Search results for: Runge Kutta methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15357

Search results for: Runge Kutta methods

10167 Functional Analysis of Thyroid Peroxidase (TPO) Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis

Authors: Biswabandhu Bankura, Srikanta Guria, Madhusudan Das

Abstract:

Purpose: Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. Methods: 200 hypothyroid patients (case) and their corresponding sex and age matched 200 normal individuals (control) were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14) was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Results: Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. Key Findings: The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.

Keywords: thyroid peroxidase, hypothyroidism, mutation, in vitro assay, transfection

Procedia PDF Downloads 345
10166 Functional Analysis of Thyroid Peroxidase Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis

Authors: Biswabandhu Bankura, Srikanta Guria, Madhusudan Das

Abstract:

Purpose: Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. Methods: 200 hypothyroid patients (case) and their corresponding sex and age matched 200 normal individuals (control) were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14) was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Results: Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. Key Findings: The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.

Keywords: thyroid peroxidase, hypothyroidism, mutation, in vitro assay, transfection

Procedia PDF Downloads 335
10165 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 92
10164 A Deletion in Duchenne Muscular Dystrophy Gene Found Through Whole Exome Sequencing in Iran

Authors: Negin Parsamanesh, Saman Ameri-Mahabadi, Ali Nikfar, Mojdeh Mansouri, Hossein Chiti, Gita Fatemi Abhari

Abstract:

Duchenne muscular dystrophy (DMD) is a severe progressive X-linked neuromuscular illness that affects movement through mutations in dystrophin gene. The mutation leads to insufficient, lack of or dysfunction of dystrophin. The cause of DMD was determined in an Iranian family. Exome sequencing was carried out along with a complete physical examination of the family. In silico methods were applied to find the alteration in the protein structure. The homozygous variant in DMD gene (NM-004006.2) was defined as c.2732-2733delTT (p.Phe911CysfsX8) in exon 21. In addition, phylogenetic conservation study of the human dystrophin protein sequence revealed that phenylalanine 911 is one of the evolutionarily conserved amino acids. In conclusion, our study indicated a new deletion in the DMD gene in the affected family. This deletion with an X-linked inheritance pattern is new in Iran. These findings could facilitate genetic counseling for this family and other patients in the future.

Keywords: duchenne muscular dystrophy, whole exome sequencing, iran, metabolic syndrome

Procedia PDF Downloads 71
10163 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 15
10162 Physicochemical Characteristics and Evaluation of Main Volatile Compounds of Fresh and Dehydrated Mango

Authors: Maria Terezinha Santos Leite Neta, Mônica Silva de Jesus, Hannah Caroline Santos Araujo, Rafael Donizete Dutra Sandes, Raquel Anne Ribeiro Dos Santos, Narendra Narain

Abstract:

Mango is one of the most consumed and appreciated fruits in the world, mainly due to its peculiar and characteristic aroma. Since the fruit is perishable, it requires conservation methods to prolong its shelf life. Mango cubes were dehydrated at 40°C, 50°C and 60°C and by lyophilization, and the effect of these processes was investigated on the physicochemical characteristics (color and texture) of the products and monitoring of the main volatile compounds for the mango aroma. Volatile compounds were extracted by the SPME technique and analyzed in GC-MS system. Drying temperature at 60°C and lyophilization showed higher efficiency in retention of main volatile compounds, being 63.93% and 60.32% of the total concentration present in the fresh pulp, respectively. The freeze-drying process also presented features closer to the fresh mango in relation to color and texture, which contributes to greater acceptability.

Keywords: mango, freeze drying, convection drying, aroma, GC-MS

Procedia PDF Downloads 65
10161 Evaluation of Diagnosis Performance Based on Pairwise Model Construction and Filtered Data

Authors: Hyun-Woo Cho

Abstract:

It is quite important to utilize right time and intelligent production monitoring and diagnosis of industrial processes in terms of quality and safety issues. When compared with monitoring task, fault diagnosis represents the task of finding process variables responsible causing a specific fault in the process. It can be helpful to process operators who should investigate and eliminate root causes more effectively and efficiently. This work focused on the active use of combining a nonlinear statistical technique with a preprocessing method in order to implement practical real-time fault identification schemes for data-rich cases. To compare its performance to existing identification schemes, a case study on a benchmark process was performed in several scenarios. The results showed that the proposed fault identification scheme produced more reliable diagnosis results than linear methods. In addition, the use of the filtering step improved the identification results for the complicated processes with massive data sets.

Keywords: diagnosis, filtering, nonlinear statistical techniques, process monitoring

Procedia PDF Downloads 244
10160 A Method to Identify Areas for Hydraulic Fracturing by Using Production Logging Tools

Authors: Armin Shirbazo, Hamed Lamei Ramandi, Mohammad Vahab, Jalal Fahimpour

Abstract:

Hydraulic fracturing, especially multi-stage hydraulic fracturing, is a practical solution for wells with uneconomic production. The wide range of applications is appraised appropriately to have a stable well-production. Production logging tool, which is known as PLT in the oil and gas industry, is counted as one of the most reliable methods to evaluate the efficiency of fractures jobs. This tool has a number of benefits and can be used to prevent subsequent production failure. It also distinguishes different problems that occurred during well-production. In this study, the effectiveness of hydraulic fracturing jobs is examined by using the PLT in various cases and situations. The performance of hydraulically fractured wells is investigated. Then, the PLT is employed to gives more information about the properties of different layers. The PLT is also used to selecting an optimum fracturing design. The results show that one fracture and three-stage fractures behave differently. In general, the one-stage fracture should be created in high-quality areas of the reservoir to have better performance, and conversely, in three-stage fractures, low-quality areas are a better candidate for fracturing

Keywords: multi-stage fracturing, horizontal well, PLT, fracture length, number of stages

Procedia PDF Downloads 194
10159 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System

Authors: Karima Qayumi, Alex Norta

Abstract:

The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.

Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)

Procedia PDF Downloads 432
10158 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 423
10157 A Study on Good Governance: Its Elements, Models, and Goals

Authors: Ehsan Daryadel, Hamid Shakeri

Abstract:

Good governance is considered as one of the necessary prerequisites for promotion of sustainable development programs in countries. Theoretical model of good governance is going to form the best methods for administration and management of subject country. The importance of maintaining the balance between the needs of present and future generation through sustainable development caused a change in method of management and providing service for citizens that is addressed as the most efficient and effective way of administration of countries. This method is based on democratic and equal-seeking sustainable development which is trying to affect all actors in this area and also be accountable to all citizens’ needs. Meanwhile, it should be noted that good governance is a prerequisite for sustainable development. In fact, good governance means impact of all actors on administration and management of the country for fulfilling public services, general needs of citizens and establishing a balance and harmony between needs of present and future generation. In the present study, efforts have been made to present concepts, definitions, purposes and indices of good governance with a descriptive-analytical method.

Keywords: accountability, efficiency and effectiveness, good governance, rule of law, transparency

Procedia PDF Downloads 303
10156 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete

Authors: H. A. Alguhi, W. A. Elsaigh

Abstract:

This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyzes involving HSFRC structures.

Keywords: tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis

Procedia PDF Downloads 360
10155 The Effect of Aromatherapy with Citrus aurantium Blossom Essential Oil on Premenstrual Syndrome in University Students: A Clinical Trial Study

Authors: Neda Jamalimoghadam, Naval Heydari, Maliheh Abootalebi, Maryam Kasraeian, M. Emamghoreishi , Akbarzadeh Marzieh

Abstract:

Background: The aim was to investigate the effect of aromatherapy using Citrus aurantium blossom essential oil on premenstrual syndrome in university students. Methods: In this double-blind clinical trial was controlled on 62 students from March 2016 to February 2017. The intervention with 0.5% of C. Aurantium blossom essential oil and control was inhalation of odorless sweet almond oil in the luteal phase of the menstrual cycle. The screening questionnaire (PSST) for PMSwas filled out before and also one and two months after the intervention. Results: Mean score of overall symptoms of PMS between the Bitter orange and control groups In the first (p < 0.003) and second months (p < 0.001) of the intervention was significant. Besides, decreased the mean score of psychological symptoms in the intervention group (p < 0.001), but on physical symptoms and social function were not significant (p > 0.05). Conclusion: The aromatherapy with Citrus aurantium blossom improved the symptoms of premenstrual syndrome.

Keywords: aromatherapy, Citrus Aurantium, premenstrual syndrome, oil, students

Procedia PDF Downloads 226
10154 Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations

Authors: Ali Pour Yazdanpanah, Farideh Foroozandeh Shahraki, Emma Regentova

Abstract:

The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction.

Keywords: computed tomography, non-convex, sparse-view reconstruction, L1-L2 minimization, difference of convex functions

Procedia PDF Downloads 316
10153 A Sociocultural View of Ethnicity of Parents and Children's Language Learning

Authors: Thapanee Musiget

Abstract:

Ethnic minority children’s language learning is believed that it can be developed through school system. However, many cases prove that these kids are left to challenge with multicultural context at school and sometimes decreased the ability to acquire new learning. Consequently, it is significant for ethnicity parents to consider that prompting their children at home before their actual school age can eliminate negative outcome of children's language acquisition. This paper discusses the approach of instructional use of parents and children language learning in the context of minority language group in Thailand. By conducting this investigation, secondary source of data was gathered with the purpose to point out some primary methods for parents and children in ethnicity. The process of language learning is based on the sociocultural theory of Vygotsky, which highlights expressive communication among individuals as the best motivating force in human development and learning. The article also highlights the role of parents as they lead the instruction approach. In the discussion part, the role of ethnic minority parents as a language instructor is offered as mediator.

Keywords: ethnic minority, language learning, multicultural context, sociocultural theory

Procedia PDF Downloads 391
10152 Investigating the Systematic Implications of Plastic Waste Additions to Concrete Taking a Circular Approach

Authors: Christina Cheong, Naomi Keena

Abstract:

In the face of growing urbanization the construction of new buildings is inevitable and with current construction methods leading to environmental degradation much questioning is needed around reducing the environmental impact of buildings. This paper explores the global environmental issue of concrete production in parallel with the problem of plastic waste, and questions if new solutions into plastic waste additions in concrete is a viable sustainable solution with positive systematic implications to living systems, both human and non-human. We investigate how certification programs can be used to access the sustainability of the new concrete composition. With this classification we look to the health impacts as well as reusability of such concrete in a second or third life cycle. We conclude that such an approach has benefits to the environment and that taking a circular approach to its development, in terms of the overall life cycle of the new concrete product, can help understand the nuances in terms of the material’s environmental and human health impacts.

Keywords: Concrete, Plastic waste additions to concrete, sustainability ratings, sustainable materials

Procedia PDF Downloads 150
10151 Application of Grasshopper Optimization Algorithm for Design and Development of Net Zero Energy Residential Building in Ahmedabad, India

Authors: Debasis Sarkar

Abstract:

This paper aims to apply the Grasshopper-Optimization-Algorithm (GOA) for designing and developing a Net-Zero-Energy residential building for a mega-city like Ahmedabad in India. The methodology implemented includes advanced tools like Revit for model creation and MATLAB for simulation, enabling the optimization of the building design. GOA has been applied in reducing cooling loads and overall energy consumption through optimized passive design features. For the attainment of a net zero energy mission, solar panels were installed on the roof of the building. It has been observed that the energy consumption of 8490 kWh was supported by the installed solar panels. Thereby only 840kWh had to be supported by non-renewable energy sources. The energy consumption was further reduced through the application of simulation and optimization methods like GOA, which further reduced the energy consumption to about 37.56 kWh per month from April to July when energy demand was at its peak. This endeavor aimed to achieve near-zero-energy consumption, showcasing the potential of renewable energy integration in building sustainability.

Keywords: grasshopper optimization algorithm, net zero energy, residential building, sustainable design

Procedia PDF Downloads 39
10150 Reproducibility of Dopamine Transporter Density Measured with I-123-N-ω-Fluoropropyl-2β-Carbomethoxy-3β-(4-Iodophenyl)Nortropane SPECT in Phantom Studies and Parkinson’s Disease Patients

Authors: Yasuyuki Takahashi, Genta Hoshi, Kyoko Saito

Abstract:

Objectives: The objective of this study was to evaluate the reproducibility of I-123-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4- iodophenyl) nortropane (I-123 FP-CIT) SPECT by using specific binding ratio (SBR) in phantom studies and Parkinson’s Disease (PD) patients. Methods: We made striatum phantom originally and confirmed reproducibility. The phantom studies changed head position and accumulation of FP-CIT, each. And image processing confirms influence on SBR by 30 cases. 30 PD received a SPECT for 3 hours post injection of I-123 FP-CIT 167MBq. Results: SBR decreased in rotatory direction by the patient position by the phantom studies. And, SBR improved the influence after the attenuation and the scatter correction in the cases (y=0.99x+0.57 r2=0.83). However, Stage II recognized dispersion in SBR by low accumulation. Conclusion: Than the phantom studies that assumed the normal cases, the SPECT image after the attenuation and scatter correction had better reproducibility.

Keywords: 123I-FP-CIT, specific binding ratio, Parkinson’s disease

Procedia PDF Downloads 429
10149 Metareasoning Image Optimization Q-Learning

Authors: Mahasa Zahirnia

Abstract:

The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.

Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process

Procedia PDF Downloads 215
10148 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 194
10147 Application of Nanofibers in Heavy Metal (HM) Filtration

Authors: Abhijeet Kumar, Palaniswamy N. K.

Abstract:

Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities.

Keywords: heavy metals, nanofiber composite, filter membranes, adsorption, impaction

Procedia PDF Downloads 68
10146 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 314
10145 Overview of Constructed Wetlands System for Greywater Treatment: Challenges, Advantages, and Sustainable Analysis

Authors: Iga Maliga

Abstract:

As developing country, Indonesia, retreatment for greywater is an important factor that guaranteeing water sustainability? But, its still not familiar in Indonesian society. Because they still use their old habit for wasting the water without retreatment. Differently, with industry wastewater, effect of domestic wastewater is not directly looked with naked eyes. Domestic wastewater that not gets treatment directly can affect pollution in water body or river. Its affected by accumulation many pollutants that include on water. This paper is trying to analyze the challenges and advantages on greywater treatment system based on Constructed Wetlands (CWs) system in Bandung, one of the biggest cities in Indonesia. Aside that, this paper also is trying to analyze sustainability aspects. There is economic, social and of course environment with two methods. The first, study literature is used to see the advantages and challenges that faced by Indonesia when CWs are applied. Secondly, quantitative method is used to get the society perception about retreatment of greywater. Then, it will get a conclusion that this technique not only good in theoretically but also practically.

Keywords: greywater, constructed wetlands, advantages, challenges, Bandung, sustainability analysis

Procedia PDF Downloads 274
10144 The Effect of Fast Food Globalisation on Students’ Food Choice

Authors: Ijeoma Chinyere Ukonu

Abstract:

This research seeks to investigate how the globalisation of fast food has affected students’ food choice. A mixed method approach was used in this research; basically involving quantitative and qualitative methods. The quantitative method uses a self-completion questionnaire to randomly sample one hundred and four students; while the qualitative method uses a semi structured interview technique to survey four students on their knowledge and choice to consume fast food. A cross tabulation of variables and the Kruskal Wallis nonparametric test were used to analyse the quantitative data; while the qualitative data was analysed through deduction of themes, and trends from the interview transcribe. The findings revealed that globalisation has amplified the evolution of fast food, popularising it among students. Its global presence has affected students’ food choice and preference. Price, convenience, taste, and peer influence are some of the major factors affecting students’ choice of fast food. Though, students are familiar with the health effect of fast food and the significance of using food information labels for healthy choice making, their preference of fast food is more than homemade food.

Keywords: fast food, food choice, globalisation, students

Procedia PDF Downloads 292
10143 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.

Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify

Procedia PDF Downloads 387
10142 Survey of Intrusion Detection Systems and Their Assessment of the Internet of Things

Authors: James Kaweesa

Abstract:

The Internet of Things (IoT) has become a critical component of modern technology, enabling the connection of numerous devices to the internet. The interconnected nature of IoT devices, along with their heterogeneous and resource-constrained nature, makes them vulnerable to various types of attacks, such as malware, denial-of-service attacks, and network scanning. Intrusion Detection Systems (IDSs) are a key mechanism for protecting IoT networks and from attacks by identifying and alerting administrators to suspicious activities. In this review, the paper will discuss the different types of IDSs available for IoT systems and evaluate their effectiveness in detecting and preventing attacks. Also, examine the various evaluation methods used to assess the performance of IDSs and the challenges associated with evaluating them in IoT environments. The review will highlight the need for effective and efficient IDSs that can cope with the unique characteristics of IoT networks, including their heterogeneity, dynamic topology, and resource constraints. The paper will conclude by indicating where further research is needed to develop IDSs that can address these challenges and effectively protect IoT systems from cyber threats.

Keywords: cyber-threats, iot, intrusion detection system, networks

Procedia PDF Downloads 80
10141 A 3-Year Evaluation Study on Fine Needle Aspiration Cytology and Corresponding Histology

Authors: Amjad Al Shammari, Ashraf Ibrahim, Laila Seada

Abstract:

Background and Objectives: Incidence of thyroid carcinoma has been increasing world-wide. In the present study, we evaluated diagnostic accuracy of Fine needle aspiration (FNA) and its efficiency in early detecting neoplastic lesions of thyroid gland over a 3-year period. Methods: Data have been retrieved from pathology files in King Khalid Hospital. For each patient, age, gender, FNA, site & size of nodule and final histopathologic diagnosis were recorded. Results: Study included 490 cases where 419 of them were female and 71 male. Male to female ratio was 1:6. Mean age was 43 years for males and 38 for females. Cases with confirmed histopathology were 131. In 101/131 (77.1%), concordance was found between FNA and histology. In 30/131 (22.9%), there was discrepancy in diagnosis. Total malignant cases were 43, out of which 14 (32.5%) were true positive and 29 (67.44%) were false negative. No false positive cases could be found in our series. Conclusion: FNA could diagnose benign nodules in all cases, however, in malignant cases, ultrasound findings have to be taken into consideration to avoid missing of a microcarcinoma in the contralateral lobe.

Keywords: FNA, hail, histopathology, thyroid

Procedia PDF Downloads 336
10140 Screening of New Antimicrobial Agents from Heterocyclic Derivatives

Authors: W. Mazari, K. Boucherit, Z. Boucherit-Otmani, M. N. Rahmoun, M. Benabdallah

Abstract:

The hospital or any other establishment of care can be considered as an ecosystem where the patient comes into contact with a frightening microbial universe and a risk to contract infection that is referred to as nosocomial or health care-associated. In these last years, the incidence of these infections has risen sharply. Several microorganisms are the cause of these nosocomial infections and the emergence of resistance of the microbial strains against antibiotics creates a danger to public health. The search for new antimicrobial agents to overcome this problem has produced interesting compounds through chemical synthesis, which plays a very important role in the research and discovery of new drugs. It is in this framework that our study was conducted at our laboratory and it involves evaluating the antibacterial activity of thirteen 2-pyridone derivatives synthesized by two methods, the diffusion disc method and the dilution method against eight Gram negative bacterial strains. The results seem interesting especially for two products that have shown the best activities against Escherichia coli ATCC 25922 and Enterobacter cloacae ATCC 13047 with CMI of 512µg/ml.

Keywords: heterocyclic derivatives, chemical synthesis, antimicrobial activity, biotechnology

Procedia PDF Downloads 367
10139 Preventing Farmer-Herder Conflicts in Ghana: A Constellation of Local Strategies and Solutions

Authors: Abdulai Abubakari

Abstract:

The rollercoaster relationship between farmers and herders in Sub-Saharan Africa has compelled most governments to undertake different mitigating strategies. Over the past two decades, the expulsion of migrant herdsmen, the killing of cattle and human beings, and fines have been used by the state and aggrieved individuals to resolve the conflicts. Unlike this paper, most of the research conducted on this subject matter has been largely theoretical and lacks practical solutions to the conflicts. This paper is unique because it focuses on concrete strategies and practical solutions to ending the century-old phenomenon of farmer-herder conflicts in Ghana. The paper employed power or compete (fight) theory as well as compromise and negotiation theories in the analyses. The paper employed, basically, socio-anthropological methods: interviews, focus group discussions, and observations to gather data. The paper found that compromises through negotiation with the stakeholders are the best ways of resolving these conflicts. Through this, we support the compromise and negotiation approach rather than expulsion to resolve farmer-herder conflicts.

Keywords: farmer-herder, conflict, prevention, strategies, stakeholders

Procedia PDF Downloads 54
10138 Hypoglycemic Coma in Elderly Patients with Diabetes mellitus

Authors: D. Furuya, H. Ryujin, S. Takahira, Y. Sekine, Y. Oya, K. Sonoda, H. Ogawa, Y. Nomura, R. Maruyama, H. Kim, T. Kudo, A. Nakano, T. Saruta, S. Sugita, M. Nemoto, N. Tanahashi

Abstract:

Purpose: To study the clinical characteristics of hypoglycemic coma in adult patients with type 1 or type 2 diabetes mellitus (DM). Methods: Participants in this retrospective study comprised 91 patients (54 men, 37 women; mean age ± standard deviation, 71.5 ± 12.6 years; range, 42-97 years) brought to our emergency department by ambulance with disturbance of consciousness in the 7 years from April 2007 to March 2014. Patients with hypoglycemia caused by alcoholic ketoacidosis, nutrition disorder, malignancies and psychological disorder were excluded. Results: Patients with type 1 (8 of 91) or type 2 DM (83 of 91) were analyzed. Mean blood sugar level was 31.6 ± 10.4 in all patients. A sulfonylurea (SU) was more commonly used in elderly (>75 years old; n=44)(70.5%) than in younger patients (36.2%, p < 0.05). Cases showing prolonged unconsciousness (range, 1 hour to 21 days; n=30) included many (p < 0.05) patients with dementia (13.3%; 0.5% without dementia) and fewer (p < 0.05) patients with type 1 DM (0%; 13.1% in type 2 DM). Specialists for DM (n=33) used SU less often (24.2%) than general physicians (69.0%, p < 0.05). Conclusion: In cases of hypoglycemic coma, SU was frequently used in elderly patients with DM.

Keywords: hypoglycemic coma, Diabetes mellitus, unconsciousness, elderly patients

Procedia PDF Downloads 490