Search results for: optimum energy saving
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9988

Search results for: optimum energy saving

9508 Improvement of Reaction Technology of Decalin Halogenation

Authors: Dmitriy Yu. Korulkin, Ravshan M. Nuraliev, Raissa A. Muzychkina

Abstract:

In this research paper, we investigated the main regularities of a radical bromination reaction of decalin. We studied the temperature effect, durations of reaction, frequency rate of process, ratio of initial components, type and number of the initiator on decalin bromination degree. We found specified optimum conditions of synthesis of a perbromodecalin by the method of a decalin bromination. We developed the technological flowchart of receiving a perbromodecalin and the mass balance of process on the first and the subsequent loadings of components. The results of the research of antibacterial and antifungal activity of synthesized bromoderivatives have been represented.

Keywords: decalin, optimum technology, perbromodecalin, radical bromination

Procedia PDF Downloads 204
9507 A Case Study on Smart Energy City of the UK: Based on Business Model Innovation

Authors: Minzheong Song

Abstract:

The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system.

Keywords: smart city, smart energy, business model, business model innovation (BMI)

Procedia PDF Downloads 131
9506 Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination

Authors: Djamel Saba, Fatima Zohra Laallam, Brahim Berbaoui

Abstract:

This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management.

Keywords: communications protocols, control process, energy management, hybrid energy system, modelization, multi-agents system, simulation

Procedia PDF Downloads 299
9505 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System

Authors: Krishnan Manickavasagam, Manikandan Shanmugam

Abstract:

Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.

Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system

Procedia PDF Downloads 75
9504 The Relationship between Value-Added and Energy Consumption in Iran’s Industry Sector

Authors: Morteza Raei Dehaghi, Mojtaba Molaahmadi, Seyed Mohammad Mirhashemi

Abstract:

This study aimed to explore the relationship between energy consumption and value-added in Iran’s industry sector during the time period 1973-2011. Annual data related to energy consumption and value added in the industry sector were used. The results of the study revealed a positive relationship between energy consumption and value-added of the industry sector. Similarly, the results showed that there is one-way causality between energy consumption and value-added in the industry sector.

Keywords: economic growth, energy consumption, granger causality test, industry sector

Procedia PDF Downloads 451
9503 Removal of P-Nitrophenol in Wastewater by Using Fe-Nano Zeolite Synthesized

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Chi-Hyeon Lee, JiTae Kim

Abstract:

This study analyzed the removal of p-nitrophenol from wastewater using Fe-nano zeolite synthesized. The basic physical-chemical properties of Fe-nano zeolite was determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy. We focus on finding out the optimum conditions in adsorption and desorption processes for removal of p-nitrophenol by using Fe-nano zeolite in wastewater. The optimum pH for p-nitrophenol removal in wastewater was 5.0. Adsorption isotherms were better fitted with the Langmuir isotherm than with the Freundlich with 165.58 mg/g adsorption capacity of p-nitrophenol. These findings support potential of Fe-nano zeolite as an effective adsorbent for p-nitrophenol removal from wastewater.

Keywords: Fe-nano zeolite, adsorption, wastewater, regeneration

Procedia PDF Downloads 281
9502 Potentiality of the Wind Energy in Algeria

Authors: C. Benoudjafer, M. N. Tandjaoui, C. Benachaiba

Abstract:

The use of kinetic energy of the wind is in full rise in the world and it starts to be known in our country but timidly. One or more aero generators can be installed to produce for example electricity on isolated places or not connected to the electrical supply network. To use the wind as energy source, it is necessary to know first the energy needs for the population and study the wind intensity, speed, frequency and direction.

Keywords: Algeria, renewable energies, wind, wind power, aero-generators, wind energetic potential

Procedia PDF Downloads 404
9501 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization

Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey

Abstract:

Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).

Keywords: drying time, pretreatment, response surface methodlogy, total phenolic

Procedia PDF Downloads 109
9500 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings

Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa

Abstract:

Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.

Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization

Procedia PDF Downloads 99
9499 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 29
9498 A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology

Authors: Wenhao Wang, Xinzhi Xu, Limin Feng, Wei Cong

Abstract:

This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition.

Keywords: energy transition, geographic information system, fossil energy, power systems

Procedia PDF Downloads 124
9497 Biomass Energy: "The Boon for the Would"

Authors: Shubham Giri Goswami, Yogesh Tiwari

Abstract:

In today’s developing world, India and other countries are developing different instruments and accessories for the better standard and life to be happy and prosper. But rather than this we human-beings have been using different energy sources accordingly, many persons such as scientist, researchers etc have developed many Energy sources like renewable and non-renewable energy sources. Like fossil fuel, coal, gas, petroleum products as non-renewable sources, and solar, wind energy as renewable energy source. Thus all non-renewable energy sources, these all Created pollution as in form of air, water etc. due to ultimate use of these sources by human the future became uncertain. Thus to minimize all this environmental affects and destroy the healthy environment we discovered a solution as renewable energy source. Renewable energy source in form of biomass energy, solar, wind etc. We found different techniques in biomass energy, that good energy source for people. The domestic waste, and is a good source of energy as daily extract from cow in form of dung and many other domestic products naturally can be used eco-friendly fertilizers. Moreover, as from my point of view the cow is able to extract 08-12 kg of dung which can be used to make wormy compost fertilizers. Furthermore, the calf urine as insecticides and use of such a compounds will lead to destroy insects and thus decrease communicable diseases. Therefore, can be used by every person and biomass energy can be in those areas such as rural areas where non-renewable energy sources cannot reach easily. Biomass can be used to develop fertilizers, cow-dung plants and other power generation techniques, and this energy is clean and pollution free and is available everywhere thus saves our beautiful planet or blue or life giving planet called as “EARTH”. We can use the biomass energy, which may be boon for the world in future.

Keywords: biomass, energy, environment, human, pollution, renewable, solar energy, sources, wind

Procedia PDF Downloads 503
9496 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine

Authors: Allouache Nadia

Abstract:

Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.

Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine

Procedia PDF Downloads 237
9495 Effects of Age and Energy Expenditure on Obesity Among Adults in Abeokuta, Nigeria

Authors: Adeniyi Samuel Adekoya

Abstract:

The study assessed the independent effects of age and energy expenditure on the risks of obesity among adults (20-64 years). A cross-sectional study with changes in age, changes in work and leisure-time, and physical activities information played roles, with cut-off for energy expenditure and BMI in rural and urban localities. Physical activity information determined the energy expenditure, while the BMI determined the risk of obesity among the subjects. Statistically, age has a strong and direct association with obesity in both rural and urban settings, while energy expenditure was inverse in its association. Findings from the this study showed that in developing societies, age tends to be a risk factor for obesity, whereas energy expenditure is to be protective. Level of education and economic development are also relevant modifiers of the influences exerted by these variables.

Keywords: age, energy expenditure, BMI, rural/urban

Procedia PDF Downloads 400
9494 Performance Evaluation of Conical Solar Concentrator System with Different Flow Rate

Authors: Gwi Hyun Lee, Mun Soo Na

Abstract:

Solar energy has many advantages of infinite and clean source, and also it can be used for reduction of greenhouse gases and environment pollution. Concentrated solar system is a very useful to achieve reasonably high thermal efficiency. Different types of solar concentrating systems have been developed such as parabolic trough and parabolic dish. Conical solar concentrator is one of the most reliable and promising renewable energy systems for higher temperature applications. The objectives of this study were to investigate the influence of flow rate affecting the thermal efficiency of a conical solar collector, which has a double tube absorber placed at focal axis for collecting solar radiation. A conical solar concentrator consists of a conical reflector, which reflects direct solar radiation into an absorber. A double tube absorber was placed at the center of focal axis for collecting the solar radiation reflected from a conical reflector. A dual tracking system consists of a linear actuator and slew drive with driving cycle of 6 seconds. Water was used as circulating fluid, which flows from inlet to outlet of an absorber for collecting solar radiation. Three identical conical solar concentrator systems were installed side by side at the same place for the accurate performance analysis under the same environmental conditions. Performance evaluations were carried out with different volumetric flow rate of 2, 4 and 6 L/min to find the influence of flow rate affecting on thermal efficiency. The results indicated that average thermal efficiency was 73.24%, 81.96%, and 79.78% for each flow rate of 2 L/min, 4 L/min, and 6 L/min. It shows that the flow rate of circulating water has a significant effect on the thermal efficiency of the conical solar concentrator. It is concluded that an optimum flow rate of conical solar concentrator is 6 L/min.

Keywords: conical solar concentrator, performance evaluation, solar energy, solar energy system

Procedia PDF Downloads 257
9493 Solar Energy Technology Adoption; A Vignette Study for the Up-Scale Residential Sector in Egypt

Authors: Mazen Zaki, Sherwat E. Ibrahim

Abstract:

Renewable energy has become a very important and critical topic all around the world due to the limited resources that led to shifting to the trend of renewable energy and its integration with the conventional ones. This paper investigates the adoption of the solar energy technology for up-scale residential sector in Cairo, Egypt. The technology acceptance model uses several stakeholder points’ of views to develop vignettes to be used in examining the intention and attitude of the householders to adopt the solar energy technology.

Keywords: solar energy, technology acceptance model, TAM, stakeholder analysis, vignette, residential sector

Procedia PDF Downloads 121
9492 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions

Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar

Abstract:

One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.

Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation

Procedia PDF Downloads 406
9491 Evaluation of an Air Energy Recovery System in Greenhouse Fed by an Axial Air Extractor

Authors: Eugueni Romantchik, Gilbero Lopez, Diego Terrazas

Abstract:

The residual wind energy recovery from axial air extractors in greenhouses represents a constant source of clean energy production, which reduces production costs by reducing energy consumption costs. The objective of this work is to design, build and evaluate a residual wind energy recovery system. This system consists of a wind turbine placed at an optimal distance, a cone in the air discharge and a mechanism to vary the blades angle of the wind turbine. The system energy balance was analyzed, measuring the main energy parameters such as voltage, amperage, air velocities and angular speeds of the rotors. Tests were carried in a greenhouse with extractor Multifan 130 (1.2 kW, 550 rpm and 1.3 m of diameter) without cone and with cone, with the wind turbine (3 blades with 1.2 m in diameter). The implementation of the system allowed recovering up to 55% of the motor's energy. With the cone installed, the electric energy recovered was increased by 10%. Experimentally, it was shown that changing in 3 degrees the original angle of the wind turbine blades, the angular velocity increases 17.7%.

Keywords: air energy, exhaust fan, greenhouse, wind turbine

Procedia PDF Downloads 139
9490 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach

Authors: Isara Muangthai, Lin Sue Jane

Abstract:

Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.

Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption

Procedia PDF Downloads 453
9489 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility

Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari

Abstract:

Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.  

Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach

Procedia PDF Downloads 249
9488 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances

Authors: Muhammad Abdullah Arafat, Nahrin Nowrose

Abstract:

Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2 percent increase in average output power is obtained for 10 percent variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.

Keywords: coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer

Procedia PDF Downloads 157
9487 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 45
9486 The Effect of Window Position and Ceiling Height on Cooling Load in Architectural Studio

Authors: Seyedehzahra Mirrahimi

Abstract:

This paper investigates the effect of variations in window and ceiling heights on cooling inside an architectural training studio with a full-width window. For architectural training, students use the studio more often than they use ordinary classrooms. Therefore, studio dimensions and size, and the window position, directly influence the cooling load. Energy for cooling is one of the most expensive costs in the studio because of the high activity levels of students during the warm season. The methodology of analysis involves measuring energy changes in the Energy Plus software in Kish Island. It was proved that the cooling energy in an architecture studio can be increased by changing window levels and ceiling heights to add a range of cooling energy.

Keywords: cooling energy, Energy Plus, studio classroom, window position

Procedia PDF Downloads 265
9485 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate

Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar

Abstract:

Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).

Keywords: hardness, RSM, sputtering, TiN XRD

Procedia PDF Downloads 293
9484 Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT

Authors: Getnet Ayele Kebede, Tasew Tadiwose Zewdie

Abstract:

In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions.

Keywords: Savonius wind turbine, Small-scale irrigation, Vertical Axis Wind Turbine, Water pump

Procedia PDF Downloads 139
9483 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 220
9482 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R. H. Ladstaetter

Abstract:

Present and future lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft and future vehicles will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound (SMC), tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a new hybrid composite technology for aerospace industries, which was developed with the help of a universal innovation and development system. This system supports the management of idea generation, the methodical development of innovative technologies and the achievement of the industrial readiness of these technologies.

Keywords: development system, hybrid composite, innovation system, prepreg, sheet moulding compound

Procedia PDF Downloads 313
9481 The Environmental Effects of the Flood Disaster in Anambra State

Authors: U. V. Okpala

Abstract:

Flood is an overflow of water that submerges or ‘drowns’ land. In developing countries it occurs as a result of blocking of natural and man-made drainages and poor maintenance of water dams/reservoirs which seldom give way after persistent heavy down pours. In coastal lowlands and swamp lands, flooding is aided mainly by blocked channels and indiscriminate sand fling of coastal swamp areas and natural drainage channel for urban development/constructions. In this paper, the causes of flood and possible scientific, technological, political, economic and social impacts of flood disaster on the environment a case study of Anambra State have been studied. Often times flooding is caused by climate change, especially in the developed economy where scientific mitigating options are highly employed. Researchers have identified Green Houses Gases (GHG) as the cause of global climate change. The recent flood disaster in Anambra State which caused physical damage to structures, social dislocation, contamination of clean drinking water, spread of water-borne diseases, shortage of crops and food supplies, death of non-tolerant tree species, disruption in transportation system, serious economic loss and psychological trauma is a function of climate change. There is need to encourage generation of renewable energy sources, use of less carbon intensive fuels and other energy efficient sources. Carbon capture/sequestration, proper management of our drainage systems and good maintenance of our dams are good option towards saving the environment.

Keywords: flooding, climate change, carbon capture, energy systems

Procedia PDF Downloads 354
9480 Survey on Energy Efficient Routing Protocols in Mobile Ad-Hoc Networks

Authors: Swapnil Singh, Sanjoy Das

Abstract:

Mobile Ad-Hoc Network (MANET) is infrastructure less networks dynamically formed by autonomous system of mobile nodes that are connected via wireless links. Mobile nodes communicate with each other on the fly. In this network each node also acts as a router. The battery power and the bandwidth are very scarce resources in this network. The network lifetime and connectivity of nodes depends on battery power. Therefore, energy is a valuable constraint which should be efficiently used. In this paper, we survey various energy efficient routing protocol. The energy efficient routing protocols are classified on the basis of approaches they use to minimize the energy consumption. The purpose of this paper is to facilitate the research work and combine the existing solution and to develop a more energy efficient routing mechanism.

Keywords: delaunay triangulation, deployment, energy efficiency, MANET

Procedia PDF Downloads 583
9479 Analysis of Energy Planning and Optimization with Microgrid System in Dawei Region

Authors: Hninn Thiri Naing

Abstract:

In Myanmar, there are many regions that are far away from the national grid. For these areas, isolated regional micro-grids are one of the solutions. The study area in this paper is also operating in such way. The main difficulty in such regions is the high cost of electrical energy. This paper will be approached to cost-effective or cost-optimization by energy planning with renewable energy resources and natural gas. Micro-grid will be set up for performance in the Dawei region since it is economic zone in lower Myanmar and so far from national grids. The required metrological and geographical data collections are done. Currently, the status is electric unit rate is higher than the other. For microgrid planning and optimization, Homer Pro-software is employed in this research.

Keywords: energy planning, renewable energy, homer pro, cost of energy

Procedia PDF Downloads 107