Search results for: emergency bridge inspection and repair
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2677

Search results for: emergency bridge inspection and repair

2677 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.

Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty

Procedia PDF Downloads 107
2676 A Case Study on the Field Surveys and Repair of a Marine Approach-Bridge

Authors: S. H. Park, D. W. You

Abstract:

This study is about to the field survey and repair works in a marine approach-bride. In order to evaluate the stability of the ground and the structure, field surveys such as exterior inspection, non-destructive inspection, measurement, and geophysical exploration are carried out. Numerical analysis is conducted to investigate the cause of the abutment displacement at the same time. In addition, repair works are practiced to the region damaged with intent to sustain long-term safety.

Keywords: field survey, expansion joint, repair, maintenance

Procedia PDF Downloads 288
2675 State-of-the Art Practices in Bridge Inspection

Authors: Salam Yaghi, Saleh Abu Dabous

Abstract:

Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. With the increasing number of deteriorated bridges in the US, Canada, and around the globe, condition assessment techniques of concrete bridges are evolving. Investigation for bridges’ defects such as cracks, spalls, and delamination and their level of severity are the main objectives of condition assessment. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. This paper highlights the state-of-the art of current practices being performed for concrete bridge inspection. The information is gathered from the literature and through a distributed questionnaire. The current practices in concrete bridge inspection rely on the use of hummer sounding and chain dragging tests. Non-Destructive Testing (NDT) techniques are not being utilized fully in the process. Nonetheless, they are being partially utilized by the recommendation of the bridge inspector after conducting the visual inspection. Lanes are usually closed during the performance of visual inspection and bridge inspection in general.

Keywords: bridge inspection, condition assessment, questionnaire, non-destructive testing

Procedia PDF Downloads 274
2674 Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection

Authors: A. S. Grewal, R. S. Sangwan, Dharambir, Vikas Dhanda

Abstract:

The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case.

Keywords: non-identical firearms, inspection, priority to repair, semi-Markov process, regenerative point

Procedia PDF Downloads 420
2673 Clustering-Based Threshold Model for Condition Rating of Concrete Bridge Decks

Authors: M. Alsharqawi, T. Zayed, S. Abu Dabous

Abstract:

To ensure safety and serviceability of bridge infrastructure, accurate condition assessment and rating methods are needed to provide basis for bridge Maintenance, Repair and Replacement (MRR) decisions. In North America, the common practices to assess condition of bridges are through visual inspection. These practices are limited to detect surface defects and external flaws. Further, the thresholds that define the severity of bridge deterioration are selected arbitrarily. The current research discusses the main deteriorations and defects identified during visual inspection and Non-Destructive Evaluation (NDE). NDE techniques are becoming popular in augmenting the visual examination during inspection to detect subsurface defects. Quality inspection data and accurate condition assessment and rating are the basis for determining appropriate MRR decisions. Thus, in this paper, a novel method for bridge condition assessment using the Quality Function Deployment (QFD) theory is utilized. The QFD model is designed to provide an integrated condition by evaluating both the surface and subsurface defects for concrete bridges. Moreover, an integrated condition rating index with four thresholds is developed based on the QFD condition assessment model and using K-means clustering technique. Twenty case studies are analyzed by applying the QFD model and implementing the developed rating index. The results from the analyzed case studies show that the proposed threshold model produces robust MRR recommendations consistent with decisions and recommendations made by bridge managers on these projects. The proposed method is expected to advance the state of the art of bridges condition assessment and rating.

Keywords: concrete bridge decks, condition assessment and rating, quality function deployment, k-means clustering technique

Procedia PDF Downloads 218
2672 Defect-Based Urgency Index for Bridge Maintenance Ranking and Prioritization

Authors: Saleh Abu Dabous, Khaled Hamad, Rami Al-Ruzouq

Abstract:

Bridge condition assessment and rating provide essential information needed for bridge management. This paper reviews bridge inspection and condition rating practices and introduces a defect-based urgency index. The index is estimated at the element-level based on the extent and severity of the different defects typical to the bridge element. The urgency index approach has the following advantages: (1) It facilitates judgment submission, i.e. instead of rating the bridge element with a specific linguistic overall expression (which can be subjective and used differently by different people), the approach is based on assessing the defects; (2) It captures multiple defects that can be present within a deteriorated element; and (3) It reflects how critical the element is through quantifying critical defects and their severity. The approach can be further developed and validated. It is expected to be useful for practical purposes as an early-warning system for critical bridge elements.

Keywords: condition rating, deterioration, inspection, maintenance

Procedia PDF Downloads 441
2671 Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone

Authors: Byoungjoon Yu, Jihwan Park, Sujung Sin, Junghyun Im, Minsoo Park, Sehwan Park, Seunghee Park

Abstract:

In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: Structural Health Monitoring, SHM, non-contact sensing, nondestructive testing, NDT, Internet of Things, autonomous self-driving drone

Procedia PDF Downloads 262
2670 Steel Bridge Coating Inspection Using Image Processing with Neural Network Approach

Authors: Ahmed Elbeheri, Tarek Zayed

Abstract:

Steel bridges deterioration has been one of the problems in North America for the last years. Steel bridges deterioration mainly attributed to the difficult weather conditions. Steel bridges suffer fatigue cracks and corrosion, which necessitate immediate inspection. Visual inspection is the most common technique for steel bridges inspection, but it depends on the inspector experience, conditions, and work environment. So many Non-destructive Evaluation (NDE) models have been developed use Non-destructive technologies to be more accurate, reliable and non-human dependent. Non-destructive techniques such as The Eddy Current Method, The Radiographic Method (RT), Ultra-Sonic Method (UT), Infra-red thermography and Laser technology have been used. Digital Image processing will be used for Corrosion detection as an Alternative for visual inspection. Different models had used grey-level and colored digital image for processing. However, color image proved to be better as it uses the color of the rust to distinguish it from the different backgrounds. The detection of the rust is an important process as it’s the first warning for the corrosion and a sign of coating erosion. To decide which is the steel element to be repainted and how urgent it is the percentage of rust should be calculated. In this paper, an image processing approach will be developed to detect corrosion and its severity. Two models were developed 1st to detect rust and 2nd to detect rust percentage.

Keywords: steel bridge, bridge inspection, steel corrosion, image processing

Procedia PDF Downloads 298
2669 Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography

Authors: Nicole M. Martino

Abstract:

Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck – the location where damage originates from.  In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck’s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification.

Keywords: bridge deck deterioration, ground penetrating radar, infrared thermography, NDT of bridge decks

Procedia PDF Downloads 151
2668 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.

Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization

Procedia PDF Downloads 143
2667 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos

Authors: Hatthaphone Silimanotham, Michael Henry

Abstract:

The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.

Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling

Procedia PDF Downloads 154
2666 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 143
2665 Technical Non-Destructive Evaluation of Burnt Bridge at CH. 57+450 Along Abuja-Abaji-Lokoja Road, Nigeria

Authors: Abraham O. Olaniyi, Oluyemi Oke, Atilade Otunla

Abstract:

The structural performance of bridges decreases progressively throughout their service life due to many contributing factors (fatigue, carbonation, fire incidents etc.). Around the world, numerous bridges have attained their estimated service life and many have approached this limit. The structural integrity assessment of the burnt composite bridge located at CH57+450, Koita village along Abuja-Abaji-Lokoja road, Nigeria, is presented as a case study and shall be forthwith referred to as the 'Koita bridge' in this paper. From the technical evaluation, the residual compressive strength of the concrete piers was found to be below 16.0 N/mm2. This value is very low compared to the expected design value of 30.0 N/mm2. The pier capping beam at pier location 1 has a very low residual compressive strength. The cover to the reinforcement of certain capping beams has an outline of reinforcement which signifies poor concrete cover and the mean compressive strength is also less than 20.0 N/mm2. The steel girder indicated black colouration as a result of the fire incident without any significant structural defect like buckling or warping of the steel section. This paper reviews the structural integrity assessment and repair methodology of the Koita bridge; a composite bridge damaged by fire, highlighting the various challenges of limited obtainable guidance documents about the bridge. The objectives are to increase the understanding of processes and versatile equipment required to test and assess a fire-damaged bridge in order to improve the quality of structural appraisal and rehabilitation; thus, eliminating the prejudice associated with current visual inspection techniques.

Keywords: assessment, bridge, rehabilitation, sustainability

Procedia PDF Downloads 361
2664 Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges

Authors: Marija Vitanovа, Igor Gjorgjiev, Viktor Hristovski, Vlado Micov

Abstract:

Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary.

Keywords: existing bridges, newly designed bridges, reinforced concrete bridges, stability assessment

Procedia PDF Downloads 97
2663 An Overview of Corroded Pipe Repair Techniques Using Composite Materials

Authors: Lim Kar Sing, Siti Nur Afifah Azraai, Norhazilan Md Noor, Nordin Yahaya

Abstract:

Polymeric composites are being increasingly used as repair material for repairing critical infrastructures such as building, bridge, pressure vessel, piping and pipeline. Technique in repairing damaged pipes is one of the major concerns of pipeline owners. Considerable researches have been carried out on the repair of corroded pipes using composite materials. This article attempts a short review of the subject matter to provide insight into various techniques used in repairing corroded pipes, focusing on a wide range of composite repair systems. These systems including pre-cured layered, flexible wet lay-up, pre-impregnated, split composite sleeve and flexible tape systems. Both advantages and limitations of these repair systems were highlighted. Critical technical aspects have been discussed through the current standards and practices. Research gaps and future study scopes in achieving more effective design philosophy are also presented.

Keywords: composite materials, pipeline, repair technique, polymers

Procedia PDF Downloads 507
2662 Effect of Stirrup Corrosion on Concrete Confinement Strength

Authors: Mucip Tapan, Ali Ozvan, Ismail Akkaya

Abstract:

This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns.

Keywords: bridge, column, concrete, corrosion, inspection, stirrup reinforcement

Procedia PDF Downloads 448
2661 Optimal Replacement Period for a One-Unit System with Double Repair Cost Limits

Authors: Min-Tsai Lai, Taqwa Hariguna

Abstract:

This paper presents a periodical replacement model for a system, considering the concept of single and cumulative repair cost limits simultaneously. The failures are divided into two types. Minor failure can be corrected by minimal repair and serious failure makes the system breakdown completely. When a minor failure occurs, if the repair cost is less than a single repair cost limit L1 and the accumulated repair cost is less than a cumulative repair cost limit L2, then minimal repair is executed, otherwise, the system is preventively replaced. The system is also replaced at time T or at serious failure. The optimal period T minimizing the long-run expected cost per unit time is verified to be finite and unique under some specific conditions.

Keywords: repair-cost limit, cumulative repair-cost limit, minimal repair, periodical replacement policy

Procedia PDF Downloads 361
2660 Prioritization in a Maintenance, Repair and Overhaul (MRO) System Based on Fuzzy Logic at Iran Khodro (IKCO)

Authors: Izadi Banafsheh, Sedaghat Reza

Abstract:

Maintenance, Repair, and Overhaul (MRO) of machinery are a key recent issue concerning the automotive industry. It has always been a debated question what order or priority should be adopted for the MRO of machinery. This study attempts to examine several criteria including process sensitivity, average time between machine failures, average duration of repair, availability of parts, availability of maintenance personnel and workload through a literature review and experts survey so as to determine the condition of the machine. According to the mentioned criteria, the machinery were ranked in four modes below: A) Need for inspection, B) Need for minor repair, C) Need for part replacement, and D) Need for major repair. The Fuzzy AHP was employed to determine the weighting of criteria. At the end, the obtained weights were ranked through the AHP for each criterion, three groups were specified: shaving machines, assembly and painting in four modes. The statistical population comprises the elite in the Iranian automotive industry at IKCO covering operation managers, CEOs and maintenance professionals who are highly specialized in MRO and perfectly knowledgeable in how the machinery function. The information required for this study were collected from both desk research and field review, which eventually led to construction of a questionnaire handed out to the sample respondents in order to collect information on the subject matter. The results of the AHP for weighting the criteria revealed that the availability of maintenance personnel was the top priority at coefficient of 0.206, while the process sensitivity took the last priority at coefficient of 0.066. Furthermore, the results of TOPSIS for prioritizing the IKCO machinery suggested that at the mode where there is need for inspection, the assembly machines took the top priority while paining machines took the third priority. As for the mode where there is need for minor repairs, the assembly machines took the top priority while the third priority belonged to the shaving machines. As for the mode where there is need for parts replacement, the assembly machines took the top priority while the third belonged to the paining machinery. Finally, as for the mode where there is need for major repair, the assembly machines took the top priority while the third belonged to the paining machinery.

Keywords: maintenance, repair, overhaul, MRO, prioritization of machinery, fuzzy logic, AHP, TOPSIS

Procedia PDF Downloads 283
2659 Design of Structural Health Monitoring System for a Damaged Reinforced Concrete Bridge

Authors: Muhammad Fawad

Abstract:

Monitoring and structural health assessment are the primary requirements for the performance evaluation of damaged bridges. This paper highlights the case study of a damaged Reinforced Concrete (RC) bridge structure where the Finite element (FE) modelling of this structure was done using the material properties extracted by the in-situ testing. Analysis was carried out to evaluate the bridge damage. On the basis of FE analysis results, this study proposes a proper Structural Health Monitoring (SHM) system that will extend the life cycle of the bridge with minimal repair costs and reduced risk of failure. This system is based on the installation of three different types of sensors: Liquid Levelling sensors (LLS) for measurement of vertical displacement, Distributed Fiber Optic Sensors (DFOS) for crack monitoring, and Weigh in Motion (WIM) devices for monitoring of moving loads on the bridge.

Keywords: bridges, reinforced concrete, finite element method, structural health monitoring, sensors

Procedia PDF Downloads 98
2658 Investigation into Varied Inspection Utilization for Mass Customization

Authors: Trishen Naidoo, Anthony Walker, Shaniel Davrajh, Glen Bright

Abstract:

An investigation into on-line inspection was performed where research is focused on the use of varied inspection (as opposed to 100% inspection) for mass customization (MC). Manufacturers need new methods for quality control in mass customization, and these methods need to address some of the old problems such as over-inspection and bottlenecking. Due to the risks of varied inspection, many manufacturers do not implement it and rather opt for sampling methods. However, there are many advantages of varied inspection and can have applications in mass customization. A control system incorporating fuzzy logic (FL) control is used to perform the variations in inspection usage in a simulated environment. The proposed system can have a key impact in appraisal costs reduction and possibly work-in-process reduction in high variety environments.

Keywords: appraisal costs, fuzzy logic, quality control, work-in-process

Procedia PDF Downloads 226
2657 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function

Authors: Ahmed Noor Al-Qayyim

Abstract:

During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.

Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification

Procedia PDF Downloads 339
2656 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 287
2655 Durability of Reinforced Concrete Structure on Very High Aggressive Environment: A Case Study

Authors: Karla Peitl Miller, Leomar Bravin Porto, Kaitto Correa Fraga, Nataniele Eler Mendes

Abstract:

This paper presents the evaluation and study of a real reinforced concrete structure of a fertilizer storage building, constructed on a Vale’s Port at Brazil, which has been recently under refurbishment. Data that will be shared and commented aim to show how wrong choices in project concepts allied to a very high aggressive environment lead to a fast track degradation, incurring on a hazardous condition associated with huge and expensive treatment for repair and guarantee of minimum performance conditions and service life. It will be also shown and discussed all the covered steps since pathological manifestations first signs were observed until the complete revitalization and reparation planning would be drawn. The conclusions of the work easily explicit the importance of professional technical qualification, the importance of minimum requirements for design and structural reforms, and mainly, the importance of good inspection and diagnostic engineering continuous work.

Keywords: durability, reinforced concrete repair, structural inspection, diagnostic engineering

Procedia PDF Downloads 133
2654 Used MATLAB Code to Study the Vehicle Bridge Coupling Vibration Based On the Method of Newmark-β

Authors: Saidi Abdelkrim, Hamouine Abdelmadjid, Abdellatif Megnounif

Abstract:

The study of interaction between vehicles and bridge structures has become extremely important. Large deflections and vibration induced by heavy and high-speed vehicles affect significantly the safety and efficiency of bridge. The vibration of a bridge caused by passage of vehicles is one of the most imperative considerations in the design of a bridge as a common sort of transportation structure. A major goal of this study is to create a simplified model of a vehicle bridge system in MATLAB. The model will then be used to study the influence of parameters to vehicle-bridge vibrations.

Keywords: vehicle-bridge interaction, Newmark-β, MATLAB code

Procedia PDF Downloads 600
2653 Study of Structural Health Monitoring System for Vam Cong Cable-Stayed Bridge

Authors: L. M. Chinh

Abstract:

Vam Cong Bridge beside Can Tho Bridge is the next cable-stayed bridge spanning the Hau River, connecting Lap Vo district with Thot Not district. After construction by the end of 2018, the Vam Cong Bridge with Cao Lanh Bridge will help to improve the road network in this region of Mekong Delta. For this bridge, the SHM system also had designed for two stages – construction stage and exploitation stage. At the moment over 65% of the bridge construction had completed, and the bridge will be completed at the end of 2018. During the construction stage, the SHM system had been install to monitor behaviors of the bridge. Based on the study of the design documentation of the SHM system of the Vam Cong Bridge and site visit during construction work, many designs and installation errors have been detected. In this paper author thoroughly analyzed the pros and cons of this SHM system, simultaneously make conclusions and recommendations for this system. Specially concentrated on the possibility of implementing the acoustic emission method (AE) into this SHM system, which is an alternative to the further development of the system, enabling a full and cost-effective solution for the bridge management, which is of utmost importance for the service life and safe operation of the bridge.

Keywords: SHM system, design and installation, Vam Cong bridge, construction stage, acoustic emission method (AE)

Procedia PDF Downloads 232
2652 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 201
2651 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 335
2650 Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic

Authors: Yasuyuki Nabeshima

Abstract:

Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void.

Keywords: tunnel, lining concrete, void, non-destructive inspection, ultrasonic

Procedia PDF Downloads 201
2649 Feature of Employment Injuries and Maintenance Works of Construction Machinery

Authors: Naoko Kanazawa, Tran Thi Bich Nguyet, Yoshiyuki Higuchi, Hideki Hamada

Abstract:

Construction machines’ condition is maintained with the regularly inspections, preventive maintenance and repairs by skillful and qualified engineers. If an accident occurs, there will be enormous influence such as human injuries, delays in the term of construction. In this paper, we revealed the characteristics such as inspection, maintenance and repair works for construction machines, and we also clarified the trends of employment injuries based on actual data by simple and cross tabulation methods, and investigated the relation with their works, injured body parts and accident types.

Keywords: construction machines, employment injuries, maintenance and repair, safety and health

Procedia PDF Downloads 298
2648 Seismic Performance of Isolated Bridge Configurations with Soil Structure Interaction

Authors: Davide Forcellini

Abstract:

The most recent development of earthquake engineering is based on concept of design consisting in prescribed performance rather than the more traditional prescriptive approaches. The paper aims to assess the effects of isolation devices and soil structure interaction on a benchmark bridge adopting a Performance-Based Earthquake Engineering methodology. Several isolated configurations of abutments and pier connections are compared performing the most representative isolation devices. Isolation systems suitability depends on many factors, mainly connected with ground effects. In this regard, the second purpose of this paper is to assess the effects of soil-structure interaction (SSI) on the studied bridge configurations. Contributions of isolation technique and soil structure interaction are assessed evaluating the resistance effects applied to Peak Ground Acceleration (PGA) levels in terms of cost and time repair quantities.

Keywords: base isolation, bridge, earthquake engineering, non linearity, PBEE methodology, seismic assessment, soil structure interaction

Procedia PDF Downloads 425