Search results for: plant material
5015 Preparation and Characterization of Nanometric Ni-Zn Ferrite via Different Methods
Authors: Ebtesam. E. Ateia, L. M. Salah, A. H. El-Bassuony
Abstract:
The aim of the presented study was the possibility of developing a nanosized material with enhanced structural properties that was suitable for many applications. Nanostructure ferrite of composition Ni0.5 Zn0.5 Cr0.1 Fe1.9 O4 were prepared by sol–gel, co-precipitation, citrate-gel, flash and oxalate precursor methods. The Structural and micro structural analysis of the investigated samples were carried out. It was observed that the lattice parameter of cubic spinel was constant, and the positions of both tetrahedral and the octahedral bands had a fixed position. The values of the lattice parameter had a significant role in determining the stoichiometric cation distribution of the composition.The average crystalline sizes of the investigated samples were from 16.4 to 69 nm. Discussion was made on the basis of a comparison of average crystallite size of the investigated samples, indicating that the co-precipitation method was the the effective one in producing small crystallite sized samples.Keywords: chemical preparation, ferrite, grain size, nanocomposites, sol-gel
Procedia PDF Downloads 3445014 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia
Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi
Abstract:
Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.Keywords: APSIM, downscaling, response, SDSM
Procedia PDF Downloads 3885013 Synthesis of Hard Magnetic Material from Secondary Resources
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy, O. N. Alzeghaibi
Abstract:
Strontium hexaferrite (SrFe12O19; Sr-ferrite) is one of the well-known materials for permanent magnets. In this study, M-type strontium ferrite was prepared by following the conventional ceramic method from steelmaking by-product. Initial materials; SrCO3 and by-product, were mixed together in the composition of SrFe12O19 in different Sr/Fe ratios. The mixtures of these raw materials were dry-milled for 6h. The blended powder was pre-sintered (i.e. calcination) at 1000°C for different times periods, then cooled down to room temperature. These pre-sintered samples were re-milled in a dry atmosphere for 1h and then fired at different temperatures in atmospheric conditions, and cooled down to room temperature. The produced magnetic powder has a dense hexagonal grain shape structure. The calculated energy product values for the produced samples ranged from 0.3 to 2.4 MGOe.Keywords: hard magnetic materials, ceramic route, strontium ferrite, synthesis
Procedia PDF Downloads 3295012 Improving Students' Critical Thinking in Understanding Reading Material Through Bloom's Critical Thinking Questioning Strategy in English for Specific Purposes (ESP) Class
Authors: Hevriani Sevrika Mayuasti
Abstract:
This research deals in improving college students’ critical thinking at English for Specific Purposes Subject. The strategy that is applied is Bloom’s Critical Thinking Questioning Strategy. The positive side of this strategy is that the given questions are developed based on Bloom’s taxonomy level. It is an action research because the researcher uses own class in doing this research. The processes of this research have been done from April to Mei 2014. There are two cycles and each cycle consists of two meetings. After doing the research, it is gotten that Bloom’s Critical Thinking Questioning Strategy improves college students’ critical thinking. It helps the students to build and elaborate their ideas. Hence, it increases students’ reading comprehension.Keywords: critical thinking, blooms’ critical thinking, questioning, strategy
Procedia PDF Downloads 6605011 An Overview of Onshore and Offshore Wind Turbines
Authors: Mohammad Borhani, Afshin Danehkar
Abstract:
With the increase in population and the upward trend of energy demand, mankind has thought of using suppliers that guarantee a stable supply of energy, unlike fossil fuels, which, in addition to the widespread emission of greenhouse gases that one of the main factors in the destruction of the ozone layer and it will be finished in a short time in the not-so-distant future. In this regard, one of the sustainable ways of energy supply is the use of wind converters. That convert wind energy into electricity. For this reason, this research focused on wind turbines and their installation conditions. The main classification of wind turbines is based on the axis of rotation, which is divided into two groups: horizontal axis and vertical axis; each of these two types, with the advancement of technology in man-made environments such as cities, villages, airports, and other human environments can be installed and operated. The main difference between offshore and onshore wind turbines is their installation and foundation. Which are usually divided into five types; including of Monopile Wind Turbines, Jacket Wind Turbines, Tripile Wind Turbines, Gravity-Based Wind Turbines, and Floating Offshore Wind Turbines. For installation in a wind power plant requires an arrangement that produces electric power, the distance between the turbines is usually between 5 or 7 times the diameter of the rotor and if perpendicular to the wind direction be If they are 3 to 5 times the diameter of the rotor, they will be more efficient.Keywords: wind farms, Savonius, Darrieus, offshore wind turbine, renewable energy
Procedia PDF Downloads 1265010 A Double Epilayer PSGT Trench Power MOSFETs for Low to Medium Voltage Power Applications
Authors: Alok Kumar Kamal, Vinod Kumar
Abstract:
The trench gate MOSFET has shown itself as the most appropriate power device for low to medium voltage power applications due to its lowest possible ON resistance among all power semiconductor devices. In this research work a double-epilayer PSGT structure using a thin layer of N+ polysilicon as gate material. The total ON-state resistance (RON) of UMOSFET can be reduced by optimizing the epilayer thickness. The optimized structure of Double-Epilayer exhibits a 25.8% reduction in the ON-state resistance at Vgs=5V and improving the switching characteristics by reducing the Reverse transfer capacitance (Cgd) by 7.4%.Keywords: Miller-capacitance, double-Epilayer;switching characteristics, power trench MOSFET (U-MOSFET), on-state resistance, blocking voltage
Procedia PDF Downloads 775009 Induction of Callus and Somatic Embryogenesis from Seeds of Taraxacum Kok-Saghyz Rodin
Authors: Kairat Uteulin, Serik Mukhambetzhanov, Izbasar Rakhimbaiev
Abstract:
The effects of varying concentrations of growth regulators including 2, 4-D (2,4-Dichlorophenoxyacetic acid), BAP (6-benzylaminopurine), IAA (indole-3-acetic acid) and Kin (kinetin) was investigated for primary callus induction, embryogenic callus formation and regeneration of two elite Taraxacum kok-saghyz (TKS) lines, TKS1 and TKS2. Mature seeds were used as explants for primary callus induction. Different concentrations of 2, 4-D were investigated to study its effect on callus induction and callus growth frequency (CGF). Compact, whitish, healthy and fluffy calli were induced in TKS1 and TKS2 in MS medium supplemented with 5 mg/l and 4 mg/l 2, 4-D respectively. The calli produced were subjected to somatic embryogenesis and regeneration studies. For this purpose, MS Medium was supplemented with different concentrations and combinations of plant growth regulators like IAA and BAP. Maximum embryogenic callus formation was observed in MS medium supplemented with 0.1 mg/l IAA in combination with 1.5 mg/l BAP and it resulted in 73.51% and 62.33% embryogenic callus formation in TKS1 and TKS2 respectively. These optimum concentrations of IAA and BAP were further experimented with different concentrations of Kin for efficient regeneration and it was observed that 1 mg/l Kin was optimum for this purpose. Such studies help in understanding the response of TKS to tissue culture conditions and ultimately promise in improving yield by employing various biotechnological techniques.Keywords: taraxacum kok-saghyz Rodin, callus, somatic embryogenesis
Procedia PDF Downloads 3265008 Pre-Beneficiation of Low Grade Diasporic Bauxite Ore by Reduction Roasting
Authors: Koksal Yılmaz, Burak Birol, Muhlis Nezihi Saridede, Erdogan Yigit
Abstract:
A bauxite ore can be utilized in Bayer Process, if the mass ratio of Al2O3 to SiO2 is greater than 10. Otherwise, its FexOy and SiO2 content should be removed. On the other hand, removal of TiO2 from the bauxite ore would be beneficial because of both lowering the red mud residue and obtaining a valuable raw material containing TiO2 mineral. In this study, the low grade diasporic bauxite ore of Yalvaç, Isparta, Turkey was roasted under reducing atmosphere and subjected to magnetic separation. According to the experimental results, 800°C for reduction temperature and 20000 Gauss of magnetic intensity were found to be the optimum parameters for removal of iron oxide and rutile from the non-magnetic ore. On the other hand, 600°C and 5000 Gauss were determined to be the optimum parameters for removal of silica from the non-magnetic ore.Keywords: low grade diasporic bauxite, magnetic separation, reduction roasting, separation index
Procedia PDF Downloads 4085007 Epitaxial Growth of Crystalline Polyaniline on Reduced Graphene Oxide
Authors: D. Majumdar, M. Baskey, S. K. Saha
Abstract:
Graphene has already been identified as a promising material for future carbon based electronics. To develop graphene technology, the fabrication of a high quality P-N junction is a great challenge. In the present work, we have described a simple and general technique to grow single crystalline polyaniline (PANI) films on graphene sheets using in situ polymerization via the oxidation-reduction of aniline monomer and graphene oxide, respectively, to fabricate a high quality P-N junction, which shows diode-like behavior with a remarkably low turn-on voltage (60 mV) and high rectification ratio (1880:1) up to a voltage of 0.2 Volt. The origin of these superior electronic properties is the preferential growth of a highly crystalline PANI film as well as lattice matching between the d-values [~2.48 Å] of graphene and {120} planes of PANI.Keywords: epitaxial growth, PANI, reduced graphene oxide, rectification ratio
Procedia PDF Downloads 2915006 Characterization of the Soils of the Edough Massif (North East Algeria)
Authors: Somia Lakehal Ayat, Ibtissem Samai, Srara Lakehal Ayat, Chaima Dahmani
Abstract:
The aim of this work relates to the physicochemical diversity and the characterization of the different types of soils of the edough massif (North East of Algeria) and to the evaluation and characterization of the existing organic matter as well as to the evolution. and the dynamics of the latter, also on its influence on changes in the physical properties of soils. In order to know the soil properties of seraidi forest, we established a stratified sampling plan. The results obtained show that we are in the presence of a great diversity of soils, such as neutral to alkaline, whose adsorbent complex is sufficiently saturated. Also, the presence of limestone offers the soil a fairly significant buffering capacity. In our study region, the texture of the soils is varied between clayey and silty, where it offers medium porosity, there is a strong accumulation of organic matter, therefore soils rich in organic matter.The fractionation of the organic matter of the soils allowed to obtain a very high rate of humification. The soil characteristics of the edough massif (North East of Algeria) are controlled by the contribution of organic matter, which presents a dynamic and an important evolution and which varies with the climatic conditions and the nature and the type of plant formation, and these the latter have a capital and important role in the rate of mineralization of organic matter.Keywords: organic matter, soil, foresty, diversity, mineralization
Procedia PDF Downloads 945005 Nanocrystalline Na0.1V2O5.nH2Oxerogel Thin Film for Gas Sensing
Authors: M. S. Al-Assiri, M. M. El-Desoky, A. A. Bahgat
Abstract:
Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol-gel synthesis was used as a gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130°C to 150°C show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.Keywords: sol-gel, thermoelectric power, XRD, TEM, gas sensing
Procedia PDF Downloads 3055004 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach
Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal
Abstract:
Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol
Procedia PDF Downloads 1125003 Evaluation of Antioxidant Activity as a Function of the Genetic Diversity of Canna indica Complex
Authors: A. Rattanapittayapron, O. Vanijajiva
Abstract:
Canna indica is a prominent species complex in tropical and subtropical areas. They become indigenous in Southeast Asia where they have been introduced. At present, C. indica complex comprises over hundred hybrids, are cultivated as commercial horticulture. The species complex contains starchy rhizome having economic value in terms of food and herbal medicine. In addition, bright color of the flowers makes it a valuable ornamental plant and potential source for natural colorant. This study aims to assess genetic diversity of four varieties of C. indica complex based on SRAP (sequence-related amplified polymorphism) and iPBS (inter primer binding site) markers. We also examined phytochemical characteristics and antioxidant properties of the flower extracts from four different color varieties. Results showed that despite of the genetic variation, there were no significant differences in phytochemical characteristics and antioxidant properties of flowers. The SRAP and iPBS results agree with the more primitive traits showed by morphological information and phytochemical and antioxidant characteristics from the flowers. Since Canna flowers has long been used as natural colorants together with the antioxidant activities from the ethanol extracts in this study, there are likely to be good source for cosmetics additives.Keywords: Canna indica, antioxidant activity, genetic diversity, SRAP, iPBS
Procedia PDF Downloads 3155002 Application the Queuing Theory in the Warehouse Optimization
Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova
Abstract:
The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.Keywords: queuing theory, logistics system, mathematical methods, warehouse optimization
Procedia PDF Downloads 5965001 The Effect of Global Warming on Water Resources
Authors: Ehsan Soltanzadeh, Hassan Zare
Abstract:
This paper introduces examples of the influences of global warming on water resources and means of adaptation. The contributing causes of shortage in water resources are sophisticated and have interactions with each other. The world-scale phenomena like global warming have led to an increase in air and ocean’s mean temperature, and this has already caused adverse effects on water resources. Other factors that exacerbated this situation such as population increase, changes in farming habits, rise in city dwellers, unbalanced request for energy and aquatic resources, improved living standards, new eating habits, increasing economic growth and consequently flourishing industrial activities, and different types of pollution such as air, water, etc., are compelling more pressure on our limited water resources. The report will briefly discuss climate change and its detrimental impacts on the water resources and finally will introduce two effective solutions to mitigate the consequences or even reverse them in the near to mid-term future: utilization of molten salt technology for storing huge amounts of generated electricity in solar power plants to accommodate power grid demands, and implementing fuel cell CHPs to reduce carbon emission, and consequently, mitigate the global warming phenomenon as the major root cause of threatening water resources.Keywords: climate change, global warming, water resources, GHG emissions, fuel cell-CHP, solar power plant, molten salt storage
Procedia PDF Downloads 1165000 Synthesis of CeF3:Sm3+ Nanophosphor for Biological Applications
Authors: Mayuri Gandhi, Nayan Agrawal, Harshita Bhatia
Abstract:
In the present work, cerium fluoride (CeF3) was selected as the host material because of its high density, fast response and high radiation resistance, efficient absorption and energy transfer by host (to activator). For the synthesis of CeF3 nanoparticles doped with Sm3+ ion, co-precipitation route was employed. Thus for optimum results, concentration dependent studies of the fluorescence of Sm3+ was carried out. The photoluminescence gave emissions in both visible as well as the NIR region and therefore it can have its application in solar cells, where it can absorb a large spectrum of energy. CeF3:Sm3+ nanoparticles were carefully incorporated in a suitable polymer matrix in order to demonstrate a variety of applications to improve the performance of the polymer materials and use it to develop high grade optoelectronic devices such as LEDs, security labelling, lasers, displays, biological imaging, etc.Keywords: bioimaging, cerium fluoride, NIR emission, samarium
Procedia PDF Downloads 4284999 Contribution to the Study of Some Phytochemicals and Biological Aspects of Artemisia absinthium L
Authors: Sihem Benmimoune, Abdelbaki Lemgharbi, Ahmed Ait Yahia, Abdelkrim Kameli
Abstract:
Our study is based on chemical and phytochemical characterization of Artemisia absinthium L and in vitro tests to demonstrate the biological activities of essential oil and natural extract. A qualitative and quantitative comparison of the essential oil extracted by two extraction procedures was performed by analysis of CG/SM and the yield calculation. The method of hydrodistillation has a chemical composition and provides oil content than the best training water vapor. These oils are composed mainly of thujone followed chamazulene and ρ-cymene. The antimicrobial activity of wormwood oil was tested in vitro by two methods (agar diffusion and microdilution) on four plant pathogenic fungi (Aspergillus sp, Botrytis cinerea, Fusarium culmorum and Helminthosporium sp). The study of the antifungal effect showed that this oil has an inhibitory effect counterpart the microorganisms tested in particular the strain Botrytis cinerea. Otherwise, this activity depends on the nature of the oil and the germ itself. The antioxidant activity in vitro was studied with the DPPH method. The activity test shows that the oil and extract of Artemisia absinthium have a very low antioxidant capacity compared to the antioxidants used as a reference. The extract has a potentially high antiradical power not from its oil. The quantitative determinations of phenolic compounds by the Folin-Ciocalteu revealed that absinthe is low in total polyphenols and tannins.Keywords: artemisia absinthium, biological activities, essential oil, extraction processes
Procedia PDF Downloads 3434998 Maximum Initial Input Allowed to Iterative Learning Control Set-up Using Singular Values
Authors: Naser Alajmi, Ali Alobaidly, Mubarak Alhajri, Salem Salamah, Muhammad Alsubaie
Abstract:
Iterative Learning Control (ILC) known to be a controlling tool to overcome periodic disturbances for repetitive systems. This technique is required to let the error signal tends to zero as the number of operation increases. The learning process that lies within this context is strongly dependent on the initial input which if selected properly tends to let the learning process be more effective compared to the case where a system starts from blind. ILC uses previous recorded execution data to update the following execution/trial input such that a reference trajectory is followed to a high accuracy. Error convergence in ILC is generally highly dependent on the input applied to a plant for trial $1$, thus a good choice of initial starting input signal would make learning faster and as a consequence the error tends to zero faster as well. In the work presented within, an upper limit based on the Singular Values Principle (SV) is derived for the initial input signal applied at trial $1$ such that the system follow the reference in less number of trials without responding aggressively or exceeding the working envelope where a system is required to move within in a robot arm, for example. Simulation results presented illustrate the theory introduced within this paper.Keywords: initial input, iterative learning control, maximum input, singular values
Procedia PDF Downloads 2484997 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy
Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang
Abstract:
In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties
Procedia PDF Downloads 1614996 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements
Authors: Dragan Ribarić
Abstract:
We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements
Procedia PDF Downloads 3154995 Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait
Authors: Mariam Aljumaa
Abstract:
Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry.Keywords: industrial wastewater, characterization, heavy metals, wastewater quality
Procedia PDF Downloads 964994 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi
Procedia PDF Downloads 5474993 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments
Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora
Abstract:
Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver
Procedia PDF Downloads 3184992 Dissimilar Cu/Al Friction Stir Welding: Sensitivity of the Tool Offset
Authors: Tran Hung Tra, Hao Dinh Duong, Masakazu Okazaki
Abstract:
Copper 1100 and aluminum 1050 plates with a thickness of 5.0 mm are butt-joint using friction stir welding. The tool offset is linearly varied along the welding path. Two welding regimes, using the same linear tool offset but in opposite directions, are applied for fabricating two Cu/Al plates. The material flow is dominated by both tool offset and offset history. The intermetallic compounds layer and interface morphology in each welded plate are formed in a different manner. As a result, the bonding strength and fracture behavior between two welded plates are significantly distinct. The role of interface morphology on fracture behavior is analyzed by the finite element method.Keywords: Cu/Al dissimilar welding, offset history, interface morphology, intermetallic compounds, strength and fracture
Procedia PDF Downloads 794991 Features of Composites Application in Shipbuilding
Authors: Valerii Levshakov, Olga Fedorova
Abstract:
Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications.Keywords: fiberglass, infusion, polymeric composites, winding
Procedia PDF Downloads 2394990 End-of-Life Vehicle Framework in Bumper Development Process
Authors: Majid Davoodi Makinejad, Reza Ghaeli
Abstract:
Developing sustainable and environment-friendly products has become a major concern in the car manufacturing industry. New legislation ‘End of Life Vehicle’ increased design complexities of bumper system parameters e.g. design for disassembly, design for remanufacturing and recycling. ELV processing employs dismantling, shredding and landfill. The bumper is designed to prevent physical damage, reduce aerodynamic drag force as well as being aesthetically pleasing to the consumer. Design for dismantling is the first step in ELVs approach in the bumper system. This study focused on the analysis of ELV value in redesign solutions of the bumper system in comparison with the conventional concept. It provided a guideline to address the critical consideration in material, manufacturing and joining methods of bumper components to take advantages in easy dismounting, separation and recycling.Keywords: sustainable development, environmental friendly, bumper system, end of life vehicle
Procedia PDF Downloads 3894989 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques
Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee
Abstract:
Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel
Procedia PDF Downloads 2624988 Potential Micro Hydro at Irrigation Canal in the Gorontalo Province and Modeling Setling Basin for Reduction of Sedimentation Effect
Authors: Arifin Matoka, Nadjamuddin Harun, Salama Manjang, M. Arsyad Thaha
Abstract:
Along irrigation canals in certain areas falling water level height is have potential for micro hydro power plant (MHP), which generally MHP potential valley away from society consumer of electricity and needed a long conductor cable, so that with the MHP Irrigation is ideal are typical with an Open Flume type turbines. This study is divided into two phases research phase of the potential power that exist in irrigation channels at the Gorontalo Province and stages solution sedimentation effects. The total power generated in the irrigation channel of the results of this study at 781.83 Kw, it is quite significant for the 1737 rural households on average consumes 450 watt per household. In the field of observation, sedimentation lifting effect on the quality of electric power, at which time the turbid sediment concentrations occur significant voltage fluctuations causing damage to some household electrical appliances such as electronic equipment and lighting. This problem is solution by modeling the sedimentation tub (setling basin) to reduce sedimentation thus olso can reduce the regulation load control equipment which can minimize the cost of investment and maintenance.Keywords: irrigation canals, microhydro powerplant, sedimentation, Gorontalo Province
Procedia PDF Downloads 5834987 The Friction and Wear Behavior of 0.35 VfTiC-Ti3SiC2 Composite
Authors: M. Hadji, A. Haddad, Y. Hadji
Abstract:
The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modify the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7 N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.Keywords: MAX phase, boronizing, hardness, wear
Procedia PDF Downloads 3534986 Economic Evaluation of Biogas and Biomethane from Animal Manure
Authors: Shahab Shafayyan, Tara Naderi
Abstract:
Biogas is the product of decomposition of organic materials. A variety of sources, including animal wastes, municipal solid wastes, sewage and agricultural wastes may be used to produce biogas in an anaerobic process. The main forming material of biogas is methane gas, which can be used directly in a variety of ways, such as heating and as fuel, which is very common in a number of countries, such as China and India. In this article, the cost of biogas production from animal fertilizers, and its refined form, bio methane gas has been studied and it is shown that it can be an alternative for natural gas in terms of costs, in the near future. The cost of biogas purification to biomethane is more than three times the cost of biogas production for an average unit. Biomethane production costs, calculated for a small unit, is about $9/MMBTU and for an average unit is about $5.9/MMBTU.Keywords: biogas, biomethane, anaerobic digestion, economic evaluation
Procedia PDF Downloads 492