology and thermal couple tree, this study systematically investigated the effect of radiative heat flux on the ignition time and characteristic temperature distribution during RPU combustion under different heat fluxes gradient (12, 15, 20, 25, 30, 35, 40, 45, and 50 kW/m²) with spark ignition/ignition by radiation. The ignition time decreases proportionally with increase of external heat flux, meanwhile increasing the external heat flux raises the peak heat release rate and impresses on the vertical temperature distribution greatly. The critical ignition heat flux is found to be 15 and 25 kW/m² for spark ignition and radiative ignition, respectively. Based on previous experienced ignition formula, a methodology to predict ignition times in both modes has been developed theoretically. By analyzing the heat transfer mechanism around the sample surroundings, both radiation from cone calorimeter and convection flow are considered and calculated theoretically. The experimental ignition times agree well with the theoretical ones in both radiative and convective conditions; however, the observed critical ignition heat flux is higher than the calculated one under piloted-ignition mode because the heat loss process, especially in lower heat flux radiation, is not considered in this developed methodology.

Keywords: rigid polyurethane foam, cone calorimeter, ignition time, external heat flux

Procedia PDF Downloads 213
1155 Applying Lean Six Sigma in an Emergency Department, of a Private Hospital

Authors: Sarah Al-Lumai, Fatima Al-Attar, Nour Jamal, Badria Al-Dabbous, Manal Abdulla

Abstract:

Today, many commonly used Industrial Engineering tools and techniques are being used in hospitals around the world for the goal of producing a more efficient and effective healthcare system. A common quality improvement methodology known as Lean Six-Sigma has been successful in manufacturing industries and recently in healthcare. The objective of our project is to use the Lean Six-Sigma methodology to reduce waiting time in the Emergency Department (ED), in a local private hospital. Furthermore, a comprehensive literature review was conducted to evaluate the success of Lean Six-Sigma in the ED. According to the study conducted by Ibn Sina Hospital, in Morocco, the most common problem that patients complain about is waiting time. To ensure patient satisfaction many hospitals such as North Shore University Hospital were able to reduce waiting time up to 37% by using Lean Six-Sigma. Other hospitals, such as John Hopkins’s medical center used Lean Six-Sigma successfully to enhance the overall patient flow that ultimately decreased waiting time. Furthermore, it was found that capacity constraints, such as staff shortages and lack of beds were one of the main reasons behind long waiting time. With the use of Lean Six-Sigma and bed management, hospitals like Memorial Hermann Southwest Hospital were able to reduce patient delays. Moreover, in order to successfully implement Lean Six-Sigma in our project, two common methodologies were considered, DMAIC and DMADV. After the assessment of both methodologies, it was found that DMAIC was a more suitable approach to our project because it is more concerned with improving an already existing process. With many of its successes, Lean Six-Sigma has its limitation especially in healthcare; but limitations can be minimized if properly approached.

Keywords: lean six sigma, DMAIC, hospital, methodology

Procedia PDF Downloads 497
1154 Tailoring Quantum Oscillations of Excitonic Schrodinger’s Cats as Qubits

Authors: Amit Bhunia, Mohit Kumar Singh, Maryam Al Huwayz, Mohamed Henini, Shouvik Datta

Abstract:

We report [https://arxiv.org/abs/2107.13518] experimental detection and control of Schrodinger’s Cat like macroscopically large, quantum coherent state of a two-component Bose-Einstein condensate of spatially indirect electron-hole pairs or excitons using a resonant tunneling diode of III-V Semiconductors. This provides access to millions of excitons as qubits to allow efficient, fault-tolerant quantum computation. In this work, we measure phase-coherent periodic oscillations in photo-generated capacitance as a function of an applied voltage bias and light intensity over a macroscopically large area. Periodic presence and absence of splitting of excitonic peaks in the optical spectra measured by photocapacitance point towards tunneling induced variations in capacitive coupling between the quantum well and quantum dots. Observation of negative ‘quantum capacitance’ due to a screening of charge carriers by the quantum well indicates Coulomb correlations of interacting excitons in the plane of the sample. We also establish that coherent resonant tunneling in this well-dot heterostructure restricts the available momentum space of the charge carriers within this quantum well. Consequently, the electric polarization vector of the associated indirect excitons collective orients along the direction of applied bias and these excitons undergo Bose-Einstein condensation below ~100 K. Generation of interference beats in photocapacitance oscillation even with incoherent white light further confirm the presence of stable, long-range spatial correlation among these indirect excitons. We finally demonstrate collective Rabi oscillations of these macroscopically large, ‘multipartite’, two-level, coupled and uncoupled quantum states of excitonic condensate as qubits. Therefore, our study not only brings the physics and technology of Bose-Einstein condensation within the reaches of semiconductor chips but also opens up experimental investigations of the fundamentals of quantum physics using similar techniques. Operational temperatures of such two-component excitonic BEC can be raised further with a more densely packed, ordered array of QDs and/or using materials having larger excitonic binding energies. However, fabrications of single crystals of 0D-2D heterostructures using 2D materials (e.g. transition metal di-chalcogenides, oxides, perovskites etc.) having higher excitonic binding energies are still an open challenge for semiconductor optoelectronics. As of now, these 0D-2D heterostructures can already be scaled up for mass production of miniaturized, portable quantum optoelectronic devices using the existing III-V and/or Nitride based semiconductor fabrication technologies.

Keywords: exciton, Bose-Einstein condensation, quantum computation, heterostructures, semiconductor Physics, quantum fluids, Schrodinger's Cat

Procedia PDF Downloads 180
1153 The Study of Spray Drying Process for Skimmed Coconut Milk

Authors: Jaruwan Duangchuen, Siwalak Pathaveerat

Abstract:

Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).

Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin

Procedia PDF Downloads 336
1152 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: aluminium, alumina, nano-particle reinforced composites, porosity

Procedia PDF Downloads 250
1151 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet

Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu

Abstract:

Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.

Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet

Procedia PDF Downloads 231
1150 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier

Authors: M. V. Rane, Tareke Tekia

Abstract:

Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.

Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration

Procedia PDF Downloads 348
1149 Learning Communities and Collaborative Reflection for Teaching Improvement

Authors: Mariana Paz Sajon, Paula Cecilia Primogerio, Mariana Albarracin

Abstract:

This study recovers an experience of teacher training carried out in an Undergraduate Business School from a private university in Buenos Aires, Argentina. The purpose of the project was to provide teachers with an opportunity to reflect on their teaching practices at the university. The aim of the study is to systematize lessons and challenges that emerge from this teacher training experience. A group of teachers who showed a willingness to learn teaching abilities was selected to work. They completed a formative journey working in learning communities starting from the immersion in different aspects of teaching and learning, class observations, and an individual and collaborative reflection exercise in a systematic way among colleagues. In this study, the productions of the eight teachers who are members of the learning communities are analyzed, framed in an e-portfolio that they prepared during the training journey. The analysis shows that after the process of shared reflection, traits related to powerful teaching and meaningful learning have appeared in the classes. For their part, teachers reflect having reached an awareness of their own practices, identifying strengths and opportunities for improvement, and the experience of sharing their own way and knowing the successes and failures of others was valued. It is an educational journey of pedagogical transformation of the teachers, which is infrequent in business education, which could lead to a change in teaching practices for the entire Business School. The present study involves theoretical and pedagogic aspects of education in a business school in Argentina and its flow-on implications for the workplace that may be transferred to other educational contexts.

Keywords: Argentina, learning community, meaningful learning, powerful teaching, reflective practice

Procedia PDF Downloads 227
1148 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 308
1147 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing

Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa

Abstract:

There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.

Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels

Procedia PDF Downloads 87
1146 Review the Concept of Context in Modernization of Rural Architecture Case Study: Baliran Village

Authors: Neda Najafi, Mehran Allalhesabi

Abstract:

At present, the natural, geographical, physical contexts of the rural textures, which play a crucial role in making the concept behind their body, are not considered in the new designs. Despite the fundamental differences in contexts, this issue has caused that, the new rural textures in our country become similar to each other and the cohesive structure of many villages in the development of rural areas are exposed to deterioration. The villages of northern Iran are not immune from this situation and nothing have remained from their physical characteristic, and the new sections of rural areas are designed heterogeneously and regardless to the concepts behind the region's architecture, which destroys the originality of the environment. The purpose of this study is to extract the concepts and criteria that differentiate the body of the village and reveal its similarity with the same structures. In this way, understanding the underlying values is extremely useful and is considered very important to approach the new model. In the first part, the subject matters of the research (context, village and rural architecture) are defined and then the characteristics of context-oriented rural architecture and criteria that can be examined from the perspective of contextualism approach are presented. In the second part, by selecting 3 samples from the houses of Baliran village, these concepts and criteria have been evaluated in the houses of the village. The results of this study show that the characteristics of contextual rural architecture have the ability to adapt to the body of the village and can be the best model to achieve contextual architecture in this area. Therefore, by using these concepts and criteria, it is possible to achieve a type of architecture that is located along with the past architecture and, with the help of the modern facilities and environmental potentials, creates a logical and correct flow in the physical development of the rural textures.

Keywords: context, village, rural architecture, concepts and criteria of physical contextualism

Procedia PDF Downloads 158
1145 Catalytic Effect on Eco Friendly Functional Material in Flame Retardancy of Cellulose

Authors: Md. Abdul Hannan

Abstract:

Two organophosphorus compounds, namely diethyloxymethyl-9-oxa-10- phosphaphenanthrene-10-oxide (DOPAC) and diethyl (2,2-diethoxyethyl) phosphonate (DPAC) were applied on cotton cellulose to impart non-carcinogenic and durable (in alkaline washing) flame retardant property to it. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used. Synergistic acidic catalyzing effect of NaH2PO4+H3PO4 and NaH2PO4+NH4H2PO4 was also investigated. Appreciable limiting oxygen index (LOI) value of 23.2% was achieved in case of the samples treated with flame retardant (FR) compound DPAC along with the combined acidic catalyzing effect. A distinguishing outcome of total heat of combustion (THC) 3.27 KJ/g was revealed during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. In respect of thermal degradation, low temperature dehydration in conjugation with sufficient amount of char residue (30.5%) was obtained in case of DPAC treated sample. Consistently, the temperature of peak heat release rate (TPHRR) (325°C) of DPAC treated sample supported the expected low temperature pyrolysis in condensed phase mechanism. Subsequent thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples. Furthermore, for both of the flame retardant compounds, effect of different catalysts, considering both individual and combined, effect of solvents and overall the optimization of the process parameters were studied in detail.

Keywords: cotton cellulose, organophosphorus flame retardant, acetal linkage, THC, HRR, PHHR, char residue, LOI

Procedia PDF Downloads 269
1144 Comparative Studies on Spontaneous Imbibition of Surfactant/Alkaline Solution in Carbonate Rocks

Authors: M. Asgari, N. Heydari, N. Shojai Kaveh, S. N. Ashrafizadeh

Abstract:

Chemical flooding methods are having importance in enhanced oil recovery to recover the trapped oil after conventional recovery, as conventional oil resources become scarce. The surfactant/alkaline process consists of injecting alkali and synthetic surfactant. The addition of surfactant to injected water reduces oil/water IFT and/or alters wettability. The alkali generates soap in situ by reaction between the alkali and naphthenic acids in the crude oil. Oil recovery in fractured reservoirs mostly depends on spontaneous imbibition (SI) of brine into matrix blocks. Thus far, few efforts have been made toward understanding the relative influence of capillary and gravity forces on the fluid flow. This paper studies the controlling mechanisms of spontaneous imbibition process in chalk formations by consideration of type and concentration of surfactants, CMC, pH and alkaline reagent concentration. Wetting properties of carbonate rock have been investigated by means of contact-angle measurements. Interfacial-tension measurements were conducted using spinning drop method. Ten imbibition experiments were conducted in atmospheric pressure and various temperatures from 30°C to 50°C. All experiments were conducted above the CMC of each surfactant. The experimental results were evaluated in terms of ultimate oil recovery and reveal that wettability alteration achieved by nonionic surfactant, which led to imbibition of brine sample containing the nonionic surfactant, while IFT value was not in range of ultra low. The displacement of oil was initially dominated by capillary forces. However, for cationic surfactant, gravity forces was the dominant force for oil production by surfactant solution to overcome the negative capillary pressure.

Keywords: alkaline, capillary, gravity, imbibition, surfactant, wettability

Procedia PDF Downloads 232
1143 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu

Abstract:

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

Keywords: photodetection, p-type doping, multilayers, MoS₂

Procedia PDF Downloads 104
1142 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.

Keywords: multi-layer facade, porous media, wind damping, wind tunnel test, building ventilation

Procedia PDF Downloads 151
1141 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 340
1140 Environmental Users’ Perceptions on Tourism in the Grangettes Nature Reserve, Switzerland

Authors: Ralph Lugon, Randolf Ramseyer

Abstract:

The beauty and quality of the natural heritage can be appreciated in different ways by different users, but the delicate balance of the environment in a nature reserve must be respected. The case of the territorial anchorage of the Grangettes natural reserve gives an interesting insight into the users' perception of the environmental constraints and standards of tourist activities. The nature reserve was once conceived as a sanctuary of natural heritage, a place where flora and fauna could flourish with minimal human interference. However, over time and with the transition to modernity, the values and meanings of the reserve have changed for visitors and the people living in the surrounding area. Today, The Grangettes nature reserve is a place of relaxation for urban dwellers with limited knowledge of nature and a lack of awareness of conservation issues. As a result, the reserve is now threatened by the negative impacts of human activities and mass tourism on its environment. Les Grangettes is a nature reserve that faces the challenge of preserving biodiversity while managing tourist flows. Ways must be found to accommodate new types of visitors from towns and cities who are looking for new activities, quality services and facilities, as well as aesthetic inspiration. To ensure the long-term conservation of the area, the flow of tourists must be carefully controlled. Through a dual qualitative-quantitative approach in 2021-22, this paper explores new visitor trends, changes in the reserve, and potential consequences for other stakeholders in the ecosystem. The purpose of this research is to assess users' perceptions of environmental constraints and standards on tourist activities in a nature reserve.

Keywords: outdoor recreation, nature-based tourism, over tourism, protected area, user's perceptions

Procedia PDF Downloads 79
1139 Introduction to Multi-Agent Deep Deterministic Policy Gradient

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents

Procedia PDF Downloads 26
1138 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention

Procedia PDF Downloads 143
1137 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 101
1136 Analysis of the Vibration Behavior of a Small-Scale Wind Turbine Blade under Johannesburg Wind Speed

Authors: Tolulope Babawarun, Harry Ngwangwa

Abstract:

The wind turbine blade may sustain structural damage from external loads such as high winds or collisions, which could compromise its aerodynamic efficiency. The wind turbine blade vibrates at significant intensities and amplitudes under these conditions. The effect of these vibrations on the dynamic flow field surrounding the blade changes the forces operating on it. The structural dynamic analysis of a small wind turbine blade is considered in this study. It entails creating a finite element model, validating the model, and doing structural analysis on the verified finite element model. The analysis is based on the structural reaction of a small-scale wind turbine blade to various loading sources. Although there are many small-scale off-shore wind turbine systems in use, only preliminary structural analysis is performed during design phases; these systems' performance under various loading conditions as they are encountered in real-world situations has not been properly researched. This will allow us to record the same Equivalent von Mises stress and deformation that the blade underwent. A higher stress contour was found to be more concentrated near the middle span of the blade under the various loading scenarios studied. The highest stress that the blade in this study underwent is within the range of the maximum stress that blade material can withstand. The maximum allowable stress of the blade material is 1,770 MPa. The deformation of the blade was highest at the blade tip. The critical speed of the blade was determined to be 4.3 Rpm with a rotor speed range of 0 to 608 Rpm. The blade's mode form under loading conditions indicates a bending mode, the most prevalent of which is flapwise bending.

Keywords: ANSYS, finite element analysis, static loading, dynamic analysis

Procedia PDF Downloads 87
1135 Survey of the Effect of the Probiotic Bacterium Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT/PTEN, and MAPK Signaling Pathways at Co-Culture with KB Oral Cancer Cell Line and HUVEC Cells

Authors: Negar Zaheddoust, Negin Zaheddoust, Abbas Asoudeh-Fard

Abstract:

Probiotic bacteria have been employed as a novel and less side-effect strategy for anticancer therapy. Since the oral cavity is a host for probiotic and pathogen bacteria to colonize, more investigation is needed to evaluate the effectiveness of this novel adjunctive treatment for oral cancer. We considered Lactobacillus plantarum as a probiotic and Streptococcus mutans as a pathogen bacterium in our study. The aim of this study is to examine the effect of Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT / PTEN, and MAPK signaling pathway, which is involved in apoptosis or survival of oral cancer KB cells. On the other hand, to study the effects of these bacteria on normal cells, we used HUVEC cells. The KB and HUVEC cell lines were co-cultured with Lactobacillus plantarum and Streptococcus mutans isolated from traditional Iranian dairy and dental plaque, respectively. The growth-inhibitory effects of these two bacteria on KB and HUVEC cells were determined by (3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide) MTT assay. MTT results demonstrated that the proliferation of KB cells was affected in a time, dose, and strain-dependent manner. In the following, the examination of induced apoptosis or necrosis in co-cultured KB cells with the best IC50 concentration of the Lactobacillus plantarum and Streptococcus mutans will be analyzed by FACS flow cytometry, and the changes in gene expression of Casp3, AKT / PTEN, MAPK genes will be evaluated using real-time polymerase chain reaction.

Keywords: cancer therapy, induced apoptosis, oral cancer, probiotics

Procedia PDF Downloads 248
1134 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor

Authors: Neeraj Sahu, Ahmad Saadiq

Abstract:

Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.

Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor

Procedia PDF Downloads 219
1133 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor

Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra

Abstract:

The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.

Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor

Procedia PDF Downloads 339
1132 A Comparative Study of Environment Risk Assessment Guidelines of Developing and Developed Countries Including Bangladesh

Authors: Syeda Fahria Hoque Mimmi, Aparna Islam

Abstract:

Genetically engineered (GE) plants are the need of time for increased demand for food. A complete set of regulations need to be followed from the development of a GE plant to its release into the environment. The whole regulation system is categorized into separate stages for maintaining the proper biosafety. Environmental risk assessment (ERA) is one of such crucial stages in the whole process. ERA identifies potential risks and their impacts through science-based evaluation where it is done in a case-by-case study. All the countries which deal with GE plants follow specific guidelines to conduct a successful ERA. In this study, ERA guidelines of 4 developing and 4 developed countries, including Bangladesh, were compared. ERA guidelines of countries such as India, Canada, Australia, the European Union, Argentina, Brazil, and the US were considered as a model to conduct the comparison study with Bangladesh. Initially, ten parameters were detected to compare the required data and information among all the guidelines. Surprisingly, an adequate amount of data and information requirements (e.g., if the intended modification/new traits of interest has been achieved or not, the growth habit of GE plants, consequences of any potential gene flow upon the cultivation of GE plants to sexually compatible plant species, potential adverse effects on the human health, etc.) matched between all the countries. However, a few differences in data requirement (e.g., agronomic conventions of non-transformed plants, applicants should clearly describe experimental procedures followed, etc.) were also observed in the study. Moreover, it was found that only a few countries provide instructions on the quality of the data used for ERA. If these similarities are recognized in a more framed manner, then the approval pathway of GE plants can be shared.

Keywords: GE plants, ERA, harmonization, ERA guidelines, Information and data requirements

Procedia PDF Downloads 187
1131 Additive Manufacturing’s Impact on Product Design and Development: An Industrial Case Study

Authors: Ahmed Abdelsalam, Daniel Roozbahani, Marjan Alizadeh, Heikki Handroos

Abstract:

The aim of this study was to redesign a pressing air nozzle with lower weight and improved efficiency utilizing Selective Laser Melting (SLM) technology based on Design for Additive Manufacturing (DfAM) methods. The original pressing air nozzle was modified in SolidWorks 3D CAD, and two design concepts were introduced considering the DfAM approach. In the proposed designs, the air channels were amended. 3D models for the original pressing air nozzle and introduced designs were created to obtain the flow characteristic data using Ansys software. Results of CFD modeling for the original and two proposed designs were extracted, compared, and analyzed to demonstrate the impact of design on the development of a more efficient pressing air nozzle by AM process. Improved airflow was achieved by optimizing the pressing air nozzle's internal channel for both design concepts by providing 30% and 50.6% fewer pressure drops than the original design. Moreover, utilizing the presented designs, a significant reduction in product weight was attained. In addition, by applying the proposed designs, 48.3% and 70.3% reduction in product weight was attained compared to the original design. Therefore, pressing air nozzle with enhanced productivity and lowered weight was generated utilizing the DfAM-driven designs developed in this study. The main contribution of this study is to investigate the additional possibilities that can be achieved in designing modern parts using the advantage of SLM technology in producing that part. The approach presented in this study can be applied to almost any similar industrial application.

Keywords: additive manufacturing, design for additive manufacturing, design methods, product design, pressing air nozzle

Procedia PDF Downloads 176
1130 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering

Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo

Abstract:

One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.

Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli

Procedia PDF Downloads 86