Search results for: finite impulse response
2347 Application of Taguchi Techniques on Machining of A356/Al2O3 Metal Matrix Nano-Composite
Authors: Abdallah M. Abdelkawy, Tarek M. El Hossainya, I. El Mahallawib
Abstract:
Recently, significant achievements have been made in development and manufacturing of nano-dispersed metal matrix nanocomposites (MMNCs). They gain their importance due to their high strength to weight ratio. The machining problems of these new materials are less widely investigated, thus this work focuses on machining of them. Aluminum-Silicon (A356)/ MMNC dispersed with alumina (Al2O3) is important in many applications include engine blocks. The final finish process of this application depends heavily on machining. The most important machining parameter studied includes: cutting force and surface roughness. Experimental trails are performed on the number of special samples of MMNC (with different Al2O3%) where the relation between Al2O3% and cutting speed, feed rate and cutting depth with cutting force and surface roughness were studied. The data obtained were statistically analyzed using Analysis of variance (ANOVA) to define the significant factors on both cutting force and surface roughness and their level of confident. Response Surface Methodology (RSM) is used to build a model relating cutting conditions and Al2O3% to the cutting force and surface roughness. The results have shown that feed and depth of cut have the major contribution on the cutting force and the surface roughness followed by cutting speed and nano-percent in MMNCs.Keywords: machinability, cutting force, surface roughness, Ra, RSM, ANOVA, MMNCs
Procedia PDF Downloads 3692346 Modeling Factors Affecting Fertility Transition in Africa: Case of Kenya
Authors: Dennis Okora Amima Ondieki
Abstract:
Fertility transition has been identified to be affected by numerous factors. This research aimed to investigate the most real factors affecting fertility transition in Kenya. These factors were firstly extracted from the literature convened into demographic features, social, and economic features, social-cultural features, reproductive features and modernization features. All these factors had 23 factors identified for this study. The data for this study was from the Kenya Demographic and Health Surveys (KDHS) conducted in 1999-2003 and 2003-2008/9. The data was continuous, and it involved the mean birth order for the ten periods. Principal component analysis (PCA) was utilized using 23 factors. Principal component analysis conveyed religion, region, education and marital status as the real factors. PC scores were calculated for every point. The identified principal components were utilized as forecasters in the multiple regression model, with the fertility level as the response variable. The four components were found to be affecting fertility transition differently. It was found that fertility is affected positively by factors of region and marital and negatively by factors of religion and education. These four factors can be considered in the planning policy in Kenya and Africa at large.Keywords: fertility transition, principal component analysis, Kenya demographic health survey, birth order
Procedia PDF Downloads 1012345 Synthesis of Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch by Using Phosphotungstic Acid
Authors: Yogi Wibisono Budhi, Ferry Iskandar, Veinardi Suendo, Muhammad Fakhrudin, Neng Tresna Umi Culsum
Abstract:
Oil palm empty fruit bunch (OPEFB), an abundant agro-waste in Indonesia, is being studied as raw material of Cellulose Nanocrystals (CNC) synthesis. Instead of conventional acid mineral, phosphotungstic acid (H₃PW₁₂O₄₀, HPW) was used to hydrolyze cellulose due to recycling ability and easy handling. Before hydrolysis process, dried EFB was treated by 4% NaOH solution at 90oC for 2 hours and then bleached using 2% NaClO₂ solution at 80oC for 3 hours to remove hemicellulose and lignin. Hydrolysis reaction parameters such as temperature, acid concentration, and reaction time were optimized with fixed solid-liquid ratio of 1:40. Response surface method was used for experimental design to determine the optimum condition of each parameter. HPW was extracted from the mixed solution and recycled with diethyl ether. CNC was separated from the solution by centrifuging and washing with distilled water and ethanol to remove degraded sugars and unreacted celluloses. In this study, pulp from dried EFB produced 44.8% yield of CNC. Dynamic Light Scattering (DLS) analysis showed that most of CNC equivalent diameter was 140 nm. Crystallinity index was observed at 73.3% using X-ray Diffraction (XRD) analysis. Thus, a green established process for the preparation of CNC was achieved.Keywords: acid hydrolysis, cellulose nanocrystals, oil palm empty fruit bunch, phosphotungstic acid
Procedia PDF Downloads 2172344 The Practices of Citizen Participation and Political Accountability in Malaysia Local Government
Authors: Halimah Abdul Manaf, Ahmad Martadha Mohamed, Zainal M. Zan, Nur Rusydina Khadzali
Abstract:
Strengthening accountability among civil servants has been at the centre of government transformation ever since the country is striving to become a developed nation by the year 2020. One critical area that has become the loci of attention is increasing the accountability of local government by delivering services that are preferred by the communities. This article explores the practices of citizen participation and political accountability in local government in Malaysia. The existing literature has identified a mismatch between the demands of the community and the actual services delivered by the local government. Based upon this framework, this research attempts to examine the linkages between citizen participation and political accountability in selected local governments in Malaysia. This study employs quantitative method involving 1155 respondents who were randomly selected from local government personnel as well as local citizens. The instruments in the questionnaires were adopted from Wang and Wart (2007) who have also studied local government accountability. The findings reveal that respondents are satisfied with the services provided to the community. However, three areas of concerned are the inadequacy of citizens’ participation in programs, immediate actions on complaints as well as the slow response to repair dilapidated basic infrastructures such as roads, park, and recreations. It is recommended that local governments in Malaysia continue to engage the citizens in the decision making process so that the needs and demands of the citizens can be adequately fulfilled.Keywords: citizen participation, political accountability, local government, Malaysia
Procedia PDF Downloads 2132343 Inviscid Steady Flow Simulation Around a Wing Configuration Using MB_CNS
Authors: Muhammad Umar Kiani, Muhammad Shahbaz, Hassan Akbar
Abstract:
Simulation of a high speed inviscid steady ideal air flow around a 2D/axial-symmetry body was carried out by the use of mb_cns code. mb_cns is a program for the time-integration of the Navier-Stokes equations for two-dimensional compressible flows on a multiple-block structured mesh. The flow geometry may be either planar or axisymmetric and multiply-connected domains can be modeled by patching together several blocks. The main simulation code is accompanied by a set of pre and post-processing programs. The pre-processing programs scriptit and mb_prep start with a short script describing the geometry, initial flow state and boundary conditions and produce a discretized version of the initial flow state. The main flow simulation program (or solver as it is sometimes called) is mb_cns. It takes the files prepared by scriptit and mb_prep, integrates the discrete form of the gas flow equations in time and writes the evolved flow data to a set of output files. This output data may consist of the flow state (over the whole domain) at a number of instants in time. After integration in time, the post-processing programs mb_post and mb_cont can be used to reformat the flow state data and produce GIF or postscript plots of flow quantities such as pressure, temperature and Mach number. The current problem is an example of supersonic inviscid flow. The flow domain for the current problem (strake configuration wing) is discretized by a structured grid and a finite-volume approach is used to discretize the conservation equations. The flow field is recorded as cell-average values at cell centers and explicit time stepping is used to update conserved quantities. MUSCL-type interpolation and one of three flux calculation methods (Riemann solver, AUSMDV flux splitting and the Equilibrium Flux Method, EFM) are used to calculate inviscid fluxes across cell faces.Keywords: steady flow simulation, processing programs, simulation code, inviscid flux
Procedia PDF Downloads 4292342 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators
Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino
Abstract:
In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators
Procedia PDF Downloads 4332341 The Development of Crisis Distance Education at Kuwait University During the COVID-19 Pandemic
Authors: Waleed Alanzi
Abstract:
The purpose of this qualitative study was to add to the existing literature and provide a more detailed understanding of the individual experiences and perceptions of 15 Deans at the University of Kuwait regarding their first year of planning, developing, and implementing crisis distance education (CDE) in response to the COVID-19 epidemic. An interpretative phenomenological approach was applied, using the thematic analysis of interview transcripts to describe the challenging journeys taken by each of the Deans from the first-person point of view. There was objective evidence, manifested by four primary themes (“Obstacles to the implementation of CDE”; “Planning for CDE”; “Training for CDE,” and “Future Directions”) to conclude that the faculty members, technical staff, administrative staff, and students generally helped each other to overcome the obstacles associated with planning and implementing CDE. The idea that CDE may turn homes into schools and parents into teachers was supported. The planning and implementation of CDE were inevitably associated with a certain amount of confusion, as well as disruptions in the daily routines of staff and students, as well as significant changes in their responsibilities. There were contradictory ideas about the future directions of distance education after the pandemic. Previous qualitative research on the implementation of CDE at higher education institutions in the Arab world has focused mainly on the experiences and perceptions of students; however, little is known about the experiences and perceptions of the students at the University of Kuwait during the COVID19 pandemic, providing a rationale and direction for future research.Keywords: distance learning, qualitative research, COVID-19 epidemic, Kuwait university
Procedia PDF Downloads 1052340 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads
Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh
Abstract:
Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc’ = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.Keywords: eccentric loads, ductility index, RC column, slenderness, UHPFRC
Procedia PDF Downloads 1302339 Nitric Oxide: Role in Immunity and Therapeutics
Authors: Anusha Bhardwaj, Shekhar Shinde
Abstract:
Nitric oxide (NO•) has been documented in research papers as one of the most versatile player in the therapeutics. It is identified as a biological multifunctional messenger molecule which is synthesized by the action of nitric oxide synthase (NOS) enzyme from L-arginine. The protective and the toxic effect in conjunction form the complete picture of the biological function of nitric oxide in humans. The dual nature is because of various factors such as concentration of NO, the isoform of NOS involved, type of cells in which it is synthesized, reaction partners like proteins, reactive oxygen intermediates, prosthetic groups, thiols etc., availability of the substrate L-arginine, intracellular environment in which NO is produced and generation of guanosine 3, 5’- cyclic monophosphate (cGMP). Activation of NOS through infection or trauma leads to one or more systemic effects including enhanced immune activity against invading pathogens, vaso/bronchodilatation in the cardiovascular and respiratory systems and altered neurotransmission which can be protective or toxic. Hence, NO affects the balance between healthy signaling and neurodegeneration in the brain. In lungs, it has beneficial effects on the function of airways as a bronchodilator and acts as the neurotransmitter of bronchodilator nerves. Whereas, on the other hand, NO may have deleterious effects by amplifying the asthmatic inflammatory response and also act as a vasodilator in the airways by increasing plasma exudation. But NOS Inhibitors and NO donors hamper the signalling pathway and hence a therapeutic application of NO is compromised.Keywords: nitric oxide, multifunctional, dual nature, therapeutic applications
Procedia PDF Downloads 4982338 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach
Authors: Rajneesh, Priyanka Singh
Abstract:
Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).Keywords: biogas, digester efficiency, design of experiment, plug flow digester
Procedia PDF Downloads 3782337 Effect of Nanoparticles Concentration, pH and Agitation on Bioethanol Production by Saccharomyces cerevisiae BY4743: An Optimization Study
Authors: Adeyemi Isaac Sanusi, Gueguim E. B. Kana
Abstract:
Nanoparticles have received attention of the scientific community due to their biotechnological potentials. They exhibit advantageous size, shape and concentration-dependent catalytic, stabilizing, immunoassays and immobilization properties. This study investigates the impact of metallic oxide nanoparticles (NPs) on ethanol production by Saccharomyces cerevisiae BY4743. Nine different nanoparticles were synthesized using precipitation method and microwave treatment. The nanoparticles synthesized were characterized by Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fermentation processes were carried out at varied NPs concentrations (0 – 0.08 wt%). Highest ethanol concentrations were achieved after 24 h using Cobalt NPs (5.07 g/l), Copper NPs (4.86 g/l) and Manganese NPs (4.74 g/l) at 0.01 wt% NPs concentrations, which represent 13%, 8.7% and 5.4% increase respectively over the control (4.47 g/l). The lowest ethanol concentration (0.17 g/l) was obtained when 0.08 wt% of Silver NPs was used. And lower ethanol concentrations were observed at higher NPs concentration. Ethanol concentration decrease after 24 h for all the processes. In all set up with NPs, the pH was observed to be stable and the stability was directly proportional to nanoparticles concentrations. These findings suggest that the presence of some of the NPs in the bioprocesses has catalytic and pH stabilizing potential. Ethanol production by Saccharomyces cerevisiae BY4743 was enhanced in the presence of Cobalt NPs, Copper NPs and Manganese NPs. Optimization study using response surface methodology (RSM) will further elucidate the impact of these nanoparticles on bioethanol production.Keywords: agitation, bioethanol, nanoparticles concentration, optimization, pH value
Procedia PDF Downloads 1882336 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 2262335 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells
Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi
Abstract:
Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery
Procedia PDF Downloads 3742334 Students' Experience Perception in Courses Taught in New Delivery Modes Compared to Traditional Modes
Authors: Alejandra Yanez, Teresa Benavides, Zita Lopez
Abstract:
Even before COVID-19, one of the most important challenges that Higher Education faces today is the need for innovative educational methodologies and flexibility. We could all agree that one of the objectives of Higher Education is to provide students with a variety of intellectual and practical skills that, at the same time, will help them develop competitive advantages such as adaptation and critical thinking. Among the strategic objectives of Universidad de Monterrey (UDEM) has been to provide flexibility and satisfaction to students in the delivery modes of the academic offer. UDEM implemented a methodology that combines face to face with synchronous and asynchronous as delivery modes. UDEM goal, in this case, was to implement new technologies and different teaching methodologies that will improve the students learning experience. In this study, the experience of students during courses implemented in new delivery mode was compared with students in courses with traditional delivery modes. Students chose openly either way freely. After everything students around the world lived in 2020 and 2021, one can think that the face to face (traditional) delivery mode would be the one chosen by students. The results obtained in this study reveal that both delivery modes satisfy students and favor their learning process. We will show how the combination of delivery modes provides flexibility, so the proposal is that universities can include them in their academic offer as a response to the current student's learning interests and needs.Keywords: flexibility, new delivery modes, student satisfaction, academic offer
Procedia PDF Downloads 1012333 Analgesic Efficacy of Opiorphin and Its Analogue
Authors: Preet Singh, Kavitha Kongara, Dave Harding, Neil Ward, Paul Chambers
Abstract:
The objective of this study was to compare the analgesic efficacy of opiorphin and its analogue with a mu-receptor agonist; morphine. Opiorphins (Gln-Arg-Phe-Ser-Arg) belong to the family of endogenous enkephalinase inhibitors, found in saliva of humans. They are inhibitors of two Zinc metal ectopeptidases (Neutral endopeptidase NEP, and amino-peptidase APN) which are responsible for the inactivation of the endogenous opioids; endorphins and enkephalins. Morphine and butorphanol exerts their analgesic effects by mimicking the actions of endorphins and enkephalins. The opiorphin analogue was synthesized based on the structure activity relationship of the amino acid sequence of opiorphin. The pharmacological profile of the analogue was tested by replacing Serine at position 4 with Proline. The hot plate and tail flick test were used to demonstrate the analgesic efficacy. There was a significant increase in the time for the tail flick response after an injection of opiorphin, which was similar to the morphine effect. There was no increase in time in the hot plate test after an injection of opiorphin. The results suggest that opiorphin works at spinal level only rather than both spinal and supraspinal. Further work is required to confirm our results. We did not find analgesic activity of the opiorphin analogue. Thus, Serine at position 4 is also important for its pharmacological action. Further work is required to illustrate the role of serine at position 4 in opiorphin.Keywords: analgesic peptides, endogenous opioids, morphine, opiorphin
Procedia PDF Downloads 3252332 A Bayesian Hierarchical Poisson Model with an Underlying Cluster Structure for the Analysis of Measles in Colombia
Authors: Ana Corberan-Vallet, Karen C. Florez, Ingrid C. Marino, Jose D. Bermudez
Abstract:
In 2016, the Region of the Americas was declared free of measles, a viral disease that can cause severe health problems. However, since 2017, measles has reemerged in Venezuela and has subsequently reached neighboring countries. In 2018, twelve American countries reported confirmed cases of measles. Governmental and health authorities in Colombia, a country that shares the longest land boundary with Venezuela, are aware of the need for a strong response to restrict the expanse of the epidemic. In this work, we apply a Bayesian hierarchical Poisson model with an underlying cluster structure to describe disease incidence in Colombia. Concretely, the proposed methodology provides relative risk estimates at the department level and identifies clusters of disease, which facilitates the implementation of targeted public health interventions. Socio-demographic factors, such as the percentage of migrants, gross domestic product, and entry routes, are included in the model to better describe the incidence of disease. Since the model does not impose any spatial correlation at any level of the model hierarchy, it avoids the spatial confounding problem and provides a suitable framework to estimate the fixed-effect coefficients associated with spatially-structured covariates.Keywords: Bayesian analysis, cluster identification, disease mapping, risk estimation
Procedia PDF Downloads 1512331 Effect of Cabbage and Cauliflower Emitted Volatile Organic Compounds on Foraging Response of Plutella xylostella
Authors: Sumbul Farhat, Pratyay Vaibhav, Sarah Jain, Kapinder Kumar, Archna Kumar
Abstract:
The Diamondback Moth, Plutella xylostella (Linnaeus), is a major pest of cole crops that causes approximately 50% loss in global production. The utilization of inorganic pesticides is reflected in the development of resistance to this pest. Thus, there is a great need for an eco-friendly, sustainable strategy for the control of this pest. Although this pest, several natural enemies are reported worldwide, none of them can control it efficiently. Therefore, a proposed study is planned to understand the Volatile Organic Compounds (VOCs) mediated signaling interaction mechanism of the plant, pest, and natural enemy. For VOCs collection during different deployment stages of Cabbage POI, Green Ball, Pusa Cabbage, Cabbage Local, Snowball 16, Kanchan Plus, Pusa Meghna, Farm Sona Hybrid F1, and Samridhi F1 Hybrid, the Solid-phase microextraction (SPME) method was employed. Characterization of VOCs was conducted by Gas Chromatography-Mass Spectrometry (GC-MS). The impact of collected VOCs was assessed through Y-Tube Bioassays. The results indicate that the Cabbage variety Green Ball shows maximum repellency for P. xylostella (-100%). The cues present in this variety may be exploited for efficient management of P. xylostella in the cole crop ecosystem.Keywords: Plutella xylostella, cole crops, volatile organic compounds, GC-MS, Green Ball
Procedia PDF Downloads 1262330 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy
Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan
Abstract:
The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model
Procedia PDF Downloads 1702329 Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls
Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma
Abstract:
An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls.Keywords: steel-plate composite shear wall, safety-related nuclear structure, flexure-critical wall, cyclic loading
Procedia PDF Downloads 3502328 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization
Procedia PDF Downloads 3992327 Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis
Authors: Yulistiani Yulistiani, Zamrotul Izzah, Lintang Bismantara, Wenny Putri Nilamsari, Arif Bachtiar, Budi Suprapti
Abstract:
Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB.Keywords: interferon-gamma, interleukin-6, probiotic, tuberculosis
Procedia PDF Downloads 3492326 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control
Authors: N. Smaoui, B. Chentouf
Abstract:
The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability
Procedia PDF Downloads 762325 The Role of Vitamin D Supplementation in Augmenting IFN-γ Production in Response to Mycobacterium Tuberculosis Infection: A Randomized Controlled Trial
Authors: Muhammad Imran Hussain, Ramisha Ibtisam, Tayyaba Fatima, Huba Khalid, Ayesha Aziz, Khansa, Adan Sitara, Anam Shahzad, Aymen Jabeen
Abstract:
Vitamin D supports the immune system fight TB by inhibiting Interferon-gamma (IFN-γ) and lowering host inflammation. The purpose of the research was to see if giving the vitamin D supplements to TB patients affected their prognosis. A randomized placebo control study of 200 TB patients was performed among which 106 received 400,000 IU of injectable vitamin D3 and 94 received placebo for 2 doses. Assessment was carried out at the end of every month for 3 months. IFN-γ responses to whole blood stimulation generated by the Mycobacterium tuberculosis sonicate (MTBs) antigen and early secreted and T cell activated 6 kDa (ESAT6) were assessed at 0 and 12 weeks. The statistical analysis used descriptive statistics (mean and standard deviation), Friedman's test and Fisher's test. The vitamin D group gained significantly more weight (+3.90 pounds) and had less persistent lung disease on imaging (1.33 zones vs. 1.84 zones). They also had a 50% decrease in cavity size. Additionally, patients with low baseline serum concentrations of 25-(OH)D had a significant increase in MTB-induced IFN-γ production after taking vitamin D supplements. Vitamin D administration in large amounts can hasten the recovery of TB patients. The findings point is a therapeutically useful activity of Vitamin D's in the management for tuberculosis.Keywords: tuberculosis, vitamin D, interferon gamma, protein, infection
Procedia PDF Downloads 522324 Influence of Cucurbitacin-Containing Phytonematicides on Growth of Rough Lemon (Citrus jambhiri)
Authors: Raisibe V. Mathabatha, Phatu W. Mashela, Nehemiah M. Mokgalong
Abstract:
Occasional incidence of phytotoxicity in Nemarioc-BL and Nemafric-AL phytonematicides to crops raises credibility challenges that could negate their registration as commercial products. Responses of plants to phytonematicides are characterized by the existence of stimulation, neutral and inhibition phases, with the mid-point of the former being referred to as the Mean Concentration Stimulation Point (MSCP = Dm + Rh/2). The objective of this study was to determine the MCSP and the overall sensitivity (∑k) of Nemarioc-AL and Nemafric-BL phytonematicides to rough lemon seedling rootstocks using the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model. Two parallel greenhouse experiments were initiated, with seven dilutions of each phytonematicide arranged in a randomised complete block design, replicated nine times. Six-month-old rough lemon seedlings were transplanted into 20-cm-diameter plastic pots, filled with steam-pasteurised river sand (300°C for 3 h) and Hygromix-T growing mixture. Treatments at 0, 2, 4, 8, 16, 32 and 164% dilutions were applied weekly at 300 ml/plant. At 84 days after the treatments, analysis of variance-significant plant variables was subjected to the CARD model to generate appropriate biological indices. Computed MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on rough lemon were 29 and 38%, respectively, whereas ∑k values were 1 and 0, respectively. At the applied concentrations, rough lemon seedlings were highly sensitive to Nemarioc-AL and Nemafric-BL phytonematicides.Keywords: crude extracts, cucurbitacins, effective microbes, fruit extracts
Procedia PDF Downloads 1462323 Enhancement of Mulberry Leaf Yield and Water Productivity in Eastern Dry Zone of Karnataka, India
Authors: Narayanappa Devakumar, Chengalappa Seenappa
Abstract:
The field experiments were conducted during Rabi 2013 and summer 2014 at College of Sericulture, Chintamani, Chickaballapur district, Karnataka, India to find out the response of mulberry to different methods, levels of irrigation and mulching. The results showed that leaf yield and water productivity of mulberry were significantly influenced by different methods, levels of irrigation and mulching. Subsurface drip with lower level of irrigation at 0.8 CPE (Cumulative Pan Evaporation) recorded higher leaf yield and water productivity (42857 kg ha-1 yr-1and 364.41 kg hacm-1) than surface drip with higher level of irrigation at 1.0 CPE (38809 kg ha-1 yr-1 and 264.10 kg hacm-1) and micro spray jet (39931 kg ha-1 yr-1 and 271.83 kg hacm-1). Further, subsurface drip recorded minimum water used to produce one kg of leaf and to earn one rupee of profit (283 L and 113 L) compared to surface drip (390 L and 156 L) and micro spray jet (379 L and 152 L) irrigation methods. Mulberry leaf yield increased and water productivity decreased with increased levels of irrigation. However, these results indicated that irrigation of mulberry with subsurface drip increased leaf yield and water productivity by saving 20% of irrigation water than surface drip and micro spray jet irrigation methods in Eastern Dry Zone (EDZ) of Karnataka.Keywords: cumulative pan evaporation, mulaberry, subsurface drip irrigation, water productivity
Procedia PDF Downloads 2812322 Multiscale Process Modeling of Ceramic Matrix Composites
Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya
Abstract:
Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.Keywords: digital engineering, finite elements, manufacturing, molecular dynamics
Procedia PDF Downloads 982321 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice
Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath
Abstract:
Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.Keywords: amifostine, fibrosis, inflammation, lung injury radiation
Procedia PDF Downloads 5102320 Parametric Investigation of Wire-Cut Electric Discharge Machining on Steel ST-37
Authors: Mearg Berhe Gebregziabher
Abstract:
Wire-cut electric discharge machining (WEDM) is one of the advanced machining processes. Due to the development of the current manufacturing sector, there has been no research work done before about the optimization of the process parameters based on the availability of the workpiece of the Steel St-37 material in Ethiopia. Material Removal Rate (MRR) is considered as the experimental response of WCEDM. The main objective of this work is to investigate and optimize the process parameters on machining quality that gives high MRR during machining of Steel St-37. Throughout the investigation, Pulse on Time (TON), Pulse off Time (TOFF) and Velocities of Wire Feed (WR) are used as variable parameters at three different levels, and Wire tension, flow rate, type of dielectric fluid, type of the workpiece and wire material and dielectric flow rate are keeping as constants for each experiment. The Taguchi methodology, as per Taguchi‟ 's standard L9 (3^3) Orthogonal Array (OA), has been carried out to investigate their effects and to predict the optimal combination of process parameters over MRR. Signal to Noise ratio (S/N) and Analysis of Variance (ANOVA) were used to analyze the effect of the parameters and to identify the optimum cutting parameters on MRR. MRR was measured by using the Electronic Balance Model SI-32. The results indicated that the most significant factors for MRR are TOFF, TON and lastly WR. Taguchi analysis shows that, the optimal process parameters combination is A2B2C2, i.e., TON 6μs, TOFF 29μs and WR 2 m/min. At this level, the MRR of 0.414 gram/min has been achieved.Keywords: ANOVA, MRR, parameter, Taguchi Methode
Procedia PDF Downloads 432319 Genome-Wide Functional Analysis of Phosphatase in Cryptococcus neoformans
Authors: Jae-Hyung Jin, Kyung-Tae Lee, Yee-Seul So, Eunji Jeong, Yeonseon Lee, Dongpil Lee, Dong-Gi Lee, Yong-Sun Bahn
Abstract:
Cryptococcus neoformans causes cryptococcal meningoencephalitis mainly in immunocompromised patients as well as immunocompetent people. But therapeutic options are limited to treat cryptococcosis. Some signaling pathways including cyclic AMP pathway, MAPK pathway, and calcineurin pathway play a central role in the regulation of the growth, differentiation, and virulence of C. neoformans. To understand signaling networks regulating the virulence of C. neoformans, we selected the 114 putative phosphatase genes, one of the major components of signaling networks, in the genome of C. neoformans. We identified putative phosphatases based on annotation in C. neoformans var. grubii genome database provided by the Broad Institute and National Center for Biotechnology Information (NCBI) and performed a BLAST search of phosphatases of Saccharomyces cerevisiae, Aspergillus nidulans, Candida albicans and Fusarium graminearum to Cryptococcus neoformans. We classified putative phosphatases into 14 groups based on InterPro phosphatase domain annotation. Here, we constructed 170 signature-tagged gene-deletion strains through homologous recombination methods for 91 putative phosphatases. We examined their phenotypic traits under 30 different in vitro conditions, including growth, differentiation, stress response, antifungal resistance and virulence-factor production.Keywords: human fungal pathogen, phosphatase, deletion library, functional genomics
Procedia PDF Downloads 3642318 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.Keywords: data grid, data replication, simulation, replica selection, replica placement
Procedia PDF Downloads 260