Search results for: liquid phase sintering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5905

Search results for: liquid phase sintering

925 Strategic Shear Wall Arrangement in Buildings under Seismic Loads

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.

Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level

Procedia PDF Downloads 32
924 The Photovoltaic Panel at End of Life: Experimental Study of Metals Release

Authors: M. Tammaro, S. Manzo, J. Rimauro, A. Salluzzo, S. Schiavo

Abstract:

The solar photovoltaic (PV) modules are considered to have a negligible environmental impact compared to the fossil energy. Therefore also the waste management and the corresponding potential environmental hazard needs to be considered. The case of the photovoltaic panel is unique because the time lag from the manufacturing to the decommissioning as waste usually takes 25-30 years. Then the environmental hazard associated with end life of PV panels has been largely related to their metal contents. The principal concern regards the presence of heavy metals as Cd in thin film (TF) modules or Pb and Cr in crystalline silicon (c-Si) panels. At the end of life of PV panels, these dangerous substances could be released in the environment, if special requirements for their disposal are not adopted. Nevertheless, in literature, only a few experimental study about metal emissions from silicon crystalline/thin film panels and the corresponding environmental effect are present. As part of a study funded by the Italian national consortium for the waste collection and recycling (COBAT), the present work was aimed to analyze experimentally the potential release into the environment of hazardous elements, particularly metals, from PV waste. In this paper, for the first time, eighteen releasable metals a large number of photovoltaic panels, by c-Si and TF, manufactured in the last 30 years, together with the environmental effects by a battery of ecotoxicological tests, were investigated. Leaching tests are conducted on the crushed samples of PV module. The test is conducted according to Italian and European Standard procedure for hazard assessment of the granular waste and of the sludge. The sample material is shaken for 24 hours in HDPE bottles with an overhead mixer Rotax 6.8 VELP at indoor temperature and using pure water (18 MΩ resistivity) as leaching solution. The liquid-to-solid ratio was 10 (L/S=10, i.e. 10 liters of water per kg of solid). The ecotoxicological tests were performed in the subsequent 24 hours. A battery of toxicity test with bacteria (Vibrio fisheri), algae (Pseudochirneriella subcapitata) and crustacea (Daphnia magna) was carried out on PV panel leachates obtained as previously described and immediately stored in dark and at 4°C until testing (in the next 24 hours). For understand the actual pollution load, a comparison with the current European and Italian benchmark limits was performed. The trend of leachable metal amount from panels in relation to manufacturing years was then highlighted in order to assess the environmental sustainability of PV technology over time. The experimental results were very heterogeneous and show that the photovoltaic panels could represent an environmental hazard. The experimental results showed that the amounts of some hazardous metals (Pb, Cr, Cd, Ni), for c-Si and TF, exceed the law limits and they are a clear indication of the potential environmental risk of photovoltaic panels "as a waste" without a proper management.

Keywords: photovoltaic panel, environment, ecotoxicity, metals emission

Procedia PDF Downloads 252
923 Carbon Footprint of Road Project for Sustainable Development: Lessons Learnt from Traffic Management of a Developing Urban Centre

Authors: Sajjad Shukur Ullah, Syed Shujaa Safdar Gardezi

Abstract:

Road infrastructure plays a vital role in the economic activities of any economy. Besides derived benefits from these facilities, the utilization of extensive energy resources, fuels, and materials results in a negative impact on the environment in terms of carbon footprint; carbon footprint is the overall amount of greenhouse gas (GHG) generated from any action. However, this aspect of environmental impact from road structure is not seriously considered during such developments, thus undermining a critical factor of sustainable development, which usually remains unaddressed, especially in developing countries. The current work investigates the carbon footprint impact of a small road project (0.8 km, dual carriageway) initiated for traffic management in an urban centre. Life cycle assessment (LCA) with boundary conditions of cradle to the site has been adopted. The only construction phase of the life cycle has been assessed at this stage. An impact of 10 ktons-CO2 (6260 ton-CO2/km) has been assessed. The rigid pavement dominated the contributions as compared to a flexible component. Among the structural elements, the underpass works shared the major portion. Among the materials, the concrete and steel utilized for various structural elements resulted in more than 90% of the impact. The earth-moving equipment was dominant in operational carbon. The results have highlighted that road infrastructure projects pose serious threats to the environment during their construction and which need to be considered during the approval stages. This work provides a guideline for supporting sustainable development that could only be ensured when such endeavours are properly assessed by industry professionals and decide various alternative environmental conscious solutions for the future.

Keywords: construction waste management, kiloton, life cycle assessment, rigid pavement

Procedia PDF Downloads 84
922 Social Change and Cultural Sustainability in the Wake of Digital Media Revolution in South Asia

Authors: Binod C. Agrawal

Abstract:

In modern history, industrial and media merchandising in South Asia from East Asia, Europe, United States and other countries of the West is over 200 years old. Hence, continued external technology and media exposure is not a new experience in multi-lingual and multi religious South Asia which evolved cultural means to withstand structural change. In the post-World War II phase, media exposure especially of telecommunication, film, Internet, radio, print media and television have increased manifold. South Asia did not lose any time in acquiring and adopting digital media accelerated by chip revolution, computer and satellite communication. The penetration of digital media and utilization are exceptionally high though the spread has an unequal intensity, use and effects. The author argues that industrial and media products are “cultural products” apart from being “technological products”; hence their influences are most felt in the cultural domain which may lead to blunting of unique cultural specifics in the multi-cultural, multi-lingual and multi religious South Asia. Social scientists, political leaders and parents have voiced concern of “Cultural domination”, “Digital media colonization” and “Westernization”. Increased digital media access has also opened up doors of pornography and other harmful information that have sparked fresh debates and discussions about serious negative, harmful, and undesirable social effects especially among youth. Within ‘techno-social’ perspective, based on recent research studies, the paper aims to describe and analyse possible socio-economic change due to digital media penetration. Further, analysis supports the view that the ancient multi-lingual and multi-religious cultures of South Asia due to inner cultural strength may sustain without setting in a process of irreversible structural changes in South Asia.

Keywords: cultural sustainability, digital media effects, digital media impact in South Asia, social change in South Asia

Procedia PDF Downloads 338
921 Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector

Authors: Hao Yang, Lei Chen, Ting Mei, Jianbang Zheng

Abstract:

Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials.

Keywords: polycrystalline PbSe, sensitization, transport, stoichiometry

Procedia PDF Downloads 337
920 Valorization of Banana Peels for Mercury Removal in Environmental Realist Conditions

Authors: E. Fabre, C. Vale, E. Pereira, C. M. Silva

Abstract:

Introduction: Mercury is one of the most troublesome toxic metals responsible for the contamination of the aquatic systems due to its accumulation and bioamplification along the food chain. The 2030 agenda for sustainable development of United Nations promotes the improving of water quality by reducing water pollution and foments an enhance in wastewater treatment, encouraging their recycling and safe water reuse globally. Sorption processes are widely used in wastewater treatments due to their many advantages such as high efficiency and low operational costs. In these processes the target contaminant is removed from the solution by a solid sorbent. The more selective and low cost is the biosorbent the more attractive becomes the process. Agricultural wastes are especially attractive approaches for sorption. They are largely available, have no commercial value and require little or no processing. In this work, banana peels were tested for mercury removal from low concentrated solutions. In order to investigate the applicability of this solid, six water matrices were used increasing the complexity from natural waters to a real wastewater. Studies of kinetics and equilibrium were also performed using the most known models to evaluate the viability of the process In line with the concept of circular economy, this study adds value to this by-product as well as contributes to liquid waste management. Experimental: The solutions were prepared with Hg(II) initial concentration of 50 µg L-1 in natural waters, at 22 ± 1 ºC, pH 6, magnetically stirring at 650 rpm and biosorbent mass of 0.5 g L-1. NaCl was added to obtain the salt solutions, seawater was collected from the Portuguese coast and the real wastewater was kindly provided by ISQ - Instituto de Soldadura e qualidade (Welding and Quality Institute) and diluted until the same concentration of 50 µg L-1. Banana peels were previously freeze-drying, milled, sieved and the particles < 1 mm were used. Results: Banana peels removed more than 90% of Hg(II) from all the synthetic solutions studied. In these cases, the enhance in the complexity of the water type promoted a higher mercury removal. In salt waters, the biosorbent showed removals of 96%, 95% and 98 % for 3, 15 and 30 g L-1 of NaCl, respectively. The residual concentration of Hg(II) in solution achieved the level of drinking water regulation (1 µg L-1). For real matrices, the lower Hg(II) elimination (93 % for seawater and 81 % for the real wastewaters), can be explained by the competition between the Hg(II) ions and the other elements present in these solutions for the sorption sites. Regarding the equilibrium study, the experimental data are better described by the Freundlich isotherm (R ^ 2=0.991). The Elovich equation provided the best fit to the kinetic points. Conclusions: The results exhibited the great ability of the banana peels to remove mercury. The environmental realist conditions studied in this work, highlight their potential usage as biosorbents in water remediation processes.

Keywords: banana peels, mercury removal, sorption, water treatment

Procedia PDF Downloads 141
919 3D Biomechanical Analysis in Shot Put Techniques of International Throwers

Authors: Satpal Yadav, Ashish Phulkar, Krishna K. Sahu

Abstract:

Aim: The research aims at doing a 3 Dimension biomechanical analysis in the shot put techniques of International throwers to evaluate the performance. Research Method: The researcher adopted the descriptive method and the data was subjected to calculate by using Pearson’s product moment correlation for the correlation of the biomechanical parameters with the performance of shot put throw. In all the analyses, the 5% critical level (p ≤ 0.05) was considered to indicate statistical significance. Research Sample: Eight (N=08) international shot putters using rotational/glide technique in male category was selected as subjects for the study. The researcher used the following methods and tools to obtain reliable measurements the instrument which was used for the purpose of present study namely the tesscorn slow-motion camera, specialized motion analyzer software, 7.260 kg Shot Put (for a male shot-putter) and steel tape. All measurement pertaining to the biomechanical variables was taken by the principal investigator so that data collected for the present study was considered reliable. Results: The finding of the study showed that negative significant relationship between the angular velocity right shoulder, acceleration distance at pre flight (-0.70), (-0.72) respectively were obtained, the angular displacement of knee, angular velocity right shoulder and acceleration distance at flight (0.81), (0.75) and (0.71) respectively were obtained, the angular velocity right shoulder and acceleration distance at transition phase (0.77), (0.79) respectively were obtained and angular displacement of knee, angular velocity right shoulder, release velocity shot, angle of release, height of release, projected distance and measured distance as the values (0.76), (0.77), (-0.83), (-0.79), (-0.77), (0.99) and (1.00) were found higher than the tabulated value at 0.05 level of significance. On the other hand, there exists an insignificant relationship between the performance of shot put and acceleration distance [m], angular displacement shot, C.G at release and horizontal release distance on the technique of shot put.

Keywords: biomechanics, analysis, shot put, international throwers

Procedia PDF Downloads 176
918 Uranium Migration Process: A Multi-Technique Investigation Strategy for a Better Understanding of the Role of Colloids

Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes

Abstract:

The knowledge of uranium migration processes within underground environments is a major issue in the environmental risk assessment associated with nuclear activities. This process is identified as strongly controlled by adsorption mechanisms, thus leading to strongly delayed migration paths. Colloidal ligands are likely to significantly increase the mobility of uranium in natural environments. The ability of colloids to mobilize and transport uranium depends on their origin, their nature, their structure, their stability and their reactivity with uranium. Thus, the colloidal mobilization and transport properties are often described as site-specific. In this work, the colloidal phases of two leachates obtained from two different horizons of the same podzolic soil were characterized with a speciation approach. For this purpose, a multi-technique strategy was used, based on Field-Flow Fractionation coupled to Ultraviolet, Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry (AF4-UV-MALS-ICPMS), Transmission Electron Microscopy (TEM), Electrospray Ionization Orbitrap Mass Spectrometry (ESI-Orbitrap), and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS-EEM). Thus, elemental composition, size distribution, microscopic structure, colloidal stability and possible organic and/or inorganic content of colloids were determined, as well as their association with uranium. The leachates exhibit differences in their physical and chemical characteristics, mainly in the nature of organic matter constituents. The multi-technique investigation strategy used provides original data about colloidal phase structure and composition, offering a new vision of the way the uranium can be mobilized and transported in the considered soil. This information is a real significant contribution opening the way to our understanding and predicting of the colloidal transport.

Keywords: colloids, migration, multi-technique, speciation, transport, uranium

Procedia PDF Downloads 134
917 Redesigning the Plant Distribution of an Industrial Laundry in Arequipa

Authors: Ana Belon Hercilla

Abstract:

The study is developed in “Reactivos Jeans” company, in the city of Arequipa, whose main business is the laundry of garments at an industrial level. In 2012 the company initiated actions to provide a dry cleaning service of alpaca fiber garments, recognizing that this item is in a growth phase in Peru. Additionally this company took the initiative to use a new greenwashing technology which has not yet been developed in the country. To accomplish this, a redesign of both the process and the plant layout was required. For redesigning the plant, the methodology used was the Systemic Layout Planning, allowing this study divided into four stages. First stage is the information gathering and evaluation of the initial situation of the company, for which a description of the areas, facilities and initial equipment, distribution of the plant, the production process and flows of major operations was made. Second stage is the development of engineering techniques that allow the logging and analysis procedures, such as: Flow Diagram, Route Diagram, DOP (process flowchart), DAP (analysis diagram). Then the planning of the general distribution is carried out. At this stage, proximity factors of the areas are established, the Diagram Paths (TRA) is developed, and the Relational Diagram Activities (DRA). In order to obtain the General Grouping Diagram (DGC), further information is complemented by a time study and Guerchet method is used to calculate the space requirements for each area. Finally, the plant layout redesigning is presented and the implementation of the improvement is made, making it possible to obtain a model much more efficient than the initial design. The results indicate that the implementation of the new machinery, the adequacy of the plant facilities and equipment relocation resulted in a reduction of the production cycle time by 75.67%, routes were reduced by 68.88%, the number of activities during the process were reduced by 40%, waits and storage were removed 100%.

Keywords: redesign, time optimization, industrial laundry, greenwashing

Procedia PDF Downloads 383
916 Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals

Authors: Zineb Kassab, Nassima El Miri, A. Aboulkas, Abdellatif Barakat, Mounir El Achaby

Abstract:

Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications.

Keywords: biopolymer composites, cellulose nanocrystals, food packaging, lignocellulosic fibers

Procedia PDF Downloads 230
915 Cellular Senescence and Neuroinflammation Following Controlled Cortical Impact Traumatic Brain Injury in Juvenile Mice

Authors: Zahra F. Al-Khateeb, Shenel Shekerzade, Hasna Boumenar, Siân M. Henson, Jordi L. Tremoleda, A. T. Michael-Titus

Abstract:

Traumatic brain injury (TBI) is the leading cause of disability and death in young adults and also increases the risk ofneurodegeneration. The mechanisms linking moderate to severe TBI to neurodegeneration are not known. It has been proposed that cellular senescence inductionpost-injury could amplify neuroinflammation and induce long-term changes. The impact of these processes after injury to an immature brain has not been characterised yet. We carried out a controlled cortical impact injury (CCI) in juvenile 1 month-old male CD1 mice. Animals were anesthetised and received a unilateral CCI injury. The sham group received anaesthesia and had a craniotomy. A naïve group had no intervention. The brain tissue was analysed at 5 days and 35 days post-injury using immunohistochemistry and markers for microglia, astrocytes, and senescence. Compared tonaïve animals, injured mice showed an increased microglial and astrocytic reaction early post-injury, as reflected in Iba1 and GFAP markers, respectively; the GFAP increase persisted in the later phase. The senescence analysis showed a significant increase inγH2AX-53BP1 nuclear foci, 8-oxoguanine, p19ARF, p16INK4a, and p53 expression in naïve vs. sham groups and naïve vs. CCI groups, at 5 dpi. At 35 days, the difference was no longer statistically significant in all markers. The injury induced a decrease p21 expression vs. the naïve group, at 35 dpi. These results indicate the induction of a complex senescence response after immature brain injury. Some changes occur early and may reflect the activation/proliferation of non-neuronal cells post-injury that had been hindered, whereas changes such as p21 downregulation may reflect a delayed response and pro-repair processes.

Keywords: cellular senescence, traumatic brain injury, brain injury, controlled cortical impact

Procedia PDF Downloads 126
914 On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis

Authors: Narayana Murthy Akurathi, Vijaya Lakshmi Marella

Abstract:

The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution.

Keywords: super critical fluid extraction (SFE), super critical fluid chromatography (SFC), LCMS/MS, GCMS/MS

Procedia PDF Downloads 377
913 Eco-Nanofiltration Membranes: Nanofiltration Membrane Technology Utilization-Based Fiber Pineapple Leaves Waste as Solutions for Industrial Rubber Liquid Waste Processing and Fertilizer Crisis in Indonesia

Authors: Andi Setiawan, Annisa Ulfah Pristya

Abstract:

Indonesian rubber plant area reached 2.9 million hectares with productivity reached 1.38 million. High rubber productivity is directly proportional to the amount of waste produced rubber processing industry. Rubber industry would produce a negative impact on the rubber industry in the form of environmental pollution caused by waste that has not been treated optimally. Rubber industrial wastewater containing high-nitrogen compounds (nitrate and ammonia) and phosphate compounds which cause water pollution and odor problems due to the high ammonia content. On the other hand, demand for NPK fertilizers in Indonesia continues to increase from year to year and in need of ammonia and phosphate as raw material. Based on domestic demand, it takes a year to 400,000 tons of ammonia and Indonesia imports 200,000 tons of ammonia per year valued at IDR 4.2 trillion. As well, the lack of phosphoric acid to be imported from Jordan, Morocco, South Africa, the Philippines, and India as many as 225 thousand tons per year. During this time, the process of wastewater treatment is generally done with a rubber on the tank to contain the waste and then precipitated, filtered and the rest released into the environment. However, this method is inefficient and thus require high energy costs because through many stages before producing clean water that can be discharged into the river. On the other hand, Indonesia has the potential of pineapple fruit can be harvested throughout the year in all of Indonesia. In 2010, production reached 1,406,445 tons of pineapple in Indonesia or about 9.36 percent of the total fruit production in Indonesia. Increased productivity is directly proportional to the amount of pineapple waste pineapple leaves are kept continuous and usually just dumped in the ground or disposed of with other waste at the final disposal. Through Eco-Nanofiltration Membrane-Based Fiber Pineapple leaves Waste so that environmental problems can be solved efficiently. Nanofiltration is a process that uses pressure as a driving force that can be either convection or diffusion of each molecule. Nanofiltration membranes that can split water to nano size so as to separate the waste processed residual economic value that N and P were higher as a raw material for the manufacture of NPK fertilizer to overcome the crisis in Indonesia. The raw materials were used to manufacture Eco-Nanofiltration Membrane is cellulose from pineapple fiber which processed into cellulose acetate which is biodegradable and only requires a change of the membrane every 6 months. Expected output target is Green eco-technology so with nanofiltration membranes not only treat waste rubber industry in an effective, efficient and environmentally friendly but also lowers the cost of waste treatment compared to conventional methods.

Keywords: biodegradable, cellulose diacetate, fertilizers, pineapple, rubber

Procedia PDF Downloads 432
912 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach

Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier

Abstract:

The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.

Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis

Procedia PDF Downloads 90
911 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition

Authors: H. F. Shi, C. L. Zhang

Abstract:

Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.

Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4

Procedia PDF Downloads 192
910 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 108
909 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments

Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem

Abstract:

The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.

Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength

Procedia PDF Downloads 120
908 The Evaluation of Adjuvant Effects of CD154 in a Subunit Vaccine against Classical Swine Fever Virus

Authors: Yu-Chieh Chen, Li-Yun Wang, Chi-Chih Chen, Huy Hùng Đào, Ya-Mei Chen, Ming-Chu Cheng, Wen-Bin Chung, Hso-Chi Chaung, Guan-Ming Ke

Abstract:

Many recent researches have demonstrated that CD154, a protein primarily expressed on activated T cell molecules, has potentially acted as a molecular adjuvant to improve the immunogenicity of subunit vaccines against viral infections. Classical swine fever (CSF) affects the swine industry worldwide that is one of the most devastating and highly contagious pig diseases. It is listed by the World Organization for Animal Health (OIE) as an infectious animal disease that must be reported. Although pigs vaccinated with subunit vaccines can be differentially diagnosed from those infected animals, subunit vaccines usually need adjuvants to enhance and elicit immune responses. In this study, CD154 was linked with CSFV E2 sequences and then expressed in CHO cells to produce the fusion protein as E2-CD154. The porcine specific CpG adjuvant was also used in one of the formulations. The specific pathogen-free pigs (SPF) at the age of 4-week-old were randomly separated into four groups, vaccinated with E2-CpG, E2-CD154, E2-CD154-CpG or the commercial Bayovac® CSF-E2 vaccine and boosted two weeks after primary vaccination. The results showed that the percentages of CD4+ and CD4+IL2+ in peripheral blood mononuclear cells (PBMC) in E2-CD154 vaccinated piglets seven days after primary vaccination were gained by 1-5% relative to the control group. In addition, the percentages of CD4+IFNγ+ T cells had slightly edged up 0.1-0.3% compared with the control group. Also, increased E2-specific IFNγ levels had edged up CD4+CD8+ T cells found in E2-CD154 and E2-CD154-CpG groups, particularly in the E2-CD154-CpG group. These results implicate that CD154 may enhance cellular immunity and synergistically act with species-specific CpG adjuvant as a dual-phase adjuvant. Therefore, the CD154 may be beneficial as a promising adjuvant in subunit vaccines.

Keywords: CD154, CpG adjuvant, cellular immunity, subunit vaccine, pig

Procedia PDF Downloads 45
907 The Effects of Heavy Metal and Aromatic Hydrocarbon Pollution on Bees

Authors: Katarzyna Zięba, Hajnalka Szentgyörgyi, Paweł Miśkowiec, Agnieszka Moos-Matysik

Abstract:

Bees are effective pollinators of plants using by humans. However, there is a concern about the fate different species due to their recently decline. Pollution of the environment is described in the literature as one of the causes of this phenomenon. Due to human activities, heavy metals and aromatic hydrocarbons can occur in bee organisms in high concentrations. The presented study aims to provide information on how pollution affects bee quality, taking into account, also the biological differences between various groups of bees. Understanding the consequences of environmental pollution on bees can help to create and promote bee friendly habitats and actions. The analyses were carried out using two contamination gradients with 5 sites on each. The first, mainly heavy metal polluted gradient is stretching approx. 30km from the Bukowno Zinc smelter near Olkusz in the Lesser Poland Voivodship, to the north. The second cuts through the agglomeration of Kraków up to the southern borders of the Ojców National Park. The gradient near Olkusz is a well-described pollution gradient contaminated mainly by zinc, lead, and cadmium. The second gradient cut through the agglomeration of Kraków and end below the Ojców National Park. On each gradient, two bee species were installed: red mason bees (Osmia bicornis) and honey bees (Apis mellifera). Red mason bee is a polylectic, solitary bee species, widely distributed in Poland. Honey bees are a highly social species of bees, with clearly defined casts and roles in the colony. Before installing the bees in the field, samples of imagos of red mason bees and samples of pollen and imagos from each honey bee colony were analysed for zinc, lead cadmium, polycyclic and monocyclic hydrocarbons levels. After collecting the bees from the field, samples of bees and pollen samples for each site were prepared for heavy metal, monocyclic hydrocarbon, and polycyclic hydrocarbon analysis. Analyses of aromatic hydrocarbons were performed with gas chromatography coupled with a headspace sampler (HP 7694E) and mass spectrometer (MS) as detector. Monocyclic compounds were injected into column with headspace sampler while polycyclic ones with manual injector (after solid-liquid extraction with hexane). The heavy metal content (zinc, lead and cadmium) was assessed with flame atomic absorption spectroscopy (FAAS AAnalyst 300 Perkin Elmer spectrometer) according to the methods for honey and bee products described in the literature. Pollution levels found in bee bodies and imago body masses in both species, and proportion of sex in case of red mason bees were correlated with pollution levels found in pollen for each site and colony or trap nest. An attempt to pinpoint the most important form of contamination regarding bee health was also be undertaken based on the achieved results.

Keywords: heavy metals, aromatic hydrocarbons, bees, pollution

Procedia PDF Downloads 497
906 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 112
905 Single Tuned Shunt Passive Filter Based Current Harmonic Elimination of Three Phase AC-DC Converters

Authors: Mansoor Soomro

Abstract:

The evolution of power electronic equipment has been pivotal in making industrial processes productive, efficient and safe. Despite its attractive features, it has been due to nonlinear loads which make it vulnerable to power quality conditions. Harmonics is one of the power quality problem in which the harmonic frequency is integral multiple of supply frequency. Therefore, the supply voltage and supply frequency do not last within their tolerable limits. As a result, distorted current and voltage waveform may appear. Attributes of low power quality confirm that an electrical device or equipment is likely to malfunction, fail promptly or unable to operate under all applied conditions. The electrical power system is designed for delivering power reliably, namely maximizing power availability to customers. However, power quality events are largely untracked, and as a result, can take out a process as many as 20 to 30 times a year, costing utilities, customers and suppliers of load equipment, a loss of millions of dollars. The ill effects of current harmonics reduce system efficiency, cause overheating of connected equipment, result increase in electrical power and air conditioning costs. With the passage of time and the rapid growth of power electronic converters has highlighted the damages of current harmonics in the electrical power system. Therefore, it has become essential to address the bad influence of current harmonics while planning any suitable changes in the electrical installations. In this paper, an effort has been made to mitigate the effects of dominant 3rd order current harmonics. Passive filtering technique with six pulse multiplication converter has been employed to mitigate them. Since, the standards of power quality are to maintain the supply voltage and supply current within certain prescribed standard limits. For this purpose, the obtained results are validated as per specifications of IEEE 519-1992 and IEEE 519-2014 performance standards.

Keywords: current harmonics, power quality, passive filters, power electronic converters

Procedia PDF Downloads 287
904 A Family Development Approach to Understanding the Transfer of Family Business Ownership

Authors: Susan Lanz, Gary T. Burke, Omid Omidvar

Abstract:

The intention to transfer ownership control across family generations is acknowledged to be central to developing a theoretical understanding of how family businesses differ and are distinct as a business group. However, in practice, most business-owning families face challenges to transfer their business ownership from one family generation to the next. To date, researchers have paid little attention to how and when ownership is passed across family generations and what the dynamics of such transitions are. This is primarily due to the prevailing assumption that ownership transfer is an unimportant and legalistic issue that occurs within a wider family management succession process. Yet, the limited evidence available suggests that family ownership transfer occurs inside and outside of the management succession process and is a difficult process for business-owning families to navigate. As a result, many otherwise viable family businesses are closing, leading to unnecessary loss of jobs and knowledge. This qualitative paper examines how family members understand and navigate the ownership transfer process. This study uses an inductive qualitative research design, conducted through in-depth interviews within eight business-owning families. It draws on family development theory and shows how a wide range of family-related events and dynamics outside of family business involvement underlie and shape the ownership transfer process. The findings extend the theory on how these events trigger ownership transfer and how they shape the ownership meanings held within business-owning families. This study found that ownership transfer meanings extend beyond that of transferring the legal control and financial appropriation rights of shareholders. The study concludes there are three different stages in the process of ownership transfer -symbolic, re-balancing, and protectionist. Each stage creates distinct family social constructions of the rights of family members to hold business ownership, and each stage occurs within a specific family development phase.

Keywords: business-owning family, family development theory, ownership transfer, process

Procedia PDF Downloads 147
903 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 155
902 High and Low Salinity Polymer in Omani Oil Field

Authors: Intisar Al Busaidi, Rashid Al Maamari, Daowoud Al Mahroqi, Mahvash Karimi

Abstract:

In recent years, some research studies have been performed on the hybrid application of polymer and low salinity water flooding (LSWF). Numerous technical and economic benefits of low salinity polymer flooding (LSPF) have been reported. However, as with any EOR technology, there are various risks involved in using LSPF. Ions exchange between porous media and brine is one of the Crude oil/ brine/ rocks (COBR) reactions that is identified as a potential risk in LSPF. To the best of our knowledge, this conclusion was drawn based on bulk rheology measurements, and no explanation was provided on how water chemistry changed in the presence of polymer. Therefore, this study aimed to understand rock/ brine interactions with high and low salinity brine in the absence and presence of polymer with Omani reservoir core plugs. Many single-core flooding experiments were performed with low and high salinity polymer solutions to investigate the influence of partially hydrolyzed polyacrylic amide with different brine salinities on cation exchange reactions. Ion chromatography (IC), total organic carbon (TOC), rheological, and pH measurements were conducted for produced aqueous phase. A higher increase in pH and lower polymer adsorption was observed in LSPF compared with conventional polymer flooding. In addition, IC measurements showed that all produced fluids in the absence and presence of polymer showed elevated Ca²⁺, Mg²⁺, K+, Cl- and SO₄²⁻ ions compared to the injected fluids. However, the divalent cations levels, mainly Ca²⁺, were the highest and remained elevated for several pore volumes in the presence of LSP. The results are in line with rheological measurements where the highest viscosity reduction was recorded with the highest level of Ca²⁺ production. Despite the viscosity loss due to cation exchange reactions, LSP can be an attractive alternative to conventional polymer flooding in the Marmul field.

Keywords: polymer, ions, exchange, recovery, low salinity

Procedia PDF Downloads 93
901 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions

Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana

Abstract:

Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.

Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 141
900 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe

Authors: H. Shokouhmand, M. Tajerian

Abstract:

A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.

Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor

Procedia PDF Downloads 252
899 Tourism as Benefactor to Peace amidst the Structural Conflict: An Exploratory Case Study of Nepal

Authors: Pranil Kumar Upadhayaya

Abstract:

While peace is dividend to tourism, tourism can also be a vital force for world peace. The existing body of knowledge on a tripartite complex nexus between tourism, peace and conflict reveals that tourism is benefactor to peace and sensitive to conflict. By contextualizing the ongoing sporadic structural conflict in the transitional phase in the aftermath of a decade long (1996-2006), Maoist armed conflict in Nepal, the purpose of this study is to explore the potentials of tourism in peace-building. The outcomes of this research paper is based on the mixed methods of research (qualitative and quantitative). Though the armed conflict ended with the comprehensive peace agreement in 2006 but there is constant manifestations of non-violent structural conflicts, which continue to threaten the sustainability of tourism industry. With the persistent application of coping strategies, tourism is found resilient during the ongoing structural political conflict. The strong coping abilities of the private sector of tourism industry have also intersected with peace-building efforts with more reactive and less proactive (pro-peace) engagements. This paper ascertains about the application of the ‘theory of tourism security’ by Nepalese tourism industry while coping with conflict and reviving, and sustaining. It reveals that the multiple verities of tourism at present has heterogeneous degree of peace potentials. The opportunities of ‘peace through tourism’ can be promoted subject to its molding with responsible, sustainable and participatory characteristics. This paper comes out with pragmatic policy recommendations for strengthening the position of tourism as a true peace-builder: (a) a broad shift from mainstream conventional tourism to the community based rural with local participation and ownership to fulfill Nepal’s potentials for peace, and (b) building and applications of the managerial and operational codes of conducts for owners and workers (labor unions) at all tourism enterprises and strengthen their practices.

Keywords: code of conduct, community based tourism, conflict, peace-building, tourism

Procedia PDF Downloads 251
898 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb

Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim

Abstract:

Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.

Keywords: Mg, texture, Pb, DRX

Procedia PDF Downloads 36
897 Load Transfer of Steel Pipe Piles in Warming Permafrost

Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani

Abstract:

As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.

Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost

Procedia PDF Downloads 99
896 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach

Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri

Abstract:

In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.

Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications

Procedia PDF Downloads 42