Search results for: event analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28734

Search results for: event analysis

28254 Urban Resilince and Its Prioritised Components: Analysis of Industrial Township Greater Noida

Authors: N. Mehrotra, V. Ahuja, N. Sridharan

Abstract:

Resilience is an all hazard and a proactive approach, require a multidisciplinary input in the inter related variables of the city system. This research based to identify and operationalize indicators for assessment in domain of institutions, infrastructure and knowledge, all three operating in task oriented community networks. This paper gives a brief account of the methodology developed for assessment of Urban Resilience and its prioritized components for a target population within a newly planned urban complex integrating Surajpur and Kasna village as nodes. People’s perception of Urban Resilience has been examined by conducting questionnaire survey among the target population of Greater Noida. As defined by experts, Urban Resilience of a place is considered to be both a product and process of operation to regain normalcy after an event of disturbance of certain level. Based on this methodology, six indicators are identified that contribute to perception of urban resilience both as in the process of evolution and as an outcome. The relative significance of 6 R’ has also been identified. The dependency factor of various resilience indicators have been explored in this paper, which helps in generating new perspective for future research in disaster management. Based on the stated factors this methodology can be applied to assess urban resilience requirements of a well planned town, which is not an end in itself, but calls for new beginnings.

Keywords: disaster, resilience, system, urban

Procedia PDF Downloads 461
28253 We Are the Earth That Defends Itself: An Exploration of Discursive Practices of Les Soulèvements De La Terre

Authors: Sophie Del Fa, Loup Ducol

Abstract:

This presentation will focus on the discursive practices of Les Soulèvements de la Terre (hereafter SdlT), a French environmentalist group mobilized against agribusiness. More specifically, we will use, as a case study, the violently repressed demonstration that took place in Sainte-Soline on March 25, 2023 (see after for details). The SdlT embodies the renewal of anti-capitalist and environmentalist struggles that began with Occupy Wall Street in 2009 and in France with the Nuit debout in 2016 and the yellow vests movement from 2019 to 2020. These struggles have three things in common: they are self-organized without official leaders, they rely mainly on occupations to reappropriate public places (squares, roundabouts, natural territories) and they are anti-capitalist. The SdlT was created in 2021 by activists coming from the Zone-to-Defend of Notre-Dame-des-Landes, a victorious 10 yearlong occupation movement against an airport near Nantes, France (from 2009 to 2018). The SdlT is not labeled as a formal association, nor as a constituted group, but as an anti-capitalist network of local struggles at the crossroads of ecology and social issues. Indeed, although they target agro-industry, land grabbing, soil artificialization and ecology without transition, the SdlT considers ecological and social questions as interdependent. Moreover, they have an encompassing vision of ecology that they consider as a concern for the living as a whole by erasing the division between Nature and Culture. Their radicality is structured around three main elements: federative and decentralized dimensions, the rhetoric of living alliances and militant creatives strategies. The objective of this reflexion is to understand how these three dimensions are articulated through the SdlT’s discursive practices. To explore these elements, we take as a case study one specific event: the demonstration against the ‘basins’ held in Sainte-Soline on March 25, 2023, on the construction site of new water storage infrastructure for agricultural irrigation in western France. This event represents a turning point for the SdlT. Indeed, the protest was violently repressed: 5000 grenades were fired by the police, hundreds of people were injured, and one person was still in a coma at the time of writing these lines. Moreover, following Saint-Soline’s events, the Minister of Interior Affairs, Gérald Darmin, threatened to dissolve the SdlT, thus adding fuel to the fire in an already tense social climate (with the ongoing strikes against the pensions reform). We anchor our reflexion on three types of data: 1) our own experiences (inspired by ethnography) of the Sainte-Soline demonstration; 2) the collection of more than 500 000 Tweets with the #SainteSoline hashtag and 3) a press review of texts and articles published after Sainte-Soline’s demonstration. The exploration of these data from a turning point in the history of the SdlT will allow us to analyze how the three dimensions highlighted earlier (federative and decentralized dimensions, rhetoric of living alliances and creatives militant strategies) are materialized through the discursive practices surrounding the Sainte-Soline event. This will allow us to shed light on how a new contemporary movement implements contemporary environmental struggles.

Keywords: discursive practices, Sainte-Soline, Ecology, radical ecology

Procedia PDF Downloads 74
28252 Literary Interpretation and Systematic-Structural Analysis of the Titles of the Works “The Day Lasts More than a Hundred Years”, “Doomsday”

Authors: Bahor Bahriddinovna Turaeva

Abstract:

The article provides a structural analysis of the titles of the famous Kyrgyz writer Chingiz Aitmatov’s creative works “The Day Lasts More Than a Hundred Years”, “Doomsday”. The author’s creative purpose in naming the work of art, the role of the elements of the plot, and the composition of the novels in revealing the essence of the title are explained. The criteria that are important in naming the author’s works in different genres are classified, and the titles that mean artistic time and artistic space are studied separately. Chronotope is being concerned as the literary-aesthetic category in world literary studies, expressing the scope of the universe interpretation, the author’s outlook and imagination regarding the world foundation, defining personages, and the composition means of expressing the sequence and duration of the events. A creative comprehension of the chronotope as a means of arranging the work composition, structure and constructing an epic field of the text demands a special approach to understanding the aesthetic character of the work. Since the chronotope includes all the elements of a fictional work, it is impossible to present the plot, composition, conflict, system of characters, feelings, and mood of the characters without the description of the chronotope. In the following development of the scientific-theoretical thought in the world, the chronotope is accepted to be one of the poetic means to demonstrate reality as well as to be a literary process that is basic for the expression of reality in the compositional construction and illustration of the plot relying on the writer’s intention and the ideological conception of the literary work. Literary time enables one to cognate the literary world picture created by the author in terms of the descriptive subject and object of the work. Therefore, one of the topical tasks of modern Uzbek literary studies is to describe historical evidence, event, the life of outstanding people, the chronology of the near past based on the literary time; on the example of the creative works of a certain period, creators or an individual writer are analyzed in separate or comparative-typological aspect.

Keywords: novel, title, chronotope, motive, epigraph, analepsis, structural analysis, plot line, composition

Procedia PDF Downloads 76
28251 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data

Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan

Abstract:

Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.

Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data

Procedia PDF Downloads 443
28250 Investigating the Effect of Orthographic Transparency on Phonological Awareness in Bilingual Children with Dyslexia

Authors: Sruthi Raveendran

Abstract:

Developmental dyslexia, characterized by reading difficulties despite normal intelligence, presents a significant challenge for bilingual children navigating languages with varying degrees of orthographic transparency. This study bridges a critical gap in dyslexia interventions for bilingual populations in India by examining how consistency and predictability of letter-sound relationships in a writing system (orthographic transparency) influence the ability to understand and manipulate the building blocks of sound in language (phonological processing). The study employed a computerized visual rhyme-judgment task with concurrent EEG (electroencephalogram) recording. The task compared reaction times, accuracy of performance, and event-related potential (ERP) components (N170, N400, and LPC) for rhyming and non-rhyming stimuli in two orthographies: English (opaque orthography) and Kannada (transparent orthography). As hypothesized, the results revealed advantages in phonological processing tasks for transparent orthography (Kannada). Children with dyslexia were faster and more accurate when judging rhymes in Kannada compared to English. This suggests that a language with consistent letter-sound relationships (transparent orthography) facilitates processing, especially for tasks that involve manipulating sounds within words (rhyming). Furthermore, brain activity measured by event-related potentials (ERP) showed less effort required for processing words in Kannada, as reflected by smaller N170, N400, and LPC amplitudes. These findings highlight the crucial role of orthographic transparency in optimizing reading performance for bilingual children with dyslexia. These findings emphasize the need for language-specific intervention strategies that consider the unique linguistic characteristics of each language. While acknowledging the complexity of factors influencing dyslexia, this research contributes valuable insights into the impact of orthographic transparency on phonological awareness in bilingual children. This knowledge paves the way for developing tailored interventions that promote linguistic inclusivity and optimize literacy outcomes for children with dyslexia.

Keywords: developmental dyslexia, phonological awareness, rhyme judgment, orthographic transparency, Kannada, English, N170, N400, LPC

Procedia PDF Downloads 16
28249 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition

Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao

Abstract:

Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.

Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity

Procedia PDF Downloads 79
28248 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard

Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor

Abstract:

During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.

Keywords: critical links, extreme weather events, hazard, resilience, transport network

Procedia PDF Downloads 287
28247 X-Ray Energy Release in the Solar Eruptive Flare from 6th of September 2012

Authors: Mirabbos Mirkamalov, Zavkiddin Mirtoshev

Abstract:

The M 1.6 class flare occurred on 6th of September 2012. Our observations correspond to the active region NOAA 11560 with the heliographic coordinates N04W71. The event took place between 04:00 UT and 04:45 UT, and was close to the solar limb at the western region. The flare temperature correlates with flux peak, increases for a short period (between 04:08 UT and 04:12 UT), rises impulsively, attains a maximum value of about 17 MK at 04:12 UT and gradually decreases after peak value. Around the peak we observe significant emissions of X-ray sources. Flux profiles of the X-ray emission exhibit a progressively faster raise and decline as the higher energy channels are considered.

Keywords: magnetic reconnection, solar atmosphere, solar flare, X-ray emission

Procedia PDF Downloads 326
28246 An Artificial Neural Network Model Based Study of Seismic Wave

Authors: Hemant Kumar, Nilendu Das

Abstract:

A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.

Keywords: ANN, Bayesion class, earthquakes, IMD

Procedia PDF Downloads 126
28245 Optimizing Fire Suppression Time in Buildings by Forming a Fire Feedback Loop

Authors: Zhdanova A. O., Volkov R. S., Kuznetsov G. V., Strizhak P. A.

Abstract:

Fires in different types of facilities are a serious problem worldwide.It is still an unaccomplished science and technology objective to establish the minimum number and type of sensors in automatic systems of compartment fire suppression which would turn the fire-extinguishing agent spraying on and off in real time depending on the state of the fire, minimize the amount of agent applied, delay time in fire suppression and system response, as well as the time of combustion suppression. Based on the results of experimental studies, the conclusion was made that it is reasonable to use a gas analysis system and heat sensors (in the event of their prior activation) to determine the effectiveness of fire suppression (fire-extinguishing composition interacts with the fire). Thus, the concentration of CO in the interaction of the firefighting liquid with the fire increases to 0.7–1.2%, which indicates a slowdown in the flame combustion, and heat sensors stop responding at a gas medium temperature below 80 ºC, which shows a gradual decrease in the heat release from the fire. The evidence from this study suggests that the information received from the video recording equipment (video camera) should be used in real time as an additional parameter confirming fire suppression. Research was supported by Russian Science Foundation (project No 21-19-00009, https://rscf.ru/en/project/21-19-00009/).

Keywords: compartment fires, fire suppression, continuous control of fire behavior, feedback systems

Procedia PDF Downloads 130
28244 Investigation for Pixel-Based Accelerated Aging of Large Area Picosecond Photo-Detectors

Authors: I. Tzoka, V. A. Chirayath, A. Brandt, J. Asaadi, Melvin J. Aviles, Stephen Clarke, Stefan Cwik, Michael R. Foley, Cole J. Hamel, Alexey Lyashenko, Michael J. Minot, Mark A. Popecki, Michael E. Stochaj, S. Shin

Abstract:

Micro-channel plate photo-multiplier tubes (MCP-PMTs) have become ubiquitous and are widely considered potential candidates for next generation High Energy Physics experiments due to their picosecond timing resolution, ability to operate in strong magnetic fields, and low noise rates. A key factor that determines the applicability of MCP-PMTs in their lifetime, especially when they are used in high event rate experiments. We have developed a novel method for the investigation of the aging behavior of an MCP-PMT on an accelerated basis. The method involves exposing a localized region of the MCP-PMT to photons at a high repetition rate. This pixel-based method was inspired by earlier results showing that damage to the photocathode of the MCP-PMT occurs primarily at the site of light exposure and that the surrounding region undergoes minimal damage. One advantage of the pixel-based method is that it allows the dynamics of photo-cathode damage to be studied at multiple locations within the same MCP-PMT under different operating conditions. In this work, we use the pixel-based accelerated lifetime test to investigate the aging behavior of a 20 cm x 20 cm Large Area Picosecond Photo Detector (LAPPD) manufactured by INCOM Inc. at multiple locations within the same device under different operating conditions. We compare the aging behavior of the MCP-PMT obtained from the first lifetime test conducted under high gain conditions to the lifetime obtained at a different gain. Through this work, we aim to correlate the lifetime of the MCP-PMT and the rate of ion feedback, which is a function of the gain of each MCP, and which can also vary from point to point across a large area (400 $cm^2$) MCP. The tests were made possible by the uniqueness of the LAPPD design, which allows independent control of the gain of the chevron stacked MCPs. We will further discuss the implications of our results for optimizing the operating conditions of the detector when used in high event rate experiments.

Keywords: electron multipliers (vacuum), LAPPD, lifetime, micro-channel plate photo-multipliers tubes, photoemission, time-of-flight

Procedia PDF Downloads 180
28243 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies

Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading

Abstract:

In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.

Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors

Procedia PDF Downloads 222
28242 A Review of Spatial Analysis as a Geographic Information Management Tool

Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku

Abstract:

Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.

Keywords: aspatial technique, buffer analysis, epidemiology, interpolation

Procedia PDF Downloads 324
28241 Children and Parents Left behind in Transnational Families: The Problem of Care Deficit

Authors: Joanna Bielecka-Prus

Abstract:

In the view of increasing number of labour migrations associated with broadly understood economic crisis, many families experience migration separation. Currently, in the era of globalization, migration movements include an increasing number of families, more and more frequently a new type of family, a transnational family. Accordingly, the functions of the family, family practice of care, and the relationships between members of the group change especially in the case of female migration. Sociologists highlight the emotional aspects of migrants’ family lives: managing emotions, coping with guilt, loneliness and rejection. Not without significance is the fact that today's public discourse often represents migrant women in a negative light. On the one hand, consumption and expanding material resources are assessed positively, on the other hand, deficits emotional and devastation of family life in the transnational families appear. Opinions expressed by different environments: the media, the political environment, etc. do not always take into account the context of mobility and their different effects on family life. The paper will present the analysis of qualitative studies of Polish female migrants’ families left-behind (children, parents, caregivers N = 100) and their coping strategies in different situations in the event of migration separation. The main area of care deficit will be defined and it will be showed who and how help to solve the problems.

Keywords: care, children left behind, female migration, parents left behind

Procedia PDF Downloads 397
28240 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 550
28239 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: false negative rate, intrusion detection system, machine learning methods, performance

Procedia PDF Downloads 118
28238 Preliminary Study Investigating Trunk Muscle Fatigue and Cognitive Function in Event Riders during a Simulated Jumping Test

Authors: Alice Carter, Lucy Dumbell, Lorna Cameron, Victoria Lewis

Abstract:

The Olympic discipline of eventing is the triathlon of equestrian sport, consisting of dressage, cross-country and show jumping. Falls on the cross-country are common and can be serious even causing death to rider. Research identifies an increased risk of a fall with an increasing number of obstacles and for jumping efforts later in the course suggesting fatigue maybe a contributing factor. Advice based on anecdotal evidence suggests riders undertake strength and conditioning programs to improve their ‘core’, thus improving their ability to maintain and control their riding position. There is little empirical evidence to support this advice. Therefore, the aim of this study is to investigate truck muscle fatigue and cognitive function during a simulated jumping test. Eight adult riders participated in a riding test on a Racewood Event simulator for 10 minutes, over a continuous jumping programme. The SEMG activity of six trunk muscles were bilaterally measured at every minute, and normalised root mean squares (RMS) and median frequencies (MDF) were computed from the EMG power spectra. Visual analogue scales (VAS) measuring Fatigue and Pain levels and Cognitive Function ‘tapping’ tests were performed before and after the riding test. Average MDF values for all muscles differed significantly between each sampled minute (p = 0.017), however a consistent decrease from Minute 1 and Minute 9 was not found, suggesting the trunk muscles fatigued and then recovered as other muscle groups important in maintaining the riding position during dynamic movement compensated. Differences between the MDF and RMS of different muscles were highly significant (H=213.01, DF=5, p < 0.001), supporting previous anecdotal evidence that different trunk muscles carry out different roles of posture maintenance during riding. RMS values were not significantly different between the sampled minutes or between riders, suggesting the riding test produced a consistent and repeatable effect on the trunk muscles. MDF values differed significantly between riders (H=50.8, DF = 5, p < 0.001), suggesting individuals may experience localised muscular fatigue of the same test differently, and that other parameters of physical fitness should be investigated to provide conclusions. Lumbar muscles were shown to be important in maintaining the position, therefore physical training program should focus on these areas. No significant differences were found between pre- and post-riding test VAS Pain and Fatigue scores or cognitive function test scores, suggesting the riding test was not significantly fatiguing for participants. However, a near significant correlation was found between time of riding test and VAS Pain score (p = 0.06), suggesting somatic pain may be a limiting factor to performance. No other correlations were found between the factors of participant riding test time, VAS Pain and Fatigue, however a larger sample needs to be tested to improve statistical analysis. The findings suggest the simulator riding test was not sufficient to provoke fatigue in the riders, however foundations for future studies have been laid to enable methodologies in realistic eventing settings.

Keywords: eventing, fatigue, horse-rider, surface EMG, trunk muscles

Procedia PDF Downloads 191
28237 When Conducting an Analysis of Workplace Incidents, It Is Imperative to Meticulously Calculate Both the Frequency and Severity of Injuries Sustain

Authors: Arash Yousefi

Abstract:

Experts suggest that relying exclusively on parameters to convey a situation or establish a condition may not be adequate. Assessing and appraising incidents in a system based on accident parameters, such as accident frequency, lost workdays, or fatalities, may not always be precise and occasionally erroneous. The frequency rate of accidents is a metric that assesses the correlation between the number of accidents causing work-time loss due to injuries and the total working hours of personnel over a year. Traditionally, this has been calculated based on one million working hours, but the American Occupational Safety and Health Organization has updated its standards. The new coefficient of 200/000 working hours is now used to compute the frequency rate of accidents. It's crucial to ensure that the total working hours of employees are equally represented when calculating individual event and incident numbers. The accident severity rate is a metric used to determine the amount of time lost or wasted during a given period, often a year, in relation to the total number of working hours. It measures the percentage of work hours lost or wasted compared to the total number of useful working hours, which provides valuable insight into the number of days lost or wasted due to work-related incidents for each working hour. Calculating the severity of an incident can be difficult if a worker suffers permanent disability or death. To determine lost days, coefficients specified in the "tables of days equivalent to OSHA or ANSI standards" for disabling injuries are used. The accident frequency coefficient denotes the rate at which accidents occur, while the accident severity coefficient specifies the extent of damage and injury caused by these accidents. These coefficients are crucial in accurately assessing the magnitude and impact of accidents.

Keywords: incidents, safety, analysis, frequency, severity, injuries, determine

Procedia PDF Downloads 91
28236 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods

Authors: Shima Nabinejad, Holger Schüttrumpf

Abstract:

Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.

Keywords: crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges

Procedia PDF Downloads 257
28235 Sponsorship Strategy, Its Visibility, and Return: A Case Study on Brazilian Olympic Games

Authors: Elizabeth F. Rodrigues, Julia da R. Mattos, Naira Q. Leitão, Roberta T. da Cunha

Abstract:

The business strategy of many companies has two factors in common: the search for the competitive edge and its long term maintenance. The thing that differentiates the companies’ performance in their abilities to set the right strategy, which depends on their capacity to analyze and apply all sort of management support tools. In this context, the sponsorship of events stands out as an important way to increase brand awareness, especially when it is a worldwide event, such as Rio 2016 Olympic and Paralympic Games. This paper will present the case of a car maker company, which chose to invest on sponsorship as a way to reach its goals and grow in the brazilian market.

Keywords: strategy, sponsorship, events, management

Procedia PDF Downloads 498
28234 The Production, Negotiation and Resistance of Short Video Producers

Authors: Cui Li, Xu Yuping

Abstract:

Based on the question of, "Are short video creators who are digital workers controlled by platform rules?" this study discusses the specific ways of platform rules control and the impact on short video creators. Based on the theory of digital labor, this paper adopts the method of in-depth interview and participant observation and chooses 24 producers of short video content of Tiktok to conduct in-depth interview. At the same time, through entering the short video creation field, the author carries on the four-month field investigation, obtains the creation process related data, and analyzes how the short video creator, as the digital labor, is controlled by the platform rule, as well as the creator in this process of compromise and resistance, a more comprehensive presentation of the short video creators of the labor process. It is found that the short video creators are controlled by the platform rules, mainly in the control of traffic rules, and the creators create content, compromise and resist under the guidance of traffic. First, while the platform seems to offer a flexible and autonomous way for creators to monetize, the threshold for participating in the event is actually very high for creators, and the rules for monetizing the event are vague. Under the influence of the flow rule, the creator is faced unstable incomes and high costs. Therefore, creators have to follow the rules of traffic to guide their own creation, began to flow-oriented content production, mainly reflected in the need to keep up-to-date, the pursuit of traffic to ride on the hot spots, in order to flow regardless, set up people "Born for the show", by the label solidified content creation. Secondly, the irregular working hours lead to the extension and overwork of the working hours, which leads to the internal friction of the short video creators at the spiritual level, and finally leads to the Rat Race of video creation. Thirdly, the video creator has completed the internalization and compromise of the platform rules in practice, which promotes the creator to continue to create independently, and forms the intrinsic motive force of the creator. Finally, the rule-controlled short video creators resist and fight in flexible ways, make use of the mechanism and rules of the platform to carry on the second creation, carry on the routine production, purchase the false flow, transfer the creation position to maintain own creation autonomy.

Keywords: short videos, tiktok, production, digital labors

Procedia PDF Downloads 61
28233 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks

Authors: Khelifa Benahmed, Tarek Benahmed

Abstract:

There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.

Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks

Procedia PDF Downloads 353
28232 Elements of Critical Event Management: A Qualitative Study of Trauma Teams

Authors: Tan Xin Zhong Timothy, Chang Chen Jie Victor, Yew Kwan Tong, Lim Geok Peng Sandy

Abstract:

Background: Leaders in crisis response teams such as Trauma Teams in hospitals are essential to the effective coordination and direction of the team. The response to emergency trauma situations must be accurate, rapid, and well executed. To this end, the team leader’s social, technical and leadership skills are essential factors that implicate the success of an emergency trauma intervention. While each emergency trauma case varies in severity and complexity, and the experience and expertise of team leaders may vary, it would be productive to identify certain coordinative and directive functions that improve the capacity for leading a team. Methods: This qualitative study of Trauma Team physicians in Singapore General Hospital (SGH) involved 50 in-depth interviews with doctors and nurses involved in Trauma Team activations, observations of Trauma Teams managing emergency patients, and reviews of audio/video recordings of 65 trauma activations. The interviews were conducted with doctors of various ranks across the relevant departments, 12 from the Emergency Department (ED), 11 from General Surgery (GS) and 8 from Orthopaedics, while the 6 nurses were from ED. In accordance with the grounded theory approach, the content of the interviews was coded and analysed in order to derive broad leadership themes that corresponded with certain behavioural traits exhibited by trauma team leaders, supplemented with the observational and audio/video data. Results: The leadership behaviours of the team leaders could be typified into three broad categories: team orientation, engagement and activeness. Team orientation corresponds with the source and form of cognitive responsibility, decision-making and informational contributions, divisible into individualistic and consultative sub-categories. Engagement refers to the type of activity that leaders prefer to engage in, and which implicates their attentional focus, divisible into participatory and supervisory sub-categories. Activeness is a function of the leader’s attitudes towards the behavioural regulation of the team, which manifests in inactivity or activity to augment or merely align with protocol. These factors are not exhaustive and are contextually sensitive, but collectively implicate a significant portion of the leadership activity observed in trauma teams.

Keywords: trauma team activations, critical event management, leadership, teamwork

Procedia PDF Downloads 328
28231 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 79
28230 Effects of Gamma-Tocotrienol Supplementation on T-Regulatory Cells in Syngeneic Mouse Model of Breast Cancer

Authors: S. Subramaniam, J. S. A. Rao, P. Ramdas, K. R. Selvaduray, N. M. Han, M. K. Kutty, A. K. Radhakrishnan

Abstract:

Immune system is a complex system where the immune cells have the capability to respond against a wide range of immune challenges including cancer progression. However, in the event of cancer development, tumour cells trigger immunosuppressive environment via activation of myeloid-derived suppressor cells and T regulatory (Treg) cells. The Treg cells are subset of CD4+ T lymphocytes, known to have crucial roles in regulating immune homeostasis and promoting the establishment and maintenance of peripheral tolerance. Dysregulation of these mechanisms could lead to cancer progression and immune suppression. Recently, there are many studies reporting on the effects of natural bioactive compounds on immune responses against cancer. It was known that tocotrienol-rich-fraction consisting 70% tocotrienols and 30% α-tocopherol is able to exhibit immunomodulatory as well as anti-cancer properties. Hence, this study was designed to evaluate the effects of gamma-tocotrienol (G-T3) supplementation on T-reg cells in a syngeneic mouse model of breast cancer. In this study, female BALB/c mice were divided into two groups and fed with either soy oil (vehicle) or gamma-tocotrienol (G-T3) for two weeks followed by inoculation with tumour cells. All the mice continued to receive the same supplementation until day 49. The results showed a significant reduction in tumour volume and weight in G-T3 fed mice compared to vehicle-fed mice. Lung and liver histology showed reduced evidence of metastasis in tumour-bearing G-T3 fed mice. Besides that, flow cytometry analysis revealed T-helper cell population was increased, and T-regulatory cell population was suppressed following G-T3 supplementation. Moreover, immunohistochemistry analysis showed that there was a marked decrease in the expression of FOXP3 in the G-T3 fed tumour bearing mice. In conclusion, the G-T3 supplementation showed good prognosis towards breast cancer by enhancing the immune response in tumour-bearing mice. Therefore, gamma-T3 can be used as immunotherapy agent for the treatment of breast cancer.

Keywords: breast cancer, gamma tocotrienol, immune suppression, supplement

Procedia PDF Downloads 223
28229 Placebo Analgesia in Older Age: Evidence from Event-Related Potentials

Authors: Angelika Dierolf, K. Rischer, A. Gonzalez-Roldan, P. Montoya, F. Anton, M. Van der Meulen

Abstract:

Placebo analgesia is a powerful cognitive endogenous pain modulation mechanism with high relevance in pain treatment. Older people would benefit, especially from non-pharmacologic pain interventions, since this age group is disproportionately affected by acute and chronic pain, while pharmacological treatments are less suitable due to polypharmacy and age-related changes in drug metabolism. Although aging is known to affect neurobiological and physiological aspects of pain perception, as for example, changes in pain threshold and pain tolerance, its effects on cognitive pain modulation strategies, including placebo analgesia, have hardly been investigated so far. In the present study, we are assessing placebo analgesia in 35 older adults (60 years and older) and 35 younger adults (between 18 and 35 years). Acute pain was induced with short transdermal electrical pulses to the inner forearm, using a concentric stimulating electrode. Stimulation intensities were individually adjusted to the participant’s threshold. Next to the stimulation site, we applied sham transcutaneous electrical nerve stimulation (TENS). Participants were informed that sometimes the TENS device would be switched on (placebo condition), and sometimes it would be switched off (control condition). In reality, it was always switched off. Participants received alternating blocks of painful stimuli in the placebo and control condition and were asked to rate the intensity and unpleasantness of each stimulus on a visual analog scale (VAS). Pain-related evoked potentials were recorded with a 64-channel EEG. Preliminary results show a reduced placebo effect in older compared to younger adults in both behavioral and neurophysiological data. Older people experienced less subjective pain reduction under sham TENS treatment compared to younger adults, as evidenced by the VAS ratings. The N1 and P2 event-related potential components were generally reduced in the older group. While younger adults showed a reduced N1 and P2 under sham TENS treatment, this reduction was considerably smaller in older people. This reduced placebo effect in the older group suggests that cognitive pain modulation is altered in aging and may at least partly explain why older adults experience more pain. Our results highlight the need for a better understanding of the efficacy of non-pharmacological pain treatments in older adults and how these can be optimized to meet the specific requirements of this population.

Keywords: placebo analgesia, aging, acute pain, TENS, EEG

Procedia PDF Downloads 141
28228 Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle

Authors: Leszek Chybowski, Artur Bejger, Katarzyna Gawdzińska

Abstract:

Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.

Keywords: complex technical system, fuel injector, function analysis, importance analysis, resource analysis, sabotage analysis, subversion analysis, TRIZ (Theory of Inventive Problem Solving)

Procedia PDF Downloads 620
28227 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes

Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez

Abstract:

Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.

Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability

Procedia PDF Downloads 233
28226 Analysis of Bed Load Sediment Transport Mataram-Babarsari Irrigation Canal

Authors: Agatha Padma Laksitaningtyas, Sumiyati Gunawan

Abstract:

Mataram Irrigation Canal has 31,2 km length, is the main irrigation canal in Special Region Province of Yogyakarta, connecting Progo River on the west side and Opak River on the east side. It has an important role as the main water carrier distribution for various purposes such as agriculture, fishery, and plantation which should be free from sediment material. Bed Load Sediment is the basic sediment that will make the sediment process on the irrigation canal. Sediment process is a simultaneous event that can make deposition sediment at the base of irrigation canal and can make the height of elevation water change, it will affect the availability of water to be used for irrigation functions. To predict the amount of drowning sediments in the irrigation canal using two methods: Meyer-Peter and Muller’s Method which is an energy approach method and Einstein Method which is a probabilistic approach. Speed measurement using floating method and using current meters. The channel geometry is measured directly in the field. The basic sediment of the channel is taken in the field by taking three samples from three different points. The result of the research shows that by using the formula Meyer -Peter Muller get the result of 60,75799 kg/s, whereas with Einsten’s Method get result of 13,06461 kg/s. the results may serve as a reference for dredging the sediments on the channel so as not to disrupt the flow of water in irrigation canal.

Keywords: bed load, sediment, irrigation, Mataram canal

Procedia PDF Downloads 229
28225 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution

Authors: Noora Al-Shanfari, M. Mazharul Islam

Abstract:

The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.

Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis

Procedia PDF Downloads 107