Search results for: latent heat thermal energy storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13380

Search results for: latent heat thermal energy storage

8100 Design of Semi-Autonomous Street Cleaning Vehicle

Authors: Khouloud Safa Azoud, Süleyman Baştürk

Abstract:

In the pursuit of cleaner and more sustainable urban environments, advanced technologies play a critical role in evolving sanitation systems. This paper presents two distinct advancements in automated cleaning machines designed to improve urban sanitation. The first advancement is a semi-automatic road surface cleaning machine that integrates human labor with solar energy to enhance environmental sustainability and adaptability, especially in regions with limited access to electricity. By reducing carbon emissions and increasing operational efficiency, this approach offers significant potential for urban sanitation enhancement. The second advancement is a multifunctional semi-automatic street cleaning machine equipped with a camera, Arduino programming, and GPS for an autonomous operation aimed at addressing cost barriers in developing countries. Prioritizing low energy consumption and cost-effectiveness, this machine provides versatile cleaning solutions adaptable to various environmental conditions. By integrating solar energy with autonomous operating systems and careful design, these developments represent substantial progress in sustainable urban sanitation, particularly in developing regions.

Keywords: automated cleaning machines, solar energy integration, operational efficiency, urban sanitation systems

Procedia PDF Downloads 23
8099 Offshore Power Transition Project

Authors: Kashmir Johal

Abstract:

Within a wider context of improving whole-life effectiveness of gas and oil fields, we have been researching how to generate power local to the wellhead. (Provision of external power to a subsea wellhead can be prohibitively expensive and results in uneconomic fields. This has been an oil/gas industry challenge for many years.) We have been developing a possible approach to “local” power generation and have been conducting technical, environmental, (and economic) research to develop a viable approach. We sought to create a workable design for a new type of power generation system that makes use of differential pressure that can exist between the sea surface and a gas (or oil reservoir). The challenge has not just been to design a system capable of generating power from potential energy but also to design it in such a way that it anticipates and deals with the wide range of technological, environmental, and chemical constraints faced in such environments. We believe this project shows the enormous opportunity in deriving clean, economic, and zero emissions renewable energy from offshore sources. Since this technology is not currently available, a patent has been filed to protect the advancement of this technology.

Keywords: renewable, energy, power, offshore

Procedia PDF Downloads 62
8098 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation

Authors: W. Du, X. Wang, Jun Cao, H. F. Wang

Abstract:

Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.

Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms

Procedia PDF Downloads 392
8097 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi

Abstract:

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

Keywords: flaring, fuel gas network, GHG emissions, stream

Procedia PDF Downloads 334
8096 High-Performance Li Doped CuO/Reduced Graphene Oxide Flexible Supercapacitor Electrode

Authors: Ruey-Chi Wang, Po-Hsiang Huang, Ping-Chang Chuang, Shu-Jen Chen

Abstract:

High-performance Li: CuO/reduced graphene oxide (RGO) flexible electrodes for supercapacitors were fabricated via a low-temperature and low-cost route. To increase energy density while maintaining high power density and long-term cyclability, Li was doped to increase the electrical conductivity of CuO particles between RGO flakes. Electrochemical measurements show that the electrical conductivity, specific capacitance, energy density, and rate capability were all enhanced by Li incorporation. The optimized Li:CuO/RGO electrodes show a high energy density of 179.9 Wh/kg and a power density of 900.0 W/kg at a current density of 1 A/g. Cyclic life tests show excellent stability over 10,000 cycles with a capacitance retention of 93.2%. Li doping improves the electrochemical performance of CuO, making CuO a promising pseudocapacitive material for fabricating low-cost excellent supercapacitors.

Keywords: supercapacitor, CuO, RGO, lithium

Procedia PDF Downloads 177
8095 Implementation of Renewable Energy Technologies in Rural Africa

Authors: Joseph Levodo, Andy Ford, ISSA Chaer

Abstract:

Africa enjoys some of the best solar radiation levels in the world averaging between 4-6 kWh/m2/day for most of the year and the global economic and political conditions that tend to make African countries more dependent on their own energy resources have caused growing interest in wanting renewable energy based technologies. However to-date, implementation of Modern Energy Technologies in Africa is still very low especially the use of solar conversion technologies. It was initially speculated that the low uptake of solar technology in Africa was associated with the continent’s high poverty levels and limitations in technical capacity as well as awareness. Nonetheless, this is not an academic based speculation and the exact reasons for this low trend in technology adoption are unclear and require further investigation. This paper presents literature review and analysis relating to the techno-economic feasibility of solar photovoltaic power generation in Africa. The literature review would include the following four main categories: design methods, techno-economic feasibility of solar photovoltaic power generation, performance evaluations of various systems, Then it looks at the role of policy and potential future of technological development of photovoltaic (PV) by exploring the impact of alternative policy instruments and technology cost reductions on the financial viability of investing solar photovoltaic (PV) in Africa.

Keywords: Africa Solar Potential, policy, photovoltaic, technologies

Procedia PDF Downloads 554
8094 Using Pyrolitic Carbon Black Obtained from Scrap Tires as an Adsorbent for Chromium (III) Removal from Water

Authors: Mercedeh Malekzadeh

Abstract:

Scrap tires are the source of wastes that cause the environmental problems. The major components of these tires are rubber and carbon black. These components can be used again for different applications by utilizing physical and chemical processes. Pyrolysis is a way that converts rubber portion of scrap tires to oil and gas and the carbon black recovers to pyrolytic carbon black. This pyrolytic carbon black can be used to reinforce rubber and metal, coating preparation, electronic thermal manager and so on. The porous structure of this carbon black also makes it as a suitable choice for heavy metals removal from water. In this work, the application of base treated pyrolytic carbon black was studied as an adsorbent for chromium (III) removal from water in a batch process. Pyrolytic carbon blacks in two natural and base treated forms were characterized by scanning electron microscopy and energy dispersive analysis x-ray. The effects of adsorbent dosage, contact time, initial concentration of chromium (III) and pH were considered on the adsorption process. The adsorption capacity was 19.76 mg/g. Maximum adsorption was seen after 120 min at pH=3. The equilibrium data were considered and better fitted to Langmuir model. The adsorption kinetic was evaluated and confirmed with the pseudo second order kinetic. Results have shown that the base treated pyrolytic carbon black obtained from scrap tires can be used as a cheap adsorbent for removal of chromium (III) from the water.

Keywords: chromium (III), pyrolytic carbon, scrap tire, water

Procedia PDF Downloads 195
8093 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structure-borne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using on-board are presented. By conducting a statistical energy analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The subsequent optimization design of damping treatment in the offshore platform can be made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: statistical energy analysis, damping treatment, noise control, offshore platform

Procedia PDF Downloads 550
8092 Extending the Theory of Planned Behaviour to Predict Intention to Commute by Bicycle: Case Study of Mexico City

Authors: Magda Cepeda, Frances Hodgson, Ann Jopson

Abstract:

There are different barriers people face when choosing to cycle for commuting purposes. This study examined the role of psycho-social factors predicting the intention to cycle to commute in Mexico City. An extended version of the theory of planned behaviour was developed and utilized with a simple random sample of 401 road users. We applied exploratory and confirmatory factor analysis and after identifying five factors, a structural equation model was estimated to find the relationships among the variables. The results indicated that cycling attributes, attitudes to cycling, social comparison and social image and prestige were the most important factors influencing intention to cycle. Although the results from this study are specific to Mexico City, they indicate areas of interest to transportation planners in other regions especially in those cities where intention to cycle its linked to its perceived image and there is political ambition to instigate positive cycling cultures. Moreover, this study contributes to the current literature developing applications of the Theory of Planned Behaviour.

Keywords: cycling, latent variable model, perception, theory of planned behaviour

Procedia PDF Downloads 351
8091 Preparation of Silicon-Based Oxide Hollow Nanofibers Using Single-Nozzle Electrospinning

Authors: Juiwen Liang, Choliang Chung

Abstract:

In this study, the silicon-base oxide nanofibers with hollow structure were prepared using single-nozzle electrospinning and heat treatment. Firstly, precursor solution was prepared: the Polyvinylpyrrolidone (PVP) and Tetraethyl orthosilicate (TEOS) dissolved in ethanol and to make sure the concentration of solution in appropriate using single-nozzle electrospinning to produce the nanofibers. Secondly, control morphology of the electrostatic spinning nanofibers was conducted, and design the temperature profile to created hollow nanofibers, exploring the morphology and properties of nanofibers. The characterized of nanofibers, following instruments were used: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscopy (TEM), Photoluminescence (PL), X-ray Diffraction (XRD). The AFM was used to scan the nanofibers, and 3D Graphics were applied to explore the surface morphology of fibers. FE-SEM and TEM were used to explore the morphology and diameter of nanofibers and hollow nanofiber. The excitation and emission spectra explored by PL. Finally, XRD was used for identified crystallization of ceramic nanofibers. Using electrospinning technique followed by subsequent heat treatment, we have successfully prepared silicon-base oxide nanofibers with hollow structure. Thus, the microstructure and morphology of electrostatic spinning silicon-base oxide hollow nanofibers were explored. Major characteristics of the nanofiber in terms of crystalline, optical properties and crystal structure were identified.

Keywords: electrospinning, single-nozzle, hollow, nanofibers

Procedia PDF Downloads 346
8090 CI Engine Performance Analysis Using Sunflower and Peanut Bio-Diesel Blends

Authors: M. Manjunath, R. Rakesh, Y. T. Krishne Gowda, G. Panduranga Murthy

Abstract:

The availability of energy resources plays a vital role in the progress of a country. Over the last decades, there is an increase in the consumption of energy worldwide resulting in the depletion of fossil fuels. This necessitates dependency on other countries for energy resources. Therefore, a renewable eco-friendly alternate fuel is replaced in place of fossil fuel which can be vegetable oils as a substitute fuel for diesel. Since oils are more viscous it cannot be used directly in CI engines without any engine modification. Thus, a conversion of vegetable oils to biodiesel is done by a Transesterification process. The present paper is restricted to Biofuel substitute for diesel and which can be obtained from a number of edible and non-edible oil resources. The oil from these resources can be Transesterified by a suitable method depending on its FFA content for the production of biodiesel and that can be used to operate CI engine. In this work, an attempt is made to test the performance of CI engine using Transesterified peanut and sunflower oil methyl esters blends with diesel.

Keywords: SOME, POME, BMEP, BSFC, BTE

Procedia PDF Downloads 468
8089 Techno-Economic Analysis of Motor-Generator Pair System and Virtual Synchronous Generator for Providing Inertia of Power System

Authors: Zhou Yingkun, Xu Guorui, Wei Siming, Huang Yongzhang

Abstract:

With the increasing of the penetration of renewable energy in power system, the whole inertia of the power system is declining, which will endanger the frequency stability of the power system. In order to enhance the inertia, virtual synchronous generator (VSG) has been proposed. In addition, the motor-generator pair (MGP) system is proposed to enhance grid inertia. Both of them need additional equipment to provide instantaneous energy, so the economic problem should be considered. In this paper, the basic working principle of MGP system and VSG are introduced firstly. Then, the technical characteristics and economic investment of MGP/VSG are compared by calculation and simulation. The results show that the MGP system can provide same inertia with less cost than VSG.

Keywords: high renewable energy penetration, inertia of power system, motor-generator pair (MGP) system, virtual synchronous generator (VSG), techno-economic analysis

Procedia PDF Downloads 445
8088 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 145
8087 The Applications of Toyota Production System to Reduce Wastes in Agricultural Products Packing Process: A Study of Onion Packing Plant

Authors: P. Larpsomboonchai

Abstract:

Agro-industry is one of major industries that has strong impacts on national economic incomes, growth, stability, and sustainable development. Moreover, this industry also has strong influences on social, cultural and political issues. Furthermore, this industry, as producing primary and secondary products, is facing challenges from such diverse factors such as demand inconsistency, intense international competition, technological advancements and new competitors. In order to maintain and to improve industry’s competitiveness in both domestics and international markets, science and technology are key factors. Besides hard sciences and technologies, modern industrial engineering concepts such as Just in Time (JIT) Total Quality Management (TQM), Quick Response (QR), Supply Chain Management (SCM) and Lean can be very effective to supportant to increase efficiency and effectiveness of these agricultural products on world stage. Onion is one of Thailand’s major export products which brings back national incomes. But, it also facing challenges in many ways. This paper focused its interests in onion packing process and its related activities such as storage and shipment from one of major packing plant and storage in Mae Wang District, Chiang Mai, Thailand, by applying Toyota Production System (TPS) or Lean concepts, to improve process capability throughout the entire packing and distribution process which will be profitable for the whole onion supply chain. And it will be beneficial to other related agricultural products in Thailand and other ASEAN countries.

Keywords: packing process, Toyota Production System (TPS), lean concepts, waste reduction, lean in agro-industries activities

Procedia PDF Downloads 270
8086 Thermodynamics during the Deconfining Phase Transition

Authors: Amal Ait El Djoudi

Abstract:

A thermodynamical model of coexisting hadronic and quark–gluon plasma (QGP) phases is used to study the thermally driven deconfining phase transition occurring between the two phases. A color singlet partition function is calculated for the QGP phase with two massless quarks, as in our previous work, but now the finite extensions of the hadrons are taken into account in the equation of state of the hadronic phase. In the present work, the finite-size effects on the system are examined by probing the behavior of some thermodynamic quantities, called response functions, as order parameter, energy density and their derivatives, on a range of temperature around the transition at different volumes. It turns out that the finiteness of the system size has as effects the rounding of the transition and the smearing of all the singularities occurring in the thermodynamic limit, and the additional finite-size effect introduced by the requirement of exact color-singletness involves a shift of the transition point. This shift as well as the smearing of the transition region and the maxima of both susceptibility and specific heat show a scaling behavior with the volume characterized by scaling exponents. Another striking result is the large similarity noted between the behavior of these response functions and that of the cumulants of the probability density. This similarity is worked to try to extract information concerning the occurring phase transition.

Keywords: equation of state, thermodynamics, deconfining phase transition, quark–gluon plasma (QGP)

Procedia PDF Downloads 423
8085 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Authors: Man Young Kim

Abstract:

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity

Procedia PDF Downloads 270
8084 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 166
8083 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 294
8082 Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks

Authors: Noppatee Sabpayakom, Somporn Sirisumrannukul

Abstract:

Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents.

Keywords: control and protection systems, distributed generation, renewable energy, very small power producers

Procedia PDF Downloads 475
8081 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission

Authors: Alex B. Cusick

Abstract:

The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.

Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions

Procedia PDF Downloads 167
8080 A Comparison of Transdiagnostic Components in Generalized Anxiety Disorder, Unipolar Mood Disorder and Nonclinical Population

Authors: Imaneh Abbasi, Ladan Fata, Majid Sadeghi, Sara Banihashemi, Abolfazl Mohammadee

Abstract:

Background: Dimensional and transdiagnostic approaches as a result of high comorbidity among mental disorders have captured researchers and clinicians interests for exploring the latent factors of development and maintenance of some psychological disorders. The goal of present study is to compare some of these common factors between generalized anxiety disorder and unipolar mood disorder. Methods: 27 patients with generalized anxiety disorder, 29 patients with depression disorder were recruited using SCID-I and 69 non-clinical population were selected using GHQ cut off point. MANCOVA was used for analyzing data. Results: The results show that worry, rumination, intolerance of uncertainty, maladaptive metacognitive beliefs, and experiential avoidance were all significantly different between GAD and unipolar mood disorder groups. However, there were not any significant differences in difficulties in emotion regulation and neuroticism between GAD and unipolar mood disorder groups. Discussion: Results indicate that although there are some transdiagnostic and common factors in GAD and unipolar mood disorder, there may be some specific vulnerability factors for each disorder. Further study is needed for answering these questions.

Keywords: transdiagnostic, depression, generalized anxiety disorder, emotion regulation

Procedia PDF Downloads 495
8079 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 111
8078 Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques

Authors: Hanan Alenezi

Abstract:

Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation.

Keywords: Energy Dispersive X-Ray Spectroscopy (EDS), Membrane, Polyetherimide PEI, Scanning electron microscope (SEM), Solvent, X-Ray Diffraction (XRD)

Procedia PDF Downloads 176
8077 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

Authors: D. Ramajo, S. Corzo, M. Nigro

Abstract:

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow

Procedia PDF Downloads 466
8076 Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks

Authors: Jai Prakash Prasad, Suresh Chandra Mohan

Abstract:

Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol.

Keywords: energy efficient, network lifetime, sensor networks, wireless communication

Procedia PDF Downloads 464
8075 CFD Investigation on Heat Transfer and Friction Characteristics of Rib Roughened Evacuated Tube Collector Solar Air Heater

Authors: Mohit Singla, Vishavjeet Singh Hans, Sukhmeet Singh

Abstract:

Heat transfer and friction characteristics of evacuated tube collector solar air heater artificially roughened with periodic circular rib of uniform cross-section were investigated. The present investigation was carried out in ANSYS Fluent 15.0 to study the impact of roughness geometry parameters, i.e. relative roughness pitch (P/e) of 8 and relative roughness height (e/Dh) of 0.064 and flow parameters, i.e. Reynolds number range of 2500-8000 on Nusselt number and friction factor. RNG k-ε with enhanced wall treatment turbulence model was selected for analysis. The results obtained for roughened evacuated tube collector has been compared with smooth evacuated tube collector for the similar flow conditions. With the increment in Reynolds number from 2500 to 8000, Nusselt number augments while friction factor decreases. Maximum enhancement ratio of Nusselt number and friction factor was 1.71 and 2.7 respectively, obtained at Reynolds number value of 8000. The value of thermo-hydraulic performance parameter was varied between 1.18 - 1.23 for the entire range of Reynolds number, indicates the advantage to use the roughened evacuated tube collector over smooth evacuated tube collector in solar air heater.

Keywords: artificial roughness, evacuated tube collector, friction factor, Nusselt number

Procedia PDF Downloads 155
8074 Study of Harmonics Estimation on Analog kWh Meter Using Fast Fourier Transform Method

Authors: Amien Rahardjo, Faiz Husnayain, Iwa Garniwa

Abstract:

PLN used the kWh meter to determine the amount of energy consumed by the household customers. High precision of kWh meter is needed in order to give accuracy results as the accuracy can be decreased due to the presence of harmonic. In this study, an estimation of active power consumed was developed. Based on the first year study results, the largest deviation due to harmonics can reach up to 9.8% in 2200VA and 12.29% in 3500VA with kWh meter analog. In the second year of study, deviation of digital customer meter reaches 2.01% and analog meter up to 9.45% for 3500VA household customers. The aim of this research is to produce an estimation system to calculate the total energy consumed by household customer using analog meter so the losses due to irregularities PLN recording of energy consumption based on the measurement used Analog kWh-meter installed is avoided.

Keywords: harmonics estimation, harmonic distortion, kWh meters analog and digital, THD, household customers

Procedia PDF Downloads 477
8073 The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel

Authors: Wu Wei-Ting, Liu Po-Yen, Chang Chin-Tzu, Cheng Wei-Chun

Abstract:

Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae.

Keywords: austenite, austenite twin layers, κ-carbide, twins

Procedia PDF Downloads 220
8072 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 169
8071 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle

Authors: Nilay K. Doshi

Abstract:

A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.

Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance

Procedia PDF Downloads 325