Search results for: absorption Angström exponent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1687

Search results for: absorption Angström exponent

1207 Drying Effect on the Proximate Composition and Functional Properties of Cocoyam Flour

Authors: K. Maliki, A. Ajayi, O. M. Makanjuola, O. J. Adebowale

Abstract:

Cocoyam is herbaceous perennial plant which belongs to the family Araceae and genus xanthosoma or cococasia is mostly cultivated as food crop. It is very rich in Vitamin B6, Magnesium and also in dietary fiber. Matured cocoyam is eaten boiled, Fried or roasted in Nigeria. It can also be dried and used to make flour. Food drying is a method of food preservation in which food is dried, thus inhibit the growth of bacteria yeast and mold through the removal of water. Drying effect on the proximate composition and functional properties of cocoyam flour were investigated. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, sliced into 0.3mm thickness blanch in boiling water at 100°C for 15 minutes and dried using sun drying oven and cabinet dryers. The blanched slices were divided into three lots and were subjected to different drying methods. The dried cocoyam slices were milled into flour using Apex mill and packed into Low Density Polyethylene Film (LDPE) 75 Micron 4 thickness and kept for four months under ambient temperature before analysis. The results showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 7.35% to 13.89%, 1.45% to 3.3%, 1.2% to 3.41%, 2.1% to 3.1%, 6.30% to 9.1% and 66% to 82% respectively. The functional properties of the cocoyam flour ranged from 1. 65ml/g to 4.24ml/g water absorption capacity, 0.85ml/g to 2.11ml/g oil absorption capacity 0.56ml/g and 0.78ml/g bulk density and 4.91% to 6.80% swelling capacity. The result showed that there was not significant difference (P ≥ 0.5) across the various drying methods used. Cabinet drying method was found to have the best quality characteristic values than the other drying methods. In conclusion, drying of cocoyam could be used for value addition and provide extension to shelf-life.

Keywords: cocoyam flour, drying, cabinet dryer, oven dryer

Procedia PDF Downloads 219
1206 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator

Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau

Abstract:

Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.

Keywords: FFFluid, dry foam, anti-vibration devices, elastomeric polymer foam

Procedia PDF Downloads 318
1205 Assessing the Suitability of South African Waste Foundry Sand as an Additive in Clay Masonry Products

Authors: Nthabiseng Portia Mahumapelo, Andre van Niekerk, Ndabenhle Sosibo, Nirdesh Singh

Abstract:

The foundry industry generates large quantities of solid waste in the form of waste foundry sand. The ever-increasing quantities of this type of industrial waste put pressure on land-filling space and its proper management has become a global concern. The South African foundry industry is not different when it comes to this solid waste generation. Utilizing the foundry waste sand in other applications has become an attractive avenue to deal with this waste stream. In the present paper, an evaluation was done on the suitability of foundry waste sand as an additive in clay masonry products. Purchased clay was added to the foundry waste sand sample in a 50/50 ratio. The mixture was named FC sample. The FC sample was mixed with water in a pan mixer until the mixture was consistent and suitable for extrusion. The FC sample was extruded and cut into briquettes. Water absorption, shrinkage and modulus of rupture tests were conducted on the resultant briquettes. Foundry waste sand and FC samples were respectively characterized mineralogically using X-Ray Diffraction, and the major and trace elements were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. Adding purchased clay to the foundry waste sand positively influenced the workability of the test sample. Another positive characteristic was the low linear shrinkage, which indicated that products manufactured from the FC sample would not be susceptible to cracking. The water absorption values were acceptable and the unfired and fired strength values of the briquette’s samples were acceptable. In conclusion, tests showed that foundry waste sand can be used as an additive in masonry clay bricks, provided it is blended with good quality clay.

Keywords: foundry waste sand, masonry clay bricks, modulus of rupture, shrinkage

Procedia PDF Downloads 200
1204 Studies on the Proximate Composition and Functional Properties of Extracted Cocoyam Starch Flour

Authors: Adebola Ajayi, Francis B. Aiyeleye, Olakunke M. Makanjuola, Olalekan J. Adebowale

Abstract:

Cocoyam, a generic term for both xanthoma and colocasia, is a traditional staple root crop in many developing countries in Africa, Asia and the Pacific. It is mostly cultivated as food crop which is very rich in vitamin B6, magnesium and also in dietary fiber. The cocoyam starch is easily digested and often used for baby food. Drying food is a method of food preservation that removes enough moisture from the food so bacteria, yeast and molds cannot grow. It is a one of the oldest methods of preserving food. The effect of drying methods on the proximate composition and functional properties of extracted cocoyam starch flour were studied. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, washed and grated. The starch in the grated cocoyam was extracted, dried using sun drying, oven and cabinet dryers. The extracted starch flour was milled into flour using Apex mill and packed and sealed in low-density polyethylene film (LDPE) 75 micron thickness with Nylon sealing machine QN5-3200HI and kept for three months under ambient temperature before analysis. The result showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 6.28% to 12.8% 2.32% to 3.2%, 0.89% to 2.24%%, 1.89% to 2.91%, 7.30% to 10.2% and 69% to 83% respectively. The functional properties of the cocoyam starch flour ranged from 2.65ml/g to 4.84ml/g water absorption capacity, 1.95ml/g to 3.12ml/g oil absorption capacity, 0.66ml/g to 7.82ml/g bulk density and 3.82% to 5.30ml/g swelling capacity. Significant difference (P≥0.5) was not obtained across the various drying methods used. The drying methods provide extension to the shelf-life of the extracted cocoyam starch flour.

Keywords: cocoyam, extraction, oven dryer, cabinet dryer

Procedia PDF Downloads 266
1203 Ointment of Rosella Flower Petals Extract (Hibiscus sabdariffa): Pharmaceutical Preparations Formulation Development of Herbs for Antibacterial S. aureus

Authors: Muslihatus Syarifah

Abstract:

Introduction: Rosella flower petals can be used as an antibacterial because it contains alkaloids, flavonoids, phenolics, and terpenoids) for the . Bacteria activity is S. aureus can cause skin infections and pengobatanya most appropriate use of topical preparations. Ointment is a topical preparation comprising the active substance and ointment base. Not all the base matches the active substances or any type of disease. In this study using flavonoid active substances contained in rosella flower petals (Hibiscus sabdariffa) to be made ointment by testing a variety of different bases in order to obtain a suitable basis for the formulation of ointment extract rosella flower petals. Methods: Experimental research with research methods Post test control group design using the ointment is hydrocarbon sample, absorption, leached water and dissolved water. Then tested for bacteria S. aureus with different concentrations of 1%, 2%, 4%, 8%, 16, 32%. Data were analyzed using One Way ANOVA followed by Post Hoc test. Results: Ointment with a hydrocarbon base, absorption, leached water and dissolved water having no change in physical properties during storage. Base affect the physical properties of an ointment that adhesion, dispersive power and pH. The physical properties of the ointment with different concentrations produce different physical properties including adhesion, dispersive power and pH. The higher the concentration the higher dispersive power, but the smaller the adhesion and pH. Conclusion: Differences bases, storage time, the concentration of the extract can affect the physical properties of the ointment. Concentration of extract in the ointment extract rosella flower petals is 32%.

Keywords: rosella, physical properties, ointments, antibacterial

Procedia PDF Downloads 350
1202 [Keynote Talk]: Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites

Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar

Abstract:

In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.

Keywords: nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method

Procedia PDF Downloads 449
1201 Influence of Convective Boundary Condition on Chemically Reacting Micropolar Fluid Flow over a Truncated Cone Embedded in Porous Medium

Authors: Pradeepa Teegala, Ramreddy Chitteti

Abstract:

This article analyzes the mixed convection flow of chemically reacting micropolar fluid over a truncated cone embedded in non-Darcy porous medium with convective boundary condition. In addition, heat generation/absorption and Joule heating effects are taken into consideration. The similarity solution does not exist for this complex fluid flow problem, and hence non-similarity transformations are used to convert the governing fluid flow equations along with related boundary conditions into a set of nondimensional partial differential equations. Many authors have been applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The effect of pertinent parameters namely, Biot number, mixed convection parameter, heat generation/absorption, Joule heating, Forchheimer number, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, mixed convection, spectral quasi-linearization method

Procedia PDF Downloads 257
1200 University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB)

Authors: Patricia Mikchaela D. L. Feliciano, Ciela Kadeshka A. Fuentes, Bea Trixia B. Gales, Ethel Princess A. Gepulango, Martin R. Hernandez, Elina Andrea S. Lantion, Jhoe Cynder P. Legaspi, Peter F. Quilala, Gina C. Castro

Abstract:

Propolis is a resin-like material used by bees to fill large gap holes in the beehive. It has been found to possess anti-inflammatory property, which stimulates hair growth in rats by inducing hair keratinocytes proliferation, causing water retention and preventing damage caused by heat, ultraviolet rays, and other microorganisms without abnormalities in hair follicles. The present study aimed to formulate 10% and 30% Propolis Hair Cream for use in enhancing hair properties. Raw propolis sample was tested for heavy metals using Atomic Absorption Spectroscopy; zinc and chromium were found to be present. Likewise, propolis was extracted in a percolator using 70% ethanol and concentrated under vacuum using a rotary evaporator. The propolis extract was analyzed for total flavonoid content. Compatibility of the propolis extract with excipients was evaluated using Differential Scanning Calorimetry (DSC). No significant changes in organoleptic properties, pH and viscosity of the formulated creams were noted after four weeks of storage at 2-8°C, 30°C, and 40°C. The formulated creams were found to be non-irritating based on the Modified Draize Rabbit Test. In vivo efficacy was evaluated based on thickness and tensile strength of hair grown on previously shaved rat skin. Results show that the formulated 30% propolis-based cream had greater hair enhancing properties than the 10% propolis cream, which had a comparable effect with minoxidil.

Keywords: atomic absorption spectroscopy, differential scanning calorimetry (DSC), modified draize rabbit test, propolis

Procedia PDF Downloads 314
1199 Effects of Accelerated Environment Aging on the Mechanical Properties of a Coir Fiber Reinforced Polyester Composite

Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez

Abstract:

Coir natural fiber reinforced polyester composites were exposed to an accelerated environment aging in order to study the influence on the mechanical properties. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. A physical and mechanical characterization was necessary to found the best behavior between three types of coconut. Composites were fabricated by hand lay-up technique and samples were cut by water jet technique. An accelerated aging test simulates environmental climate conditions in a hygrothermal and ultraviolet chamber. Samples were exposed to the UV/moisture rich environment for 500 and 1000 hours. The tests were performed in accordance with ASTM G154. An additional water absorption test was carried out by immersing specimens in a water bath. Mechanical behaviors of the composites were tested by tensile, flexural and impact test according to ASTM standards, after aging and compared with unaged composite specimens. It was found that accelerated environment aging affects mechanical properties in comparison with unaged ones. Tensile and flexural strength were lower after aging, meantime elongation at break and flexural deflection increased. Impact strength was found that reduced after aging. Other result revealed that the percentage of moisture uptake increased with aging. This results showed that composite materials reinforced with natural fibers required an improvement adding a protective barrier to reduce water absorption and increase UV resistance.

Keywords: coir fiber, polyester composites, environmental aging, mechanical properties

Procedia PDF Downloads 253
1198 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending

Authors: Yang Zheng, Wei Sun

Abstract:

This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.

Keywords: bending, creep, thin plate, materials engineering

Procedia PDF Downloads 453
1197 Advanced Structural Analysis of Energy Storage Materials

Authors: Disha Gupta

Abstract:

The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.

Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD

Procedia PDF Downloads 127
1196 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 225
1195 Quantum Dot – DNA Conjugates for Biological Applications

Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret

Abstract:

Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.

Keywords: bioimaging, cellular targeting, drug delivery, photostability

Procedia PDF Downloads 405
1194 Bio-Estimation of Selected Heavy Metals in Shellfish and Their Surrounding Environmental Media

Authors: Ebeed A. Saleh, Kadry M. Sadek, Safaa H. Ghorbal

Abstract:

Due to the determination of the pollution status of fresh resources in the Egyptian territorial waters is very important for public health, this study was carried out to reveal the levels of heavy metals in the shellfish and their environment and its relation to the highly developed industrial activities in those areas. A total of 100 shellfish samples from the Rosetta, Edku, El-Maadiya, Abo-Kir and El-Max coasts [10 crustaceans (shrimp) and 10 mollusks (oysters)] were randomly collected from each coast. Additionally, 10 samples from both the water and the sediment were collected from each coast. Each collected sample was analyzed for cadmium, chromium, copper, lead and zinc residues using a Perkin Elmer atomic absorption spectrophotometer (AAS). The results showed that the levels of heavy metals were higher in the water and sediment from Abo-Kir. The heavy metal levels decreased successively for the Rosetta, Edku, El-Maadiya, and El-Max coasts, and the concentrations of heavy metals, except copper and zinc, in shellfish exhibited the same pattern. For the concentration of heavy metals in shellfish tissue, the highest was zinc and the concentrations decreased successively for copper, lead, chromium and cadmium for all coasts, except the Abo-Kir coast, where the chromium level was highest and the other metals decreased successively for zinc, copper, lead and cadmium. In Rosetta, chromium was higher only in the mollusks, while the level of this metal was lower in the crustaceans; this trend was observed at the Edku, El-Maadiya and El-Max coasts as well. Herein, we discuss the importance of such contamination for public health and the sources of shellfish contamination with heavy metals. We suggest measures to minimize and prevent these pollutants in the aquatic environment and, furthermore, how to protect humans from excessive intake.

Keywords: atomic absorption, heavy metals, sediment, shellfish, water

Procedia PDF Downloads 294
1193 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy

Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla

Abstract:

Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.

Keywords: multi-effect distillation, performance ratio, robustness, solar energy

Procedia PDF Downloads 169
1192 Comparative Evaluation of Pharmacologically Guided Approaches (PGA) to Determine Maximum Recommended Starting Dose (MRSD) of Monoclonal Antibodies for First Clinical Trial

Authors: Ibraheem Husain, Abul Kalam Najmi, Karishma Chester

Abstract:

First-in-human (FIH) studies are a critical step in clinical development of any molecule that has shown therapeutic promise in preclinical evaluations, since preclinical research and safety studies into clinical development is a crucial step for successful development of monoclonal antibodies for guidance in pharmaceutical industry for the treatment of human diseases. Therefore, comparison between USFDA and nine pharmacologically guided approaches (PGA) (simple allometry, maximum life span potential, brain weight, rule of exponent (ROE), two species methods and one species methods) were made to determine maximum recommended starting dose (MRSD) for first in human clinical trials using four drugs namely Denosumab, Bevacizumab, Anakinra and Omalizumab. In our study, the predicted pharmacokinetic (pk) parameters and the estimated first-in-human dose of antibodies were compared with the observed human values. The study indicated that the clearance and volume of distribution of antibodies can be predicted with reasonable accuracy in human and a good estimate of first human dose can be obtained from the predicted human clearance and volume of distribution. A pictorial method evaluation chart was also developed based on fold errors for simultaneous evaluation of various methods.

Keywords: clinical pharmacology (CPH), clinical research (CRE), clinical trials (CTR), maximum recommended starting dose (MRSD), clearance and volume of distribution

Procedia PDF Downloads 354
1191 Theoretical Investigations on Optical Properties of GaFeMnN Quaternary Compound

Authors: H. A. Bentounes, A. Abbad, W. Benstaali

Abstract:

Using first principles calculations based on the density functional theory and local spin density approximation, we investigate optical properties of GaFeMnN quaternary compound. Results show that optical properties confirm that GaFeMnN can be a good candidate in the design of thin film solar cells in the visible and ultraviolet parts of the spectrum, and a good sensor in the infrared

Keywords: GaN, optical absorption, semi-metallic, dielectric function

Procedia PDF Downloads 355
1190 Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices

Authors: K. Swapna

Abstract:

A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices.

Keywords: glasses, J-O parameters, photoluminescence, I-H model

Procedia PDF Downloads 131
1189 Amino Acid Profile, Protein Digestibility, Antioxidant and Functional Properties of Protein Concentrate of Local Varieties (Kwandala, Yardass, Jeep, and Jamila) of Rice Brands from Nigeria

Authors: C. E. Chinma, S. O. Azeez, J. C. Anuonye, O. B. Ocheme, C. M. Yakubu, S. James, E. U. Ohuoba, I. A. Baba

Abstract:

There is growing interest in the use of rice bran protein in food formulation due to its hypoallergenic protein, high nutritional value and health promoting potentials. For the first time, the amino acid profile, protein digestibility, antioxidant, and functional properties of protein concentrate from some local varieties of rice bran from Nigeria were studied for possible food applications. Protein concentrates were prepared from rice bran and analysed using standard methods. Results showed that protein content of Kwandala, Yardass, Jeep, and Jamila were 69.24%, 69.97%, 68.73%, and 71.62%, respectively while total essential amino acid were 52.71, 53.03, 51.86, and 55.75g/100g protein, respectively. In vitro protein digestibility of protein concentrate from Kwandala, Yardass, Jeep and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. DPPH radical inhibition of protein from Kwandala, Yardass, Jeep, and Jamila were 48.15%, 48.90%, 47.56%, and 53.29%, respectively while ferric reducing ability power were 0.52, 0.55, 0.47 and 0.67mmol TE per gram, respectively. Protein concentrate from Jamila had higher onset (92.57oC) and denaturation temperature (102.13oC), and enthalpy (0.72J/g) than Jeep (91.46oC, 101.76oC, and 0.68J/g, respectively), Kwandala (90.32oC, 100.54oC and 0.57J/g, respectively), and Yardass (88.94oC, 99.45oC, and 0.51J/g, respectively). In vitro digestibility of protein from Kwandala, Yardas, Jeep, and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. Oil absorption capacity of Kwandala, Yardass, Jeep, and Jamila were 3.61, 3.73, 3.40, and 4.23g oil/g sample respectively, while water absorption capacity were 4.19, 4.32, 3.55 and 4.48g water/g sample, respectively. Protein concentrates had low bulk density (0.37-0.43g/ml). Protein concentrate from Jamila rice bran had the highest foam capacity (37.25%), followed by Yardass (34.20%), Kwandala (30.14%) and Jeep (28.90%). Protein concentrates showed low emulsifying and gelling capacities. In conclusion, protein concentrate prepared from these local rice bran varieties could serve as functional ingredients in food formulations and for enriching low protein foods.

Keywords: rice bran protein, amino acid profile, protein digestibility, antioxidant and functional properties

Procedia PDF Downloads 348
1188 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

Authors: B. Engel, H. Hassan

Abstract:

Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

Keywords: rotary draw bending, material properties, neutral axis shifting, wall thickness distribution

Procedia PDF Downloads 377
1187 Design and Implementation of Smart Watch Textile Antenna for Wi-Fi Bio-Medical Applications in Millimetric Wave Band

Authors: M. G. Ghanem, A. M. M. A. Allam, Diaa E. Fawzy, Mehmet Faruk Cengiz

Abstract:

This paper is devoted to the design and implementation of a smartwatch textile antenna for Wi-Fi bio-medical applications in millimetric wave bands. The antenna is implemented on a leather textile-based substrate to be embedded in a smartwatch. It enables the watch to pick Wi-Fi signals without the need to be connected to a mobile through Bluetooth. It operates at 60 GHz or WiGig (Wireless Gigabit Alliance) band with a wide band for higher rate applications. It also could be implemented over many stratified layers of the body organisms to be used in the diagnosis of many diseases like diabetes and cancer. The structure is designed and simulated using CST (Studio Suite) program. The wearable patch antenna has an octagon shape, and it is implemented on leather material that acts as a flexible substrate with a size of 5.632 x 6.4 x 2 mm3, a relative permittivity of 2.95, and a loss tangent of 0.006. The feeding is carried out using differential feed (discrete port in CST). The work provides five antenna implementations; antenna without ground, a ground is added at the back of the antenna in order to increase the antenna gain, the substrate dimensions are increased to 15 x 30 mm2 to resemble the real hand watch size, layers of skin and fat are added under the ground of the antenna to study the effect of human body tissues human on the antenna performance. Finally, the whole structure is bent. It is found that the antenna can achieve a simulated peak realized gain in dB of 5.68, 7.28, 6.15, 3.03, and 4.37 for antenna without ground, antenna with the ground, antenna with larger substrate dimensions, antenna with skin and fat, and bent structure, respectively. The antenna with ground exhibits high gain; while adding the human organisms absorption, the gain is degraded because of human absorption. The bent structure contributes to higher gain.

Keywords: bio medical engineering, millimetric wave, smart watch, textile antennas, Wi-Fi

Procedia PDF Downloads 92
1186 Effects of Extrusion Conditions on the Cooking Properties of Extruded Rice Vermicelli Using Twin-Screw Extrusion

Authors: Hasika Mith, Hassany Ly, Hengsim Phoung, Rathana Sovann, Pichmony Ek, Sokuntheary Theng

Abstract:

Rice is one of the most important crops used in the production of ready-to-cook (RTC) products such as rice vermicelli, noodles, rice paper, Banh Kanh, wine, snacks, and desserts. Meanwhile, extrusion is the most creative food processing method used for developing products with improved nutritional, functional, and sensory properties. This method authorizes process control such as mixing, cooking, and product shaping. Therefore, the objectives of this study were to produce rice vermicelli using a twin screw extruder, and the cooking properties of extruded rice vermicelli were investigated. Response Surface Methodology (RSM) with Box-Behnken design was applied to optimize extrusion conditions in order to achieve the most desirable product characteristics. The feed moisture rate (30–35%), the barrel temperature (90–110°C), and the screw speed (200–400 rpm) all play a big role and have a significant impact on the water absorption index (WAI), cooking yield (CY), and cooking loss (CL) of extrudate rice vermicelli. Results showed that the WAI of the final extruded rice vermicelli ranged between 216.97% and 571.90%. The CY ranged from 147.94 to 203.19%, while the CL ranged from 8.55 to 25.54%. The findings indicated that at a low screw speed or low temperature, there are likely to be more unbroken polymer chains and more hydrophilic groups, which can bind more water and make WAI values higher. The extruded rice vermicelli's cooking yield value had altered considerably after processing under various conditions, proving that the screw speed had little effect on each extruded rice vermicelli's CY. The increase in barrel temperature tended to increase cooking yield and reduce cooking loss. In conclusion, the extrusion processing by a twin-screw extruder had a significant effect on the cooking quality of the rice vermicelli extrudate.

Keywords: cooking loss, cooking quality, cooking yield, extruded rice vermicelli, twin-screw extruder, water absorption index

Procedia PDF Downloads 62
1185 The Mechanical and Comfort Properties of Cotton/Micro-Tencel Lawn Fabrics

Authors: Abdul Basit, Shahid Latif, Shah Mehmood

Abstract:

Lawn fabric was usually prepared from originally of linen but at present chiefly cotton. Lawn fabric is worn in summer. Cotton Lawn is a lightweight pure cloth which is heavier than voile. It is so fine that it is somewhat transparent. It is soft and superb to wear thus it is perfect for summer clothes or for regular wear in hotter climates. Tencel (Lyocell) fiber is considered as the fiber of the future as Tencel fibers are absorbent, soft, and extremely strong when wet or dry, and resistant to wrinkles. Fibers are more absorbent than cotton, softer than silk and cooler than linen. High water absorption and water vapor absorption give more heat capacity and heat balancing effect for thermo-regulation. This thermo-regulation is analogous with the action of phase-change-materials. The thermal wear properties result in cool and dry touch that gives cooling effect in sportswear, and the warmth properties (when used as an insulation layer). These cooling and warming effects are adaptive to the environment giving comfort in a broad range of climatic conditions. In this work, single yarns of Ne 80s were made. Yarns were made from conventional ring spinning. Different yarns of 100% cotton, 100% micro-Tencel and Cotton:micro-Tencel blends (67:33, 50:50:33:67) were made. The mechanical and comfort properties of the woven fabrics were compared. The mechanical properties include the tensile and tear strength, bending length, pilling and abrasion resistance whereas comfort properties include the air permeability, moisture management and thermal resistance. It is found that as the content of the micro-Tencel is increased, the mechanical and comfort properties of the woven fabric are also increased.

Keywords: combed cotton, comfort properties , mechanical properties, micro-Tencel

Procedia PDF Downloads 292
1184 Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)

Authors: H. Ben Khlifa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou

Abstract:

The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples.

Keywords: manganites, critical exponents, magnetization, magnetocaloric, master curve

Procedia PDF Downloads 148
1183 A Comparative Study on Fish Raised with Feed Formulated with Various Organic Wastes and Commercial Feed

Authors: Charles Chijioke Dike, Hugh Clifford Chima Maduka, Chinwe A. Isibor

Abstract:

Fish is among the products consumed at a very high rate. In most countries of the world, fish are used as part of the daily meal. The high cost of commercial fish feeds in Africa has made it necessary the development of an alternative source of fish feed processing from organic waste. The objective of this research is to investigate the efficacy of fish feeds processed from various animal wastes in order to know whether those feeds shall be alternatives to commercial feeds. This work shall be carried out at the Research Laboratory Unit of the Department of Human Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University (NAU), Nnewi Campus, Anambra State. The fingerlings to be used shall be gotten from the Agricultural Department of NAU, Awka, Anambra State, and allowed to acclimatize for 14 d. Animal and food wastes shall be gotten from Nnewi. The fish shall be grouped into 1-13 (Chicken manure only, cow dung only, pig manure only, chicken manure + yeast, cow dung + yeast, pig manure + yeast, chicken manure + other wastes + yeast, cow dung + other wastes + yeast, and pig manure + other wastes + yeast. Feed assessment shall be carried out by determining bulk density, feed water absorption, feed hardness, feed oil absorption, and feed water stability. The nutritional analysis shall be carried out on the feeds processed. The risk assessment shall be done on the fish by determining methylmercury (MeHg), polycyclic aromatic hydrocarbons (PAHs), and dichloro-diphenyl-trichloroethane (DDT) in the fish. The results from this study shall be analyzed statistically using SPSS statistical software, version 25. The hypothesis is that fish feeds processed from animal wastes are efficient in raising catfish. The outcome of this study shall provide the basis for the formulation of fish feeds from organic wastes.

Keywords: assessment, feeds, health risk, wastes

Procedia PDF Downloads 74
1182 Synthesis, Characterization, Optical and Photophysical Properties of Pyrene-Labeled Ruthenium(Ii) Trisbipyridine Complex Cored Dendrimers

Authors: Mireille Vonlanthen, Pasquale Porcu, Ernesto Rivera

Abstract:

Dendritic macromolecules are presenting unique physical and chemical properties. One of them is the faculty of transferring energy from a donor moiety introduced at the periphery to an acceptor moiety at the core, mimicking the antenna effect of the process of photosynthesis. The mechanism of energy transfer is based on the Förster resonance energy exchange and requires some overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor. Since it requires a coupling of transition dipole but no overlap of the physical wavefunctions, the energy transfer by Förster mechanism can occur over quite long distances from 1 to a maximum of 10 nm. However, the efficiency of the transfer depends strongly on distance. The Förster radius is the distance at which 50% of the donor’s emission is deactivated by FRET. In this work, we synthesized and characterized a novel series of dendrimers bearing pyrene moieties at the periphery and a Ru (II) complex at the core. The optical and photophysical properties of these compounds were studied by absorption and fluorescence spectroscopy. Pyrene is a well-studied chromophore that has the particularity to present monomer as well as excimer fluorescence emission. The coordination compounds of Ru (II) are red emitters with low quantum yield and long excited lifetime. We observed an efficient singulet to singulet energy transfer in such constructs. Moreover, it is known that the energy of the MLCT emitting state of Ru (II) can be tuned to become almost isoenegetic with respect to the triplet state of pyrene, leading to an extended phosphorescence lifetime. Using dendrimers bearing pyrene moieties as ligands for Ru (II), we could combine the antenna effect of dendrimers as well as its protection effect to the quenching by dioxygen with lifetime increase due to triplet-triplet equilibrium.

Keywords: dendritic molecules, energy transfer, pyrene, ru-trisbipyridine complex

Procedia PDF Downloads 252
1181 Computational Fluid Dynamics Modeling of Physical Mass Transfer of CO₂ by N₂O Analogy Using One Fluid Formulation in OpenFOAM

Authors: Phanindra Prasad Thummala, Umran Tezcan Un, Ahmet Ozan Celik

Abstract:

Removal of CO₂ by MEA (monoethanolamine) in structured packing columns depends highly on the gas-liquid interfacial area and film thickness (liquid load). CFD (computational fluid dynamics) is used to find the interfacial area, film thickness and their impact on mass transfer in gas-liquid flow effectively in any column geometry. In general modeling approaches used in CFD derive mass transfer parameters from standard correlations based on penetration or surface renewal theories. In order to avoid the effect of assumptions involved in deriving the correlations and model the mass transfer based solely on fluid properties, state of art approaches like one fluid formulation is useful. In this work, the one fluid formulation was implemented and evaluated for modeling the physical mass transfer of CO₂ by N₂O analogy in OpenFOAM CFD software. N₂O analogy avoids the effect of chemical reactions on absorption and allows studying the amount of CO₂ physical mass transfer possible in a given geometry. The computational domain in the current study was a flat plate with gas and liquid flowing in the countercurrent direction. The effect of operating parameters such as flow rate, the concentration of MEA and angle of inclination on the physical mass transfer is studied in detail. Liquid side mass transfer coefficients obtained by simulations are compared to the correlations available in the literature and it was found that the one fluid formulation was effectively capturing the effects of interface surface instabilities on mass transfer coefficient with higher accuracy. The high mesh refinement near the interface region was found as a limiting reason for utilizing this approach on large-scale simulations. Overall, the one fluid formulation is found more promising for CFD studies involving the CO₂ mass transfer.

Keywords: one fluid formulation, CO₂ absorption, liquid mass transfer coefficient, OpenFOAM, N₂O analogy

Procedia PDF Downloads 202
1180 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 199
1179 Earth Observations and Hydrodynamic Modeling to Monitor and Simulate the Oil Pollution in the Gulf of Suez, Red Sea, Egypt

Authors: Islam Abou El-Magd, Elham Ali, Moahmed Zakzouk, Nesreen Khairy, Naglaa Zanaty

Abstract:

Maine environment and coastal zone are wealthy with natural resources that contribute to the local economy of Egypt. The Gulf of Suez and Red Sea area accommodates diverse human activities that contribute to the local economy, including oil exploration and production, touristic activities, export and import harbors, etc, however, it is always under the threat of pollution due to human interaction and activities. This research aimed at integrating in-situ measurements and remotely sensed data with hydrodynamic model to map and simulate the oil pollution. High-resolution satellite sensors including Sentinel 2 and Plantlab were functioned to trace the oil pollution. Spectral band ratio of band 4 (infrared) over band 3 (red) underpinned the mapping of the point source pollution from the oil industrial estates. This ratio is supporting the absorption windows detected in the hyperspectral profiles. ASD in-situ hyperspectral device was used to measure experimentally the oil pollution in the marine environment. The experiment used to measure water behavior in three cases a) clear water without oil, b) water covered with raw oil, and c) water after a while from throwing the raw oil. The spectral curve is clearly identified absorption windows for oil pollution, particularly at 600-700nm. MIKE 21 model was applied to simulate the dispersion of the oil contamination and create scenarios for crises management. The model requires precise data preparation of the bathymetry, tides, waves, atmospheric parameters, which partially obtained from online modeled data and other from historical in-situ stations. The simulation enabled to project the movement of the oil spill and could create a warning system for mitigation. Details of the research results will be described in the paper.

Keywords: oil pollution, remote sensing, modelling, Red Sea, Egypt

Procedia PDF Downloads 324
1178 Growth Performance Of fresh Water Microalgae Chlorella sp. Exposed to Carbon Dioxide

Authors: Titin Handayani, Adi Mulyanto, Fajar Eko Priyanto

Abstract:

It is generally recognized, that algae could be an interesting option for reducing CO₂ emissions. Based on light and CO₂, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient feeding of CO₂, especially on a large scale, is one of them. Current methods for CO₂ feeding to algae cultures rely on the sparging pure CO₂ or directly from flue gas. The limiting factor in this system is the solubility of CO₂ in water, which demands a considerable amount of energy for an effective gas to liquid transfer and leads to losses to the atmosphere. Due to the current ineffective methods for CO₂ introduction into algae ponds very large surface areas would be required for enough ponds to capture a considerable amount of the CO₂. The purpose of this study is to assess technology to capture carbon dioxide (CO₂) emissions generated by industry by utilizing of microalgae Chlorella sp. The microalgae were cultivated in a bioreactor culture pond raceway type. The result is expected to be useful in mitigating the effects of greenhouse gases in reducing the CO₂ emissions. The research activities include: (1) Characterization of boiler flue gas, (2) Operation of culture pond, (3) Sampling and sample analysis. The results of this study showed that the initial assessment absorption of the flue gas by microalgae using 1000 L raceway pond completed by heat exchanger were quite promising. The transfer of CO₂ into the pond culture system was run well. This identified from the success of cooling the boiler flue gas from the temperature of about 200 °C to below ambient temperature. Except for the temperature, the gas bubbles into the culture media were quite fine. Therefore, the contact between the gas and the media was well performed. The efficiency of CO₂ absorption by Chlorella sp reached 6.68 % with an average CO₂ loading of 0.29 g/L/day.

Keywords: Chlorella sp., CO2 emission, heat exchange, microalgae, milk industry, raceway pond

Procedia PDF Downloads 192