Search results for: continuous engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5189

Search results for: continuous engineering

89 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: slow onset hypoxia, hypobaric chamber training, altitude sickness, symptoms and altitude, pressure cabin

Procedia PDF Downloads 116
88 Respiratory Health and Air Movement Within Equine Indoor Arenas

Authors: Staci McGill, Morgan Hayes, Robert Coleman, Kimberly Tumlin

Abstract:

The interaction and relationships between horses and humans have been shown to be positive for physical, mental, and emotional wellbeing, however equine spaces where these interactions occur do include some environmental risks. There are 1.7 million jobs associated with the equine industry in the United States in addition to recreational riders, owners, and volunteers who interact with horses for substantial amounts of time daily inside built structures. One specialized facility, an “indoor arena” is a semi-indoor structure used for exercising horses and exhibiting skills during competitive events. Typically, indoor arenas have a sand or sand mixture as the footing or surface over which the horse travels, and increasingly, silica sand is being recommended due to its durable nature. It was previously identified in a semi-qualitative survey that the majority of individuals using indoor arenas have environmental concerns with dust. 27% (90/333) of respondents reported respiratory issues or allergy-like symptoms while riding with 21.6% (71/329) of respondents reporting these issues while standing on the ground observing or teaching. Frequent headaches and/or lightheadedness was reported in 9.9% (33/333) of respondents while riding and in 4.3% 14/329 while on the ground. Horse respiratory health is also negatively impacted with 58% (194/333) of respondents indicating horses cough during or after time in the indoor arena. Instructors who spent time in indoor arenas self-reported more respiratory issues than those individuals who identified as smokers, highlighting the health relevance of understanding these unique structures. To further elucidate environmental concerns and self-reported health issues, 35 facility assessments were conducted in a cross-sectional sampling design in the states of Kentucky and Ohio (USA). Data, including air speeds, were collected in a grid fashion at 15 points within the indoor arenas and then mapped spatially using krigging in ARCGIS. From the spatial maps, standard variances were obtained and differences were analyzed using multivariant analysis of variances (MANOVA) and analysis of variances (ANOVA). There were no differences for the variance of the air speeds in the spaces for facility orientation, presence and type of roof ventilation, climate control systems, amount of openings, or use of fans. Variability of the air speeds in the indoor arenas was 0.25 or less. Further analysis yielded that average air speeds within the indoor arenas were lower than 100 ft/min (0.51 m/s) which is considered still air in other animal facilities. The lack of air movement means that dust clearance is reliant on particle size and weight rather than ventilation. While further work on respirable dust is necessary, this characterization of the semi-indoor environment where animals and humans interact indicates insufficient air flow to eliminate or reduce respiratory hazards. Finally, engineering solutions to address air movement deficiencies within indoor arenas or mitigate particulate matter are critical to ensuring exposures do not lead to adverse health outcomes for equine professionals, volunteers, participants, and horses within these spaces.

Keywords: equine, indoor arena, ventilation, particulate matter, respiratory health

Procedia PDF Downloads 116
87 Spin Rate Decaying Law of Projectile with Hemispherical Head in Exterior Trajectory

Authors: Quan Wen, Tianxiao Chang, Shaolu Shi, Yushi Wang, Guangyu Wang

Abstract:

As a kind of working environment of the fuze, the spin rate decaying law of projectile in exterior trajectory is of great value in the design of the rotation count fixed distance fuze. In addition, it is significant in the field of devices for simulation tests of fuze exterior ballistic environment, flight stability, and dispersion accuracy of gun projectile and opening and scattering design of submunition and illuminating cartridges. Besides, the self-destroying mechanism of the fuze in small-caliber projectile often works by utilizing the attenuation of centrifugal force. In the theory of projectile aerodynamics and fuze design, there are many formulas describing the change law of projectile angular velocity in external ballistic such as Roggla formula, exponential function formula, and power function formula. However, these formulas are mostly semi-empirical due to the poor test conditions and insufficient test data at that time. These formulas are difficult to meet the design requirements of modern fuze because they are not accurate enough and have a narrow range of applications now. In order to provide more accurate ballistic environment parameters for the design of a hemispherical head projectile fuze, the projectile’s spin rate decaying law in exterior trajectory under the effect of air resistance was studied. In the analysis, the projectile shape was simplified as hemisphere head, cylindrical part, rotating band part, and anti-truncated conical tail. The main assumptions are as follows: a) The shape and mass are symmetrical about the longitudinal axis, b) There is a smooth transition between the ball hea, c) The air flow on the outer surface is set as a flat plate flow with the same area as the expanded outer surface of the projectile, and the boundary layer is turbulent, d) The polar damping moment attributed to the wrench hole and rifling mark on the projectile is not considered, e) The groove of the rifle on the rotating band is uniform, smooth and regular. The impacts of the four parts on aerodynamic moment of the projectile rotation were obtained by aerodynamic theory. The surface friction stress of the projectile, the polar damping moment formed by the head of the projectile, the surface friction moment formed by the cylindrical part, the rotating band, and the anti-truncated conical tail were obtained by mathematical derivation. After that, the mathematical model of angular spin rate attenuation was established. In the whole trajectory with the maximum range angle (38°), the absolute error of the polar damping torque coefficient obtained by simulation and the coefficient calculated by the mathematical model established in this paper is not more than 7%. Therefore, the credibility of the mathematical model was verified. The mathematical model can be described as a first-order nonlinear differential equation, which has no analytical solution. The solution can be only gained as a numerical solution by connecting the model with projectile mass motion equations in exterior ballistics.

Keywords: ammunition engineering, fuze technology, spin rate, numerical simulation

Procedia PDF Downloads 144
86 Improving Road Infrastructure Safety Management Through Statistical Analysis of Road Accident Data. Case Study: Streets in Bucharest

Authors: Dimitriu Corneliu-Ioan, Gheorghe FrațIlă

Abstract:

Romania has one of the highest rates of road deaths among European Union Member States, and there is a concern that the country will not meet its goal of "zero deaths" by 2050. The European Union also aims to halve the number of people seriously injured in road accidents by 2030. Therefore, there is a need to improve road infrastructure safety management in Romania. The aim of this study is to analyze road accident data through statistical methods to assess the current state of road infrastructure safety in Bucharest. The study also aims to identify trends and make forecasts regarding serious road accidents and their consequences. The objective is to provide insights that can help prioritize measures to increase road safety, particularly in urban areas. The research utilizes statistical analysis methods, including exploratory analysis and descriptive statistics. Databases from the Traffic Police and the Romanian Road Authority are analyzed using Excel. Road risks are compared with the main causes of road accidents to identify correlations. The study emphasizes the need for better quality and more diverse collection of road accident data for effective analysis in the field of road infrastructure engineering. The research findings highlight the importance of prioritizing measures to improve road safety in urban areas, where serious accidents and their consequences are more frequent. There is a correlation between the measures ordered by road safety auditors and the main causes of serious accidents in Bucharest. The study also reveals the significant social costs of road accidents, amounting to approximately 3% of GDP, emphasizing the need for collaboration between local and central administrations in allocating resources for road safety. This research contributes to a clearer understanding of the current road infrastructure safety situation in Romania. The findings provide critical insights that can aid decision-makers in allocating resources efficiently and institutionally cooperating to achieve sustainable road safety. The data used for this study are collected from the Traffic Police and the Romanian Road Authority. The data processing involves exploratory analysis and descriptive statistics using the Excel tool. The analysis allows for a better understanding of the factors contributing to the current road safety situation and helps inform managerial decisions to eliminate or reduce road risks. The study addresses the state of road infrastructure safety in Bucharest and analyzes the trends and forecasts regarding serious road accidents and their consequences. It studies the correlation between road safety measures and the main causes of serious accidents. To improve road safety, cooperation between local and central administrations towards joint financial efforts is important. This research highlights the need for statistical data processing methods to substantiate managerial decisions in road infrastructure management. It emphasizes the importance of improving the quality and diversity of road accident data collection. The research findings provide a critical perspective on the current road safety situation in Romania and offer insights to identify appropriate solutions to reduce the number of serious road accidents in the future.

Keywords: road death rate, strategic objective, serious road accidents, road safety, statistical analysis

Procedia PDF Downloads 84
85 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System

Authors: A. Chávez, A. Rodríguez, F. Pinzón

Abstract:

Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.

Keywords: sludge, landfill, leachate, SBR

Procedia PDF Downloads 272
84 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia

Abstract:

Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.

Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior

Procedia PDF Downloads 212
83 Comparative Studies on the Needs and Development of Autotronic Maintenance Training Modules for the Training of Automobile Independent Workshop Service Technicians in North – Western Region, Nigeria

Authors: Muhammad Shuaibu Birniwa

Abstract:

Automobile Independent Workshop Service Technicians (popularly called roadside mechanics) are technical personals that repairs most of the automobile vehicles in Nigeria. Majority of these mechanics acquired their skills through apprenticeship training. Modern vehicle imported into the country posed greater challenges to the present automobile technicians particularly in the area of carrying out maintenance repairs of these latest automobile vehicles (autotronics vehicle) due to their inability to possessed autotronic skills competency. To source for solution to the above mentioned problems, therefore a research is carried out in North – Western region of Nigeria to produce a suitable maintenance training modules that can be used to train the technicians for them to upgrade/acquire the needed competencies for successful maintenance repair of the autotronic vehicles that were running everyday on the nation’s roads. A cluster sampling technique is used to obtain a sample from the population. The population of the study is all autotronic inclined lecturers, instructors and independent workshop service technicians that are within North – Western region of Nigeria. There are seven states (Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto and Zamfara) in the study area, these serves as clusters in the population. Five (5) states were randomly selected to serve as the sample size. The five states are Jigawa, Kano, Katsina, Kebbi and Zamfara, the entire population of the five states which serves as clusters is (183), lecturers (44), instructors (49) and autotronic independent workshop service technicians (90), all of them were used in the study because of their manageable size. 183 copies of autotronic maintenance training module questionnaires (AMTMQ) with 174 and 149 question items respectively were administered and collected by the researcher with the help of an assistants, they are administered to 44 Polytechnic lecturers in the department of mechanical engineering, 49 instructors in skills acquisition centres/polytechnics and 90 master craftsmen of an independent workshops that are autotronic inclined. Data collected for answering research questions 1, 3, 4 and 5 were analysed using SPSS software version 22, Grand Mean and standard deviation were used to answer the research questions. Analysis of Variance (ANOVA) was used to test null hypotheses one (1) to three (3) and t-test statistical tool is used to analyzed hypotheses four (4) and five (5) all at 0.05 level of significance. The research conducted revealed that; all the objectives, contents/tasks, facilities, delivery systems and evaluation techniques contained in the questionnaire were required for the development of the autotronic maintenance training modules for independent workshop service technicians in the north – western zone of Nigeria. The skills upgrade training conducted by federal government in collaboration with SURE-P, NAC and SMEDEN was not successful because the educational status of the target population was not considered in drafting the needed training modules. The mode of training used does not also take cognizance of the theoretical aspect of the trainees, especially basic science which rendered the programme ineffective and insufficient for the tasks on ground.

Keywords: autotronics, roadside, mechanics, technicians, independent

Procedia PDF Downloads 73
82 A Flipped Learning Experience in an Introductory Course of Information and Communication Technology in Two Bachelor's Degrees: Combining the Best of Online and Face-to-Face Teaching

Authors: Begona del Pino, Beatriz Prieto, Alberto Prieto

Abstract:

Two opposite approaches to teaching can be considered: in-class learning (teacher-oriented) versus virtual learning (student-oriented). The most known example of the latter is Massive Online Open Courses (MOOCs). Both methodologies have pros and cons. Nowadays there is an increasing trend towards combining both of them. Blending learning is considered a valuable tool for improving learning since it combines student-centred interactive e-learning and face to face instruction. The aim of this contribution is to exchange and share the experience and research results of a blended-learning project that took place in the University of Granada (Spain). The research objective was to prove how combining didactic resources of a MOOC with in-class teaching, interacting directly with students, can substantially improve academic results, as well as student acceptance. The proposed methodology is based on the use of flipped learning technics applied to the subject ‘Fundamentals of Computer Science’ of the first course of two degrees: Telecommunications Engineering, and Industrial Electronics. In this proposal, students acquire the theoretical knowledges at home through a MOOC platform, where they watch video-lectures, do self-evaluation tests, and use other academic multimedia online resources. Afterwards, they have to attend to in-class teaching where they do other activities in order to interact with teachers and the rest of students (discussing of the videos, solving of doubts and practical exercises, etc.), trying to overcome the disadvantages of self-regulated learning. The results are obtained through the grades of the students and their assessment of the blended experience, based on an opinion survey conducted at the end of the course. The major findings of the study are the following: The percentage of students passing the subject has grown from 53% (average from 2011 to 2014 using traditional learning methodology) to 76% (average from 2015 to 2018 using blended methodology). The average grade has improved from 5.20±1.99 to 6.38±1.66. The results of the opinion survey indicate that most students preferred blended methodology to traditional approaches, and positively valued both courses. In fact, 69% of students felt ‘quite’ or ‘very’ satisfied with the classroom activities; 65% of students preferred the flipped classroom methodology to traditional in-class lectures, and finally, 79% said they were ‘quite’ or ‘very’ satisfied with the course in general. The main conclusions of the experience are the improvement in academic results, as well as the highly satisfactory assessments obtained in the opinion surveys. The results confirm the huge potential of combining MOOCs in formal undergraduate studies with on-campus learning activities. Nevertheless, the results in terms of students’ participation and follow-up have a wide margin for improvement. The method is highly demanding for both students and teachers. As a recommendation, students must perform the assigned tasks with perseverance, every week, in order to take advantage of the face-to-face classes. This perseverance is precisely what needs to be promoted among students because it clearly brings about an improvement in learning.

Keywords: blended learning, educational paradigm, flipped classroom, flipped learning technologies, lessons learned, massive online open course, MOOC, teacher roles through technology

Procedia PDF Downloads 180
81 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport

Authors: Aamir Shahzad, Mao-Gang He

Abstract:

Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.

Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow

Procedia PDF Downloads 274
80 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 315
79 Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire

Authors: Robert Pečenko, Karin Tomažič, Igor Planinc, Sabina Huč, Tomaž Hozjan

Abstract:

Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future.

Keywords: advanced numerical modelling, parametric fire exposure, timber structures, zero strength layer

Procedia PDF Downloads 168
78 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 368
77 The Influence of Human Movement on the Formation of Adaptive Architecture

Authors: Rania Raouf Sedky

Abstract:

Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.

Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity

Procedia PDF Downloads 156
76 Towards a Measuring Tool to Encourage Knowledge Sharing in Emerging Knowledge Organizations: The Who, the What and the How

Authors: Rachel Barker

Abstract:

The exponential velocity in the truly knowledge-intensive world today has increasingly bombarded organizations with unfathomable challenges. Hence organizations are introduced to strange lexicons of descriptors belonging to a new paradigm of who, what and how knowledge at individual and organizational levels should be managed. Although organizational knowledge has been recognized as a valuable intangible resource that holds the key to competitive advantage, little progress has been made in understanding how knowledge sharing at individual level could benefit knowledge use at collective level to ensure added value. The research problem is that a lack of research exists to measure knowledge sharing through a multi-layered structure of ideas with at its foundation, philosophical assumptions to support presuppositions and commitment which requires actual findings from measured variables to confirm observed and expected events. The purpose of this paper is to address this problem by presenting a theoretical approach to measure knowledge sharing in emerging knowledge organizations. The research question is that despite the competitive necessity of becoming a knowledge-based organization, leaders have found it difficult to transform their organizations due to a lack of knowledge on who, what and how it should be done. The main premise of this research is based on the challenge for knowledge leaders to develop an organizational culture conducive to the sharing of knowledge and where learning becomes the norm. The theoretical constructs were derived and based on the three components of the knowledge management theory, namely technical, communication and human components where it is suggested that this knowledge infrastructure could ensure effective management. While it is realised that it might be a little problematic to implement and measure all relevant concepts, this paper presents effect of eight critical success factors (CSFs) namely: organizational strategy, organizational culture, systems and infrastructure, intellectual capital, knowledge integration, organizational learning, motivation/performance measures and innovation. These CSFs have been identified based on a comprehensive literature review of existing research and tested in a new framework adapted from four perspectives of the balanced score card (BSC). Based on these CSFs and their items, an instrument was designed and tested among managers and employees of a purposefully selected engineering company in South Africa who relies on knowledge sharing to ensure their competitive advantage. Rigorous pretesting through personal interviews with executives and a number of academics took place to validate the instrument and to improve the quality of items and correct wording of issues. Through analysis of surveys collected, this research empirically models and uncovers key aspects of these dimensions based on the CSFs. Reliability of the instrument was calculated by Cronbach’s a for the two sections of the instrument on organizational and individual levels.The construct validity was confirmed by using factor analysis. The impact of the results was tested using structural equation modelling and proved to be a basis for implementing and understanding the competitive predisposition of the organization as it enters the process of knowledge management. In addition, they realised the importance to consolidate their knowledge assets to create value that is sustainable over time.

Keywords: innovation, intellectual capital, knowledge sharing, performance measures

Procedia PDF Downloads 195
75 Innovation in PhD Training in the Interdisciplinary Research Institute

Authors: B. Shaw, K. Doherty

Abstract:

The Cultural Communication and Computing Research Institute (C3RI) is a diverse multidisciplinary research institute including art, design, media production, communication studies, computing and engineering. Across these disciplines it can seem like there are enormous differences of research practice and convention, including differing positions on objectivity and subjectivity, certainty and evidence, and different political and ethical parameters. These differences sit within, often unacknowledged, histories, codes, and communication styles of specific disciplines, and it is all these aspects that can make understanding of research practice across disciplines difficult. To explore this, a one day event was orchestrated, testing how a PhD community might communicate and share research in progress in a multi-disciplinary context. Instead of presenting results at a conference, research students were tasked to articulate their method of inquiry. A working party of students from across disciplines had to design a conference call, visual identity and an event framework that would work for students across all disciplines. The process of establishing the shape and identity of the conference was revealing. Even finding a linguistic frame that would meet the expectations of different disciplines for the conference call was challenging. The first abstracts submitted either resorted to reporting findings, or only described method briefly. It took several weeks of supported intervention for research students to get ‘inside’ their method and to understand their research practice as a process rich with philosophical and practical decisions and implications. In response to the abstracts the conference committee generated key methodological categories for conference sessions, including sampling, capturing ‘experience’, ‘making models’, researcher identities, and ‘constructing data’. Each session involved presentations by visual artists, communications students and computing researchers with inter-disciplinary dialogue, facilitated by alumni Chairs. The apparently simple focus on method illuminated research process as a site of creativity, innovation and discovery, and also built epistemological awareness, drawing attention to what is being researched and how it can be known. It was surprisingly difficult to limit students to discussing method, and it was apparent that the vocabulary available for method is sometimes limited. However, by focusing on method rather than results, the genuine process of research, rather than one constructed for approval, could be captured. In unlocking the twists and turns of planning and implementing research, and the impact of circumstance and contingency, students had to reflect frankly on successes and failures. This level of self – and public- critique emphasised the degree of critical thinking and rigour required in executing research and demonstrated that honest reportage of research, faults and all, is good valid research. The process also revealed the degree that disciplines can learn from each other- the computing students gained insights from the sensitive social contextualizing generated by communications and art and design students, and art and design students gained understanding from the greater ‘distance’ and emphasis on application that computing students applied to their subjects. Finding the means to develop dialogue across disciplines makes researchers better equipped to devise and tackle research problems across disciplines, potentially laying the ground for more effective collaboration.

Keywords: interdisciplinary, method, research student, training

Procedia PDF Downloads 206
74 Investigation of Resilient Circles in Local Community and Industry: Waju-Traditional Culture in Japan and Modern Technology Application

Authors: R. Ueda

Abstract:

Today global society is seeking resilient partnership in local organizations and individuals, which realizes multi-stakeholders relationship. Although it is proposed by modern global framework of sustainable development, it is conceivable that such affiliation can be found out in the traditional local community in Japan, and that traditional spirit is tacitly sustaining in modern context of disaster mitigation in society and economy. Then this research is aiming to clarify and analyze implication for the global world by actual case studies. Regional and urban resilience is the ability of multi-stakeholders to cooperate flexibly and to adapt in response to changes in the circumstances caused by disasters, but there are various conflicts affecting coordination of disaster relief measures. These conflicts arise not only from a lack of communication and an insufficient network, but also from the difficulty to jointly draw common context from fragmented information. This is because of the weakness of our modern engineering which focuses on maintenance and restoration of individual systems. Here local ‘circles’ holistically includes local community and interacts periodically. Focusing on examples of resilient organizations and wisdom created in communities, what can be seen throughout history is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. And the wisdom of a solid and autonomous disaster prevention formed by the historical community called’ Waju’ – an area surrounded by circle embankment to protect the settlement from flood – lives on in government efforts of the coastal industrial island of today. Industrial company there collaborates to create a circle including common evacuation space, road access improvement and infrastructure recovery. These days, people here adopts new interface technology. Large-scale AR- Augmented Reality for more than hundred people is expressing detailed hazard by tsunami and liquefaction. Common experiences of the major disaster space and circle of mutual discussion are enforcing resilience. Collaboration spirit lies in the center of circle. A consistent key point is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. This writer believes that both self-governing human organizations and the societal implementation of technical systems are necessary. Infrastructure should be autonomously instituted by associations of companies and other entities in industrial areas for working closely with local governments. To develop advanced disaster prevention and multi-stakeholder collaboration, partnerships among industry, government, academia and citizens are important.

Keywords: industrial recovery, multi-sakeholders, traditional culture, user experience, Waju

Procedia PDF Downloads 113
73 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 473
72 Rainwater Management: A Case Study of Residential Reconstruction of Cultural Heritage Buildings in Russia

Authors: V. Vsevolozhskaia

Abstract:

Since 1990, energy-efficient development concepts have constituted both a turning point in civil engineering and a challenge for an environmentally friendly future. Energy and water currently play an essential role in the sustainable economic growth of the world in general and Russia in particular: the efficiency of the water supply system is the second most important parameter for energy consumption according to the British assessment method, while the water-energy nexus has been identified as a focus for accelerating sustainable growth and developing effective, innovative solutions. The activities considered in this study were aimed at organizing and executing the renovation of the property in residential buildings located in St. Petersburg, specifically buildings with local or federal historical heritage status under the control of the St. Petersburg Committee for the State Inspection and Protection of Historic and Cultural Monuments (KGIOP) and UNESCO. Even after reconstruction, these buildings still fall into energy efficiency class D. Russian Government Resolution No. 87 on the structure and required content of project documentation contains a section entitled ‘Measures to ensure compliance with energy efficiency and equipment requirements for buildings, structures, and constructions with energy metering devices’. Mention is made of the need to install collectors and meters, which only calculate energy, neglecting the main purpose: to make buildings more energy-efficient, potentially even energy efficiency class A. The least-explored aspects of energy-efficient technology in the Russian Federation remain the water balance and the possibility of implementing rain and meltwater collection systems. These modern technologies are used exclusively for new buildings due to a lack of government directive to create project documentation during the planning of major renovations and reconstruction that would include the collection and reuse of rainwater. Energy-efficient technology for rain and meltwater collection is currently applied only to new buildings, even though research has proved that using rainwater is safe and offers a huge step forward in terms of eco-efficiency analysis and water innovation. Where conservation is mandatory, making changes to protected sites is prohibited. In most cases, the protected site is the cultural heritage building itself, including the main walls and roof. However, the installation of a second water supply system and collection of rainwater would not affect the protected building itself. Water efficiency in St. Petersburg is currently considered only from the point of view of the installation that regulates the flow of the pipeline shutoff valves. The development of technical guidelines for the use of grey- and/or rainwater to meet the needs of residential buildings during reconstruction or renovation is not yet complete. The ideas for water treatment, collection and distribution systems presented in this study should be taken into consideration during the reconstruction or renovation of residential cultural heritage buildings under the protection of KGIOP and UNESCO. The methodology applied also has the potential to be extended to other cultural heritage sites in northern countries and lands with an average annual rainfall of over 600 mm to cover average toilet-flush needs.

Keywords: cultural heritage, energy efficiency, renovation, rainwater collection, reconstruction, water management, water supply

Procedia PDF Downloads 92
71 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine

Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski

Abstract:

The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization

Procedia PDF Downloads 386
70 Fully Autonomous Vertical Farm to Increase Crop Production

Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek

Abstract:

New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.

Keywords: automation, vertical farming, robot, artificial intelligence, vision, control

Procedia PDF Downloads 39
69 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience

Authors: Amanda Kavner, Richard Lamb

Abstract:

Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.

Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience

Procedia PDF Downloads 119
68 Increased Stability of Rubber-Modified Asphalt Mixtures to Swelling, Expansion and Rebound Effect during Post-Compaction

Authors: Fernando Martinez Soto, Gaetano Di Mino

Abstract:

The application of rubber into bituminous mixtures requires attention and care during mixing and compaction. Rubber modifies the properties because it reacts in the internal structure of bitumen at high temperatures changing the performance of the mixture (interaction process of solvents with binder-rubber aggregate). The main change is the increasing of the viscosity and elasticity of the binder due to the larger sizes of the rubber particles by dry process but, this positive effect is counteracted by short mixing times, compared to wet technology, and due to the transport processes, curing time and post-compaction of the mixtures. Therefore, negative effects as swelling of rubber particles, rebounding effect of the specimens and thermal changes by different expansion of the structure inside the mixtures, can change the mechanical properties of the rubberized blends. Based on the dry technology, different asphalt-rubber binders using devulcanized or natural rubber (truck and bus tread rubber), have served to demonstrate these effects and how to solve them into two dense-gap graded rubber modified asphalt concrete mixes (RUMAC) to enhance the stability, workability and durability of the compacted samples by Superpave gyratory compactor method. This paper specifies the procedures developed in the Department of Civil Engineering of the University of Palermo during September 2016 to March 2017, for characterizing the post-compaction and mix-stability of the one conventional mixture (hot mix asphalt without rubber) and two gap-graded rubberized asphalt mixes according granulometry for rail sub-ballast layers with nominal size of Ø22.4mm of aggregates according European standard. Thus, the main purpose of this laboratory research is the application of ambient ground rubber from scrap tires processed at conventional temperature (20ºC) inside hot bituminous mixtures (160-220ºC) as a substitute for 1.5%, 2% and 3% by weight of the total aggregates (3.2%, 4.2% and, 6.2% respectively by volumetric part of the limestone aggregates of bulk density equal to 2.81g/cm³) considered, not as a part of the asphalt binder. The reference bituminous mixture was designed with 4% of binder and ± 3% of air voids, manufactured for a conventional bitumen B50/70 at 160ºC-145ºC mix-compaction temperatures to guarantee the workability of the mixes. The proportions of rubber proposed are #60-40% for mixtures with 1.5 to 2% of rubber and, #20-80% for mixture with 3% of rubber (as example, a 60% of Ø0.4-2mm and 40% of Ø2-4mm). The temperature of the asphalt cement is between 160-180 ºC for mixing and 145-160 ºC for compaction, according to the optimal values for viscosity using Brookfield viscometer and 'ring and ball' - penetration tests. These crumb rubber particles act as a rubber-aggregate into the mixture, varying sizes between 0.4mm to 2mm in a first fraction, and 2-4mm as second proportion. Ambient ground rubber with a specific gravity of 1.154g/cm³ is used. The rubber is free of loose fabric, wire, and other contaminants. It was found optimal results in real beams and cylindrical specimens with each HMA mixture reducing the swelling effect. Different factors as temperature, particle sizes of rubber, number of cycles and pressures of compaction that affect the interaction process are explained.

Keywords: crumb-rubber, gyratory compactor, rebounding effect, superpave mix-design, swelling, sub-ballast railway

Procedia PDF Downloads 243
67 Designing Next Generation Platforms for Recombinant Protein Production by Genome Engineering of Escherichia coli

Authors: Priyanka Jain, Ashish K. Sharma, Esha Shukla, K. J. Mukherjee

Abstract:

We propose a paradigm shift in our approach to design improved platforms for recombinant protein production, by addressing system level issues rather than the individual steps associated with recombinant protein synthesis like transcription, translation, etc. We demonstrate that by controlling and modulating the cellular stress response (CSR), which is responsible for feedback control of protein synthesis, we can generate hyper-producing strains. We did transcriptomic profiling of post-induction cultures, expressing different types of protein, to analyze the nature of this cellular stress response. We found significant down-regulation of substrate utilization, translation, and energy metabolism genes due to generation CSR inside the host cell. However, transcription profiling has also shown that many genes are up-regulated post induction and their role in modulating the CSR is unclear. We hypothesized that these up-regulated genes trigger signaling pathways, generating the CSR and concomitantly reduce the recombinant protein yield. To test this hypothesis, we knocked out the up-regulated genes, which did not have any downstream regulatees, and analyzed their impact on cellular health and recombinant protein expression. Two model proteins i.e., GFP and L-Asparaginase were chosen for this analysis. We observed a significant improvement in expression levels, with some knock-outs showing more than 7-fold higher expression compared to control. The 10 best single knock-outs were chosen to make 45 combinations of all possible double knock-outs. A further increase in expression was observed in some of these double knock- outs with GFP levels being highest in a double knock-out ΔyhbC + ΔelaA. However, for L-Asparaginase which is a secretory protein, the best results were obtained using a combination of ΔelaA+ΔcysW knock-outs. We then tested all the knock outs for their ability to enhance the expression of a 'difficult-to-express' protein. The Rubella virus E1 protein was chosen and tagged with sfGFP at the C-terminal using a linker peptide for easy online monitoring of expression of this fusion protein. Interestingly, the highest increase in Rubella-sGFP levels was obtained in the same double knock-out ΔelaA + ΔcysW (5.6 fold increase in expression yield compared to the control) which gave the highest expression for L-Asparaginase. However, for sfGFP alone, the ΔyhbC+ΔmarR knock-out gave the highest level of expression. These results indicate that there is a fair degree of commonality in the nature of the CSR generated by the induction of different proteins. Transcriptomic profiling of the double knock out showed that many genes associated with the translational machinery and energy biosynthesis did not get down-regulated post induction, unlike the control where these genes were significantly down-regulated. This confirmed our hypothesis of these genes playing an important role in the generation of the CSR and allowed us to design a strategy for making better expression hosts by simply knocking out key genes. This strategy is radically superior to the previous approach of individually up-regulating critical genes since it blocks the mounting of the CSR thus preventing the down-regulation of a very large number of genes responsible for sustaining the flux through the recombinant protein production pathway.

Keywords: cellular stress response, GFP, knock-outs, up-regulated genes

Procedia PDF Downloads 228
66 An Engineer-Oriented Life Cycle Assessment Tool for Building Carbon Footprint: The Building Carbon Footprint Evaluation System in Taiwan

Authors: Hsien-Te Lin

Abstract:

The purpose of this paper is to introduce the BCFES (building carbon footprint evaluation system), which is a LCA (life cycle assessment) tool developed by the Low Carbon Building Alliance (LCBA) in Taiwan. A qualified BCFES for the building industry should fulfill the function of evaluating carbon footprint throughout all stages in the life cycle of building projects, including the production, transportation and manufacturing of materials, construction, daily energy usage, renovation and demolition. However, many existing BCFESs are too complicated and not very designer-friendly, creating obstacles in the implementation of carbon reduction policies. One of the greatest obstacle is the misapplication of the carbon footprint inventory standards of PAS2050 or ISO14067, which are designed for mass-produced goods rather than building projects. When these product-oriented rules are applied to building projects, one must compute a tremendous amount of data for raw materials and the transportation of construction equipment throughout the construction period based on purchasing lists and construction logs. This verification method is very cumbersome by nature and unhelpful to the promotion of low carbon design. With a view to provide an engineer-oriented BCFE with pre-diagnosis functions, a component input/output (I/O) database system and a scenario simulation method for building energy are proposed herein. Most existing BCFESs base their calculations on a product-oriented carbon database for raw materials like cement, steel, glass, and wood. However, data on raw materials is meaningless for the purpose of encouraging carbon reduction design without a feedback mechanism, because an engineering project is not designed based on raw materials but rather on building components, such as flooring, walls, roofs, ceilings, roads or cabinets. The LCBA Database has been composited from existing carbon footprint databases for raw materials and architectural graphic standards. Project designers can now use the LCBA Database to conduct low carbon design in a much more simple and efficient way. Daily energy usage throughout a building's life cycle, including air conditioning, lighting, and electric equipment, is very difficult for the building designer to predict. A good BCFES should provide a simplified and designer-friendly method to overcome this obstacle in predicting energy consumption. In this paper, the author has developed a simplified tool, the dynamic Energy Use Intensity (EUI) method, to accurately predict energy usage with simple multiplications and additions using EUI data and the designed efficiency levels for the building envelope, AC, lighting and electrical equipment. Remarkably simple to use, it can help designers pre-diagnose hotspots in building carbon footprint and further enhance low carbon designs. The BCFES-LCBA offers the advantages of an engineer-friendly component I/O database, simplified energy prediction methods, pre-diagnosis of carbon hotspots and sensitivity to good low carbon designs, making it an increasingly popular carbon management tool in Taiwan. To date, about thirty projects have been awarded BCFES-LCBA certification and the assessment has become mandatory in some cities.

Keywords: building carbon footprint, life cycle assessment, energy use intensity, building energy

Procedia PDF Downloads 139
65 University Climate and Psychological Adjustment: African American Women’s Experiences at Predominantly White Institutions in the United States

Authors: Faheemah N. Mustafaa, Tamarie Macon, Tabbye Chavous

Abstract:

A major concern of university leaders worldwide is how to create environments where students from diverse racial/ethnic, national, and cultural backgrounds can thrive. Over the past decade or so in the United States, African American women have done exceedingly well in terms of college enrollment, academic performance, and completion. However, the relative academic successes of African American women in higher education has in some ways overshadowed social challenges many Black women continue to encounter on college campuses in the United States. Within predominantly White institutions (PWIs) in particular, there is consistent evidence that many Black students experience racially hostile climates. However, research studies on racial climates within PWIs have mostly focused on cross-sectional comparisons of minority and majority group experiences, and few studies have examined campus racial climate in relation to short- and longer-term well-being. One longitudinal study reported that African American women’s psychological well-being was positively related to their comfort in cross-racial interactions (a concept closely related to campus climate). Thus, our primary research question was: Do African American women’s perceptions of campus climate (tension and positive association) during their freshman year predict their reports of psychological distress and well-being (self-acceptance) during their sophomore year? Participants were part of a longitudinal survey examining African American college students’ academic identity development, particularly in Science, Technology, Engineering, and Mathematics (STEM) fields. The final subsample included 134 self-identified African American/Black women enrolled in PWIs. Accounting for background characteristics (mother’s education, family income, interracial contact, and prior levels of outcomes), we employed hierarchical regression to examine relationships between campus racial climate during freshman year and psychological adjustment one year later. Both regression models significantly predicted African American women’s psychological outcomes (for distress, F(7,91)= 4.34, p < .001; and for self-acceptance, F(7,90)= 4.92, p < .001). Although none of the controls were significant predictors, perceptions of racial tension on campus were associated with both distress and self-acceptance. More perceptions of tension were related to African American women’s greater psychological distress the following year (B= 0.22, p= .01). Additionally, racial tension predicted later self-acceptance in the expected direction: Higher first-year reports of racial tension were related to less positive attitudes toward the self during the sophomore year (B= -0.16, p= .04). However, perceptions that it was normative for Black and White students to socialize on campus (or positive association scores) were unrelated to psychological distress or self-acceptance. Findings highlight the relevance of examining multiple facets of campus racial climate in relation to psychological adjustment, with possible emphasis on the import of racial tension on African American women’s psychological adjustment. Results suggest that negative dimensions of campus racial climate may have lingering effects on psychological well-being, over and above more positive aspects of climate. Thus, programs targeted toward improving student relations on campus should consider addressing cross-racial tensions.

Keywords: higher education, psychological adjustment, university climate, university students

Procedia PDF Downloads 385
64 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 176
63 Medical Examiner Collection of Comprehensive, Objective Medical Evidence for Conducted Electrical Weapons and Their Temporal Relationship to Sudden Arrest

Authors: Michael Brave, Mark Kroll, Steven Karch, Charles Wetli, Michael Graham, Sebastian Kunz, Dorin Panescu

Abstract:

Background: Conducted electrical weapons (CEW) are now used in 107 countries and are a common law enforcement less-lethal force practice in the United Kingdom (UK), United States of America (USA), Canada, Australia, New Zealand, and others. Use of these devices is rarely temporally associated with the occurrence of sudden arrest-related deaths (ARD). Because such deaths are uncommon, few Medical Examiners (MEs) ever encounter one, and even fewer offices have established comprehensive investigative protocols. Without sufficient scientific data, the role, if any, played by a CEW in a given case is largely supplanted by conjecture often defaulting to a CEW-induced fatal cardiac arrhythmia. In addition to the difficulty in investigating individual deaths, the lack of information also detrimentally affects being able to define and evaluate the ARD cohort generally. More comprehensive, better information leads to better interpretation in individual cases and also to better research. The purpose of this presentation is to provide MEs with a comprehensive evidence-based checklist to assist in the assessment of CEW-ARD cases. Methods: PUBMED and Sociology/Criminology data bases were queried to find all medical, scientific, electrical, modeling, engineering, and sociology/criminology peer-reviewed literature for mentions of CEW or synonymous terms. Each paper was then individually reviewed to identify those that discussed possible bioelectrical mechanisms relating CEW to ARD. A Naranjo-type pharmacovigilance algorithm was also employed, when relevant, to identify and quantify possible direct CEW electrical myocardial stimulation. Additionally, CEW operational manuals and training materials were reviewed to allow incorporation of CEW-specific technical parameters. Results: Total relevant PUBMED citations of CEWs were less than 250, and reports of death extremely rare. Much relevant information was available from Sociology/Criminology data bases. Once the relevant published papers were identified, and reviewed, we compiled an annotated checklist of data that we consider critical to a thorough CEW-involved ARD investigation. Conclusion: We have developed an evidenced-based checklist that can be used by MEs and their staffs to assist them in identifying, collecting, documenting, maintaining, and objectively analyzing the role, if any, played by a CEW in any specific case of sudden death temporally associated with the use of a CEW. Even in cases where the collected information is deemed by the ME as insufficient for formulating an opinion or diagnosis to a reasonable degree of medical certainty, information collected as per the checklist will often be adequate for other stakeholders to use as a basis for informed decisions. Having reviewed the appropriate materials in a significant number of cases careful examination of the heart and brain is likely adequate. Channelopathy testing should be considered in some cases, however it may be considered cost prohibitive (aprox $3000). Law enforcement agencies may want to consider establishing a reserve fund to help manage such rare cases. The expense may stay the enormous costs associated with incident-precipitated litigation.

Keywords: ARD, CEW, police, TASER

Procedia PDF Downloads 346
62 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals

Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova

Abstract:

Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.

Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk

Procedia PDF Downloads 240
61 Feasibility of an Extreme Wind Risk Assessment Software for Industrial Applications

Authors: Francesco Pandolfi, Georgios Baltzopoulos, Iunio Iervolino

Abstract:

The impact of extreme winds on industrial assets and the built environment is gaining increasing attention from stakeholders, including the corporate insurance industry. This has led to a progressively more in-depth study of building vulnerability and fragility to wind. Wind vulnerability models are used in probabilistic risk assessment to relate a loss metric to an intensity measure of the natural event, usually a gust or a mean wind speed. In fact, vulnerability models can be integrated with the wind hazard, which consists of associating a probability to each intensity level in a time interval (e.g., by means of return periods) to provide an assessment of future losses due to extreme wind. This has also given impulse to the world- and regional-scale wind hazard studies.Another approach often adopted for the probabilistic description of building vulnerability to the wind is the use of fragility functions, which provide the conditional probability that selected building components will exceed certain damage states, given wind intensity. In fact, in wind engineering literature, it is more common to find structural system- or component-level fragility functions rather than wind vulnerability models for an entire building. Loss assessment based on component fragilities requires some logical combination rules that define the building’s damage state given the damage state of each component and the availability of a consequence model that provides the losses associated with each damage state. When risk calculations are based on numerical simulation of a structure’s behavior during extreme wind scenarios, the interaction of component fragilities is intertwined with the computational procedure. However, simulation-based approaches are usually computationally demanding and case-specific. In this context, the present work introduces the ExtReMe wind risk assESsment prototype Software, ERMESS, which is being developed at the University of Naples Federico II. ERMESS is a wind risk assessment tool for insurance applications to industrial facilities, collecting a wide assortment of available wind vulnerability models and fragility functions to facilitate their incorporation into risk calculations based on in-built or user-defined wind hazard data. This software implements an alternative method for building-specific risk assessment based on existing component-level fragility functions and on a number of simplifying assumptions for their interactions. The applicability of this alternative procedure is explored by means of an illustrative proof-of-concept example, which considers four main building components, namely: the roof covering, roof structure, envelope wall and envelope openings. The application shows that, despite the simplifying assumptions, the procedure can yield risk evaluations that are comparable to those obtained via more rigorous building-level simulation-based methods, at least in the considered example. The advantage of this approach is shown to lie in the fact that a database of building component fragility curves can be put to use for the development of new wind vulnerability models to cover building typologies not yet adequately covered by existing works and whose rigorous development is usually beyond the budget of portfolio-related industrial applications.

Keywords: component wind fragility, probabilistic risk assessment, vulnerability model, wind-induced losses

Procedia PDF Downloads 181
60 Learning-Teaching Experience about the Design of Care Applications for Nursing Professionals

Authors: A. Gonzalez Aguna, J. M. Santamaria Garcia, J. L. Gomez Gonzalez, R. Barchino Plata, M. Fernandez Batalla, S. Herrero Jaen

Abstract:

Background: Computer Science is a field that transcends other disciplines of knowledge because it allows to support all kinds of physical and mental tasks. Health centres have a greater number and complexity of technological devices and the population consume and demand services derived from technology. Also, nursing education plans have included competencies related to and, even, courses about new technologies are offered to health professionals. However, nurses still limit their performance to the use and evaluation of products previously built. Objective: Develop a teaching-learning methodology for acquiring skills on designing applications for care. Methodology: Blended learning teaching with a group of graduate nurses through official training within a Master's Degree. The study sample was selected by intentional sampling without exclusion criteria. The study covers from 2015 to 2017. The teaching sessions included a four-hour face-to-face class and between one and three tutorials. The assessment was carried out by written test consisting of the preparation of an IEEE 830 Standard Specification document where the subject chosen by the student had to be a problem in the area of care. Results: The sample is made up of 30 students: 10 men and 20 women. Nine students had a degree in nursing, 20 diploma in nursing and one had a degree in Computer Engineering. Two students had a degree in nursing specialty through residence and two in equivalent recognition by exceptional way. Except for the engineer, no subject had previously received training in this regard. All the sample enrolled in the course received the classroom teaching session, had access to the teaching material through a virtual area and maintained at least one tutoring. The maximum of tutorials were three with an hour in total. Among the material available for consultation was an example of a document drawn up based on the IEEE Standard with an issue not related to care. The test to measure competence was completed by the whole group and evaluated by a multidisciplinary teaching team of two computer engineers and two nurses. Engineers evaluated the correctness of the characteristics of the document and the degree of comprehension in the elaboration of the problem and solution elaborated nurses assessed the relevance of the chosen problem statement, the foundation, originality and correctness of the proposed solution and the validity of the application for clinical practice in care. The results were of an average grade of 8.1 over 10 points, a range between 6 and 10. The selected topic barely coincided among the students. Examples of care areas selected are care plans, family and community health, delivery care, administration and even robotics for care. Conclusion: The applied methodology of learning-teaching for the design of technologies demonstrates the success in the training of nursing professionals. The role of expert is essential to create applications that satisfy the needs of end users. Nursing has the possibility, the competence and the duty to participate in the process of construction of technological tools that are going to impact in care of people, family and community.

Keywords: care, learning, nursing, technology

Procedia PDF Downloads 136