Search results for: subcooled boiling flow
4408 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept
Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua
Abstract:
River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel
Procedia PDF Downloads 1264407 Effects of Inlet Distorted Flows on the Performance of an Axial Compressor
Authors: Asad Islam, Khalid Parvez
Abstract:
Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions.Keywords: axial compressor, distortions, angle, CFD, ANSYS-CFX®, bladegen®
Procedia PDF Downloads 4564406 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI
Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.Keywords: contex-sensitive, CFI, binary analysis, code reuse attack
Procedia PDF Downloads 3234405 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect
Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop
Abstract:
In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.Keywords: heat transfer, radiation effect, shrinking sheet unsteady flow
Procedia PDF Downloads 3854404 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling
Authors: Md Abdullah Al Faruque, Ram Balachandar
Abstract:
Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.Keywords: open channel flow, Reynolds Number, roughness, turbulence
Procedia PDF Downloads 4004403 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation
Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda
Abstract:
A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation
Procedia PDF Downloads 4324402 Unsteady Forced Convection Flow and Heat Transfer Past a Blunt Headed Semi-Circular Cylinder at Low Reynolds Numbers
Authors: Y. El Khchine, M. Sriti
Abstract:
In the present work, the forced convection heat transfer and fluid flow past an unconfined semi-circular cylinder is investigated. The two-dimensional simulation is employed for Reynolds numbers ranging from 10 ≤ Re ≤ 200, employing air (Pr = 0.71) as an operating fluid with Newtonian constant physics property. Continuity, momentum, and energy equations with appropriate boundary conditions are solved using the Computational Fluid Dynamics (CFD) solver Ansys Fluent. Various parameters flow such as lift, drag, pressure, skin friction coefficients, Nusselt number, Strouhal number, and vortex strength are calculated. The transition from steady to time-periodic flow occurs between Re=60 and 80. The effect of the Reynolds number on heat transfer is discussed. Finally, a developed correlation of Nusselt and Strouhal numbers is presented.Keywords: forced convection, semi-circular cylinder, Nusselt number, Prandtl number
Procedia PDF Downloads 1094401 Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study
Authors: Walid Chakroun, Sorour Alotaibi, Nesreen Ghaddar, Kamel Ghali
Abstract:
This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 °C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 °C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 °C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants’ thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.Keywords: PMV, thermal comfort, thermal environment, thermal sensation
Procedia PDF Downloads 2594400 The Flotation Device Designed to Treat Phosphate Rock
Authors: Z. Q. Zhang, Y. Zhang, D. L. Li
Abstract:
To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.Keywords: collophanite flotation, flotation columns, flotation machines, multi-impeller pump
Procedia PDF Downloads 2654399 Using Power Flow Analysis for Understanding UPQC’s Behaviors
Authors: O. Abdelkhalek, A. Naimi, M. Rami, M. N. Tandjaoui, A. Kechich
Abstract:
This paper deals with the active and reactive power flow analysis inside the unified power quality conditioner (UPQC) during several cases. The UPQC is a combination of shunt and series active power filter (APF). It is one of the best solutions towards the mitigation of voltage sags and swells problems on distribution network. This analysis can provide the helpful information to well understanding the interaction between the series filter, the shunt filter, the DC bus link and electrical network. The mathematical analysis is based on active and reactive power flow through the shunt and series active power filter. Wherein series APF can absorb or deliver the active power to mitigate a swell or sage voltage where in the both cases it absorbs a small reactive power quantity whereas the shunt active power absorbs or releases the active power for stabilizing the storage capacitor’s voltage as well as the power factor correction. The voltage sag and voltage swell are usually interpreted through the DC bus voltage curves. These two phenomena are introduced in this paper with a new interpretation based on the active and reactive power flow analysis inside the UPQC. For simplifying this study, a linear load is supposed in this digital simulation. The simulation results are carried out to confirm the analysis done.Keywords: UPQC, Power flow analysis, shunt filter, series filter.
Procedia PDF Downloads 5724398 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller
Authors: K. Boumediene, S. E. Belhenniche
Abstract:
This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.Keywords: propeller flow, CFD simulation, RANS, hydrodynamic performance
Procedia PDF Downloads 4994397 Eco-Index for Assessing Ecological Disturbances at Downstream of a Hydropower Project
Authors: Chandra Upadhyaya, Arup Kumar Sarma
Abstract:
In the North Eastern part of India several hydro power projects are being proposed and execution for some of them are already initiated. There are controversies surrounding these constructions. Impact of these dams in the downstream part of the rivers needs to be assessed so that eco-system and people living downstream are protected by redesigning the projects if it becomes necessary. This may result in reducing the stresses to the affected ecosystem and people living downstream. At present many index based ecological methods are present to assess impact on ecology. However, none of these methods are capable of assessing the affect resulting from dam induced diurnal variation of flow in the downstream. We need environmental flow methodology based on hydrological index which can address the affect resulting from dam induced diurnal variation of flow and play an important role in a riverine ecosystem management and be able to provide a qualitative idea about changes in the habitat for aquatic and riparian species.Keywords: ecosystem, environmental flow assessment, entropy, IHA, TNC
Procedia PDF Downloads 3844396 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method
Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir
Abstract:
The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.Keywords: laminar forced convection, lbm, triangular prism
Procedia PDF Downloads 3744395 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number
Authors: Amit K. Singh, Subhankar Sen
Abstract:
The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element
Procedia PDF Downloads 3434394 Numerical Study on the EHD Pump with a Recirculating Channel
Authors: Dong Sik Cho, Yong Kweon Suh
Abstract:
Numerical study has been conducted on the electro-hydrodynamic (EHD) pumping method in terms of a recirculating channel. The method relies on the principle of EHD generated by the electric-field dependent electrical conductivity (Onsager effect). Before considering the full three-dimensional simulation, we solved the two-dimensional problem of EHD flow in a circular channel like a doughnut shape. We observed that when dc voltage was applied a fast and regular flow was produced around electrodes, which is then used as a driving force for the fluid pumping. In this parametric study, the diameters of circular electrodes are varied in the range 0.3mm~3mm and the gap between the electrodes pair is varied in the range 0.3mm~2mm. We found that both the volume flow rate and the pumping efficiency are increased as the distance between the electrodes is decreased. Finally, we also performed the numerical simulation for the three-dimensional channel and found that the averaged flow velocity is in the same order of magnitude as the two-dimensional one.Keywords: electro-hydrodynamic, electric-field, onsager effect, DC voltage
Procedia PDF Downloads 3014393 Comparative Study for Biodiesel Production Using a Batch and a Semi-Continuous Flow Reactor
Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato
Abstract:
Biodiesel may be produced through transesterification reaction (or alcoholysis), that is the transformation of a long chain fatty acid in an alkyl ester. This reaction can occur in the presence of acid catalysts, alkali, or enzyme. Currently, for industrial processes, biodiesel is produced by alkaline route. The alkali most commonly used in these processes is hydroxides and methoxides of sodium and potassium. In this work, biodiesel production was conducted in two different systems. The first consisted of a batch reactor operating with a traditional washing system and the second consisted of a semi-continuous flow reactor operating with a membrane separation system. Potassium hydroxides was used as catalyst at a concentration of 1% by weight, the molar ratio oil/alcohol was 1/9 and temperature of 55 °C. Tests were performed using soybeans and palm oil and the ester conversion results were compared for both systems. It can be seen that the results for both oils are similar when using the batch reator or the semi-continuous flow reactor. The use of the semi-continuous flow reactor allows the removal of the formed products. Thus, in the case of a reversible reaction, with the removal of reaction products, the concentration of the reagents becomes higher and the equilibrium reaction is shifted towards the formation of more products. The higher conversion to ester with soybean and palm oil using the batch reactor was approximately 98%. In contrast, it was observed a conversion of 99% when using the same operating condition on a semi-continuous flow reactor.Keywords: biodiesel, batch reactor, semi-continuous flow reactor, transesterification
Procedia PDF Downloads 3844392 Experimental and Computational Investigations of Baffle Position Effects on the Performance of Oil and Water Separator Tanks
Authors: Haitham A. Hussein, Rozi Abdullah, Md Azlin Md Said
Abstract:
Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. In this study, the effect on hydraulic performance of different baffle structure positions inside a tank was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The measurements were compared with the result of the computational model. The results of the experimental and computational simulations indicate that the best location of a baffle structure is achieved when the standard deviation of the velocity profile and the volume of the circulation zone inside the tank are minimized.Keywords: gravity separator tanks, CFD, baffle position, two phase flow, ADV, oil droplet
Procedia PDF Downloads 3284391 Study on the Stages of Knowledge Flow in Central Libraries of Tehran Universities by the Pattern of American Productivity & Quality Center
Authors: Amir Reza Asnafi, Ehsan Tajabadi, Mohsen Hajizeinolabedini
Abstract:
The purpose of this study is to identify the concept of knowledge flow in central libraries of Tehran universities in by the pattern of American Productivity & Quality Center (APQC). The present study is an applied and descriptive survey in terms of its purpose and the methodology used. In this study, APQC framework was used for data collection. The study population is managers and supervisors of central libraries’ departments of public universities of Tehran belonging to the Ministry of Science, Research and Technology. These libraries include: Central Libraries of Al-Zahra University, Amir Kabir, Tarbiat Modarres, Tehran, Khajeh Nasir Toosi University of Technology, Shahed, Sharif, Shahid Beheshti, Allameh Tabataba'i University, Iran University of Science and Technology. Due to the limited number of members of the community, sampling was not performed and the census was conducted instead. The study of knowledge flow in central libraries of public universities in Tehran showed that in seven dimensions of knowledge flow of APQC, these libraries are far from desirable level and to achieve the ideal point, many activities in the field of knowledge flow need to be made, therefore suggestions were made in this study to reach the desired level. One Sample t Test in this research showed that these libraries are at a poor level in terms of these factors: in the dimensions of creation, identification and use of knowledge at a medium level and in the aspects of knowledge acquisition, review, sharing and access and also Manova test or Multivariable Analyze of Variance proved that there was no significant difference between the dimensions of knowledge flow between these libraries and the status of the knowledge flow in these libraries is at the same level as well. Except for the knowledge creation aspect that is slightly different in this regard that was mentioned before.Keywords: knowledge flow, knowledge management, APQC, Tehran’s academic university libraries
Procedia PDF Downloads 1644390 The Magic Bullet in Africa: Exploring an Alternative Theoretical Model
Authors: Daniel Nkrumah
Abstract:
The Magic Bullet theory was a popular media effect theory that defined the power of the mass media in altering beliefs and perceptions of its audiences. However, following the People's Choice study, the theory was said to have been disproved and was supplanted by the Two-Step Flow Theory. This paper examines the relevance of the Magic Bullet theory in Africa and establishes whether it is still relevant in Africa's media spaces and societies. Using selected cases on the continent, it adopts a grounded theory approach and explores a new theoretical model that attempts to enforce an argument that the Two-Step Flow theory though important and valid, was ill-conceived as a direct replacement to the Magic Bullet theory.Keywords: magic bullet theory, two-step flow theory, media effects, african media
Procedia PDF Downloads 1274389 The Effects of Food Matrix and Different Excipient Foods on β-Carotene Bioaccessibility in Carrots
Authors: Birgul Hizlar, Sibel Karakaya
Abstract:
Nowadays, consumers are more and more aware of the benefits beyond basic nutrition provided by food and food compounds. Between these, carotenoids have been demonstrated to exhibit multiple health benefits (for example, some types of cancer, cardiovascular diseases, eye disorders, among others). However, carotenoid bioaccessibility and bioavailability is generally rather low due to their specific localization in plant tissue and lipophilic nature. This situation is worldwide issue, since both developed and developing countries have their interest and benefits in increasing the uptake of carotenoids from the human diet. Recently, a new class of foods designed to improve the bioaccessibility/bioavailability of orally administered bioactive compounds is introduced: excipient foods. Excipient foods are specially designed foods which are prepared depending on the physicochemical properties of target bioactive compounds and increasing the bioavailability or bioaccessibility of bioactive compound. In this study, effects of food matrix (greating, boiling and mashing) and different excipient foods (olive oil, lemon juice, whey curd and dried artichoke leaf powder) on bioaccessibility of β-carotene in carrot were investigated by means of simulating in vitro gastrointestinal (GI) digestion. β-carotene contents of grated, boiled and mashed (after boiling process) carrots were 79.28, 147.63 and 151.19 μg/g respectively. No significant differences among boiled and mashed samples indicated that mashing process had no effect on the release of β-carotene from the food matrix (p > 0.05). On the contrary, mashing causes significant increase in the β-carotene bioaccessibility (p < 0.05). The highest β-carotene content was found in the mashed carrots incorporated with olive oil and lemon juice (C2). However, no significant differences between that sample and C1 (mashed carrot with lemon juice, olive oil, dried artichoke leaf powder), C3 (mashed carrot with addition of olive oil, lemon juice, whey curd) and). Similarly, the highest β-carotene bioaccessibility (50.26%) was found mashed C3 sample (p < 0.05). The increase in the bioaccessibility was approximately 5 fold and 50 fold when compared to grated and mashed samples containing olive oil, lemon juice and whey curd. The results demonstrate that both, food matrix and excipient foods, are able to increase the bioaccessibility of β-carotene.Keywords: bioaccessibility, carotenoids, carrot, β-carotene
Procedia PDF Downloads 3834388 Energy Conservation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis
Procedia PDF Downloads 2884387 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate
Authors: R. Kiš, M. Malcho, M. Janovcová
Abstract:
This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.Keywords: orifice plate, high-pressure pipeline, natural gas, CFD analysis
Procedia PDF Downloads 3834386 Turbulent Flow in Corrugated Pipes with Helical Grooves
Authors: P. Mendes, H. Stel, R. E. M. Morales
Abstract:
This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated.Keywords: turbulent flow, corrugated pipe, helical, numerical, experimental, friction factor, correlation
Procedia PDF Downloads 4844385 Numerical Analysis of the Coanda Effect on the Classical Interior Ejectors
Authors: Alexandru Dumitrache, Florin Frunzulica, Octavian Preotu
Abstract:
The flow mitigation detachment problem near solid surfaces, resulting in improved globally aerodynamic performance by exploiting the Coanda effect on surfaces, has been addressed extensively in the literature, since 1940. The research is carried on and further developed, using modern means of calculation and new experimental methods. In this paper, it is shown interest in the detailed behavior of a classical interior ejector assisted by the Coanda effect, used in propulsion systems. For numerical investigations, an implicit formulation of RANS equations for axisymmetric flow with a shear stress transport k- ω (SST model) turbulence model is used. The obtained numerical results emphasize the efficiency of the ejector, depending on the physical parameters of the flow and the geometric configuration. Furthermore, numerical investigations are carried out regarding the evolution of the Reynolds number when the jet is attached to the wall, considering three geometric configurations: sudden expansion, open cavity and sudden expansion with divergent at the inlet. Therefore, further insight into complexities involving issues such as the variety of flow structure and the related bifurcation and flow instabilities are provided. Thus, the conditions and the limits within which one can benefit from the advantages of Coanda-type flows are determined.Keywords: Coanda effect, Coanda ejector, CFD, stationary bifurcation, sudden expansion
Procedia PDF Downloads 2144384 Enhancement of Dissolved Oxygen Concentration during the Electrocoagulation Process Using an Innovative Flow Columns-Electrocoagulation Reactor
Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar
Abstract:
Dissolved oxygen concentration (DO) plays a key role in the electrocoagulation process (EC) as it oxidizes the heavy metals, ammonia, and cyanide into other forms that can be removed easily from water. For instance, the DO oxidises Fe (II) to Fe (III), As (III) to As (V), and cyanide to cyanate and then to ammonia. As well as, removal of nitrogenous compounds accomplishes by the presence of DO. Hence, many of the previous investigations used external aerators to provide the required DO inside EC reactors especially when the water being treated has low DO (such as leachate and highly polluted waters with organic matter); or when the DO depleted during the EC treatment. Although the external aeration process effectively enhances the DO concentration, it has a significant impact on energy consumption. Where, the presence of air bubbles increases the electrical resistance of the EC cell that increase the energy consumption in consequence. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container having a controllable working volume of 0.5 to 1 L. It supplied with a flow column that consisted of perorated discoid electrodes that made from aluminium. In order to investigate the performance of ECR1; water samples with a controlled DO concentration were pumped at different flow rates (110, 220, and 440 ml/min) to the ECR1 for 10 min. The obtained results demonstrated that the ECR1 increased the DO concentration from 5.0 to 9.54, 10.53, and 11.0 mg/L which equivalent to 90.8%, 110.6%, and 120% at flow rates of 110, 220, and 440 mL/min respectively.Keywords: dissolved oxygen, flow column, electrocoagulation, aluminium electrodes
Procedia PDF Downloads 2734383 Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics
Authors: Sathish Kumar Jayaraj
Abstract:
The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem.Keywords: traffic flow factor (TFF), urban traffic dynamics, fluid dynamics principles, vehicle shearing resistance (VSR), traffic congestion management, sustainable urban mobility
Procedia PDF Downloads 624382 An Experimental Study to Investigate the Behaviour of Torque Fluctuation of Crossflow Turbines Operating in an Open Channel
Authors: Sunil Kumar Singal, Manoj Sood, Upendra Bajpai
Abstract:
Instream technology is the upcoming sustainable approach in the hydro sector for energy harnessing. With well-known cross-sections and regulated supply, open channels are the most prominent locations for the installation of hydrokinetic turbines. The fluctuation in generated torque varies with site condition (flow depth and flow velocity), as well as with the type of turbine. The present experimental study aims to investigate the torque/power fluctuations of crossflow hydrokinetic turbines operating at different flow velocities and water depths. The flow velocity is varied from 1.0 m/s to 2.0 m/s. The complete assembly includes an open channel having dimensions of 0.3 m (depth) x 0.71 m (width) x 4.5 m (length), along with a lifting mechanism for varying the channel slope, a digital transducer for monitoring the torque, power, and rpm, a digital handheld water velocity meter for measuring the flow velocity. Further, a time series of torque, power, and rpm is plotted for a duration of 30 minutes showing the continuous operation of the turbine. A comparison of Savonius, Darrieus, and their improved twisted and helical blades is also presented in the study. A correlation has also been developed for assessing the hydropower generation from the installed turbine. The developed correlations will be very useful in the decision-making process for development at a site.Keywords: darrieus turbine, flow velocity, open channel, savoinus turbine, water depth, hydropower
Procedia PDF Downloads 854381 Heat Transfer Analysis of Corrugated Plate Heat Exchanger
Authors: Ketankumar Gandabhai Patel, Jalpit Balvantkumar Prajapati
Abstract:
Plate type heat exchangers has many thin plates that are slightly apart and have very large surface areas and fluid flow passages that are good for heat transfer. This can be a more effective heat exchanger than the tube or shell heat exchanger due to advances in brazing and gasket technology that have made this plate exchanger more practical. Plate type heat exchangers are most widely used in food processing industries and dairy industries. Mostly fouling occurs in plate type heat exchanger due to deposits create an insulating layer over the surface of the heat exchanger, that decreases the heat transfer between fluids and increases the pressure drop. The pressure drop increases as a result of the narrowing of the flow area, which increases the gap velocity. Therefore, the thermal performance of the heat exchanger decreases with time, resulting in an undersized heat exchanger and causing the process efficiency to be reduced. Heat exchangers are often over sized by 70 to 80%, of which 30 % to 50% is assigned to fouling. The fouling can be reduced by varying some geometric parameters and flow parameters. Based on the study, a correlation will estimate for Nusselt number as a function of Reynolds number, Prandtl number and chevron angle.Keywords: heat transfer coefficient, single phase flow, mass flow rate, pressure drop
Procedia PDF Downloads 3124380 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid
Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop
Abstract:
The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet
Procedia PDF Downloads 3544379 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities
Authors: J. Kaabi, Y. Harrath
Abstract:
This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm.Keywords: flow shop scheduling, genetic algorithm, maintenance, priority rules
Procedia PDF Downloads 471