Search results for: green consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5129

Search results for: green consumption

299 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina

Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava

Abstract:

The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.

Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing

Procedia PDF Downloads 100
298 Antibacterial Effects of Zinc Oxide Nanoparticles as Alternative Therapy on Drug-Resistant Group B Streptococcus Strains Isolated from Pregnant Women

Authors: Leila Fozouni, Anahita Mazandarani

Abstract:

Background: Maternal infections are the most common cause of infections in infants, and the level of infection and its severity highly depends on the degree of colonization of the bacteria in the mother; so, the occurrence of aggressive diseases is not unpredictable in mothers with very high colonization. Group B Streptococcus is part of the normal flora of the gastrointestinal and genital tracts in women and is the leading cause of septicemia and meningitis in newborns. Today Zinc oxide nanoparticle is regarded as one of the most commonly used and safest nanoparticles for defeating Gram-positive and Gram-negative bacteria. This study aims to determine the antibacterial effects of Zinc oxide on the growth of drug-resistant group B Streptococcus strains isolated from pregnant women. Materials and Methods: This cross-sectional study was conducted on 150 pregnant women of 28–37 weeks admitted to seven hospitals and maternity wards in Golestan province, northeast of Iran. For bacterial identification, rectovaginal swabs were firstly inoculated to the Todd-Hewitt Broth and cultured in blood agar (containing 5% sheep blood). Then microbiologic and PCR methods were performed to detect group B Streptococci. Disk diffusion and broth microdilution tests were used to determine the bacterial susceptibility to antibiotics according to CLSI M100(2021) criteria. The antibacterial properties of Zinc oxide nanoparticles were evaluated using the agar well-diffusion method. Results: The prevalence of group B Streptococcus was 18% in pregnant women. Out of twenty-seven positive cultures, 62.96% were higher than thirty years old. Ninety percent and 45% of isolates were resistant to clindamycin and erythromycin, respectively, and susceptibility to cefazolin was 71%. In addition, susceptibility to ampicillin and penicillin were 74% and 55%, respectively. The results showed that 82% of erythromycin-resistant, 92% clindamycin-resistant, and 78% of cefazolin-resistant isolates were eliminated by zinc oxide nanoparticles at a concentration of 100 mg/L of the nanoparticle. Furthermore, ZnONPs could inhibit all drug-resistant isolates at a concentration of 200 mg/mL (MIC90 ≥ 200). Conclusion: Since the drug resistance of group B streptococci against various antibiotics is increasing, determining and investigating the drug-resistance pattern of this bacterium to different antibiotics in order to prevent arbitrary consumption of antibiotics by pregnant women and ultimately prevent Infant mortality seems necessary. Generally, ZnONPs showed a high antimicrobial effect, and it was revealed that the bactericide effect increases upon the increase in the concentration of the nanoparticle.

Keywords: group B beta-hemolytic streptococcus, pregnant women, zinc oxide nanoparticles, drug resistance

Procedia PDF Downloads 64
297 Analysis of the Interests, Conflicts and Power Resources in the Urban Development in the Megacity of Sao Paulo

Authors: A. G. Back

Abstract:

Urban planning is a relevant tool to address, in a systemic way, several sectoral policies capable of linking the urban agenda with the reduction of socio-environmental risks. The Sao Paulo’s master plan (2014) presents innovations capable of promoting the transition to sustainability in the urban space, with a view to its regulatory instruments related to i) promotion of density in the axes of mass transport involving the mixture of commercial, residential, services, and leisure uses (principles related to the compact city); ii) vulnerabilities reduction based on housing policies including regular sources of funds for social housing and land reservation in urbanized areas; iii) reserve of green areas in the city to create parks and environmental regulations for new buildings focused on reducing the effects of heat island and improving urban drainage. However, its long-term implementation involves distributive conflicts and can undergo changes in different political, economic, and social contexts over time. Thus, the main objective of this paper is to identify and analyze the dynamics of conflicts of interest between social groups in the implementation of Sao Paulo’s urban development policy, particularly in relation to recent attempts at a (re) interpretation of the Master Plan guidelines, in view of the proposals for revision of the urban zoning law. In this sense, we seek to identify the demands, narratives of urban actors, including the real estate market, middle-class neighborhood associations ('not in my backyard' movements), and social housing rights movements. And we seek to analyze the power resources that these actors mobilize to influence the decision-making process, involving five categories: social capital, political access; discursive resource; media, juridical resource. The major findings of this research suggest that the interests and demands of the real estate market do not always prevail in urban regulation. After all, other actors also press for the definition of urban law with interests opposite to those of the real estate market. This is the case of associations of middle-class neighborhoods, which work to protect the characteristics of the locality, acting, in general, to prevent constructive and population densification in neighborhoods well located near the center, in São Paulo. One of the main demands of these “not in my backyard” movements is the delimitation of exclusively residential areas in the central region of the city, which is not only contrary to the interests of the real state market but also contrary to the principles of the compact city. On the other hand, social housing rights movements have also made progress in delimiting special areas of social interest in well-located and valued areas in the city dedicated to building social housing, also contrary to the interests of the real estate market. An urban development that follows the principles of the compact city must take into account the insertion of low-income populations in well-located regions; otherwise, such a development model may continue to push the less favored to the peripheries towards the preservation areas and/or risk areas.

Keywords: interest groups, Sao Paulo, sustainable urban development, urban policies implementation

Procedia PDF Downloads 90
296 CO₂ Recovery from Biogas and Successful Upgrading to Food-Grade Quality: A Case Study

Authors: Elisa Esposito, Johannes C. Jansen, Loredana Dellamuzia, Ugo Moretti, Lidietta Giorno

Abstract:

The reduction of CO₂ emission into the atmosphere as a result of human activity is one of the most important environmental challenges to face in the next decennia. Emission of CO₂, related to the use of fossil fuels, is believed to be one of the main causes of global warming and climate change. In this scenario, the production of biomethane from organic waste, as a renewable energy source, is one of the most promising strategies to reduce fossil fuel consumption and greenhouse gas emission. Unfortunately, biogas upgrading still produces the greenhouse gas CO₂ as a waste product. Therefore, this work presents a case study on biogas upgrading, aimed at the simultaneous purification of methane and CO₂ via different steps, including CO₂/methane separation by polymeric membranes. The original objective of the project was the biogas upgrading to distribution grid quality methane, but the innovative aspect of this case study is the further purification of the captured CO₂, transforming it from a useless by-product to a pure gas with food-grade quality, suitable for commercial application in the food and beverage industry. The study was performed on a pilot plant constructed by Tecno Project Industriale Srl (TPI) Italy. This is a model of one of the largest biogas production and purification plants. The full-scale anaerobic digestion plant (Montello Spa, North Italy), has a digestive capacity of 400.000 ton of biomass/year and can treat 6.250 m3/hour of biogas from FORSU (organic fraction of solid urban waste). The entire upgrading process consists of a number of purifications steps: 1. Dehydration of the raw biogas by condensation. 2. Removal of trace impurities such as H₂S via absorption. 3.Separation of CO₂ and methane via a membrane separation process. 4. Removal of trace impurities from CO₂. The gas separation with polymeric membranes guarantees complete simultaneous removal of microorganisms. The chemical purity of the different process streams was analysed by a certified laboratory and was compared with the guidelines of the European Industrial Gases Association and the International Society of Beverage Technologists (EIGA/ISBT) for CO₂ used in the food industry. The microbiological purity was compared with the limit values defined in the European Collaborative Action. With a purity of 96-99 vol%, the purified methane respects the legal requirements for the household network. At the same time, the CO₂ reaches a purity of > 98.1% before, and 99.9% after the final distillation process. According to the EIGA/ISBT guidelines, the CO₂ proves to be chemically and microbiologically sufficiently pure to be suitable for food-grade applications.

Keywords: biogas, CO₂ separation, CO2 utilization, CO₂ food grade

Procedia PDF Downloads 186
295 Natural Monopolies and Their Regulation in Georgia

Authors: Marina Chavleishvili

Abstract:

Introduction: Today, the study of monopolies, including natural monopolies, is topical. In real life, pure monopolies are natural monopolies. Natural monopolies are used widely and are regulated by the state. In particular, the prices and rates are regulated. The paper considers the problems associated with the operation of natural monopolies in Georgia, in particular, their microeconomic analysis, pricing mechanisms, and legal mechanisms of their operation. The analysis was carried out on the example of the power industry. The rates of natural monopolies in Georgia are controlled by the Georgian National Energy and Water Supply Regulation Commission. The paper analyzes the positive role and importance of the regulatory body and the issues of improving the legislative base that will support the efficient operation of the branch. Methodology: In order to highlight natural monopolies market tendencies, the domestic and international markets are studied. An analysis of monopolies is carried out based on the endogenous and exogenous factors that determine the condition of companies, as well as the strategies chosen by firms to increase the market share. According to the productivity-based competitiveness assessment scheme, the segmentation opportunities, business environment, resources, and geographical location of monopolist companies are revealed. Main Findings: As a result of the analysis, certain assessments and conclusions were made. Natural monopolies are quite a complex and versatile economic element, and it is important to specify and duly control their frame conditions. It is important to determine the pricing policy of natural monopolies. The rates should be transparent, should show the level of life in the country, and should correspond to the incomes. The analysis confirmed the significance of the role of the Antimonopoly Service in the efficient management of natural monopolies. The law should adapt to reality and should be applied only to regulate the market. The present-day differential electricity tariffs varying depending on the consumed electrical power need revision. The effects of the electricity price discrimination are important, segmentation in different seasons in particular. Consumers use more electricity in winter than in summer, which is associated with extra capacities and maintenance costs. If the price of electricity in winter is higher than in summer, the electricity consumption will decrease in winter. The consumers will start to consume the electricity more economically, what will allow reducing extra capacities. Conclusion: Thus, the practical realization of the views given in the paper will contribute to the efficient operation of natural monopolies. Consequently, their activity will be oriented not on the reduction but on the increase of increments of the consumers or producers. Overall, the optimal management of the given fields will allow for improving the well-being throughout the country. In the article, conclusions are made, and the recommendations are developed to deliver effective policies and regulations toward the natural monopolies in Georgia.

Keywords: monopolies, natural monopolies, regulation, antimonopoly service

Procedia PDF Downloads 63
294 Spinetoram10% WG+Sulfoxaflor 30% WG: A Promising Green Chemistry to Manage Pest Complex in Bt Cotton

Authors: Siddharudha B. Patil

Abstract:

Cotton is a premier commercial fibre crop of India subjected to ravages of insect pests. Sucking pests viz thrips, Thrips tabaci,(lind) leaf hopper Amrsca devastance,(dist) miridbug, Poppiocapsidea beseratense (Dist) and bollworms continue to inflict damage Bt Cotton right from seeding stage. Their infestation impact cotton yield to an extent of 30-40 percent. Chemical control is still adoptable as one of the techniques for combating these pests. Presently, growers have many challenges in selecting effective chemicals which fit in with an integrated pest management. Spinetoram has broad spectrum with excellent insecticidal activity against both sucking pests and bollworms. Hence, it is expected to make a great contribution to stable production and quality improvement of agricultural products. Spinetoram is a derivative of biologically active substances (Spinosyns) produced by soil actinomycetes, Saccharopolypara spinosa which is semi synthetic active ingredient representing Spinosyn chemical class of insecticide and has demonstrated higher level of efficacy with reduced risk on beneficial arthropods. The efforts were made in the present study to test the efficacy of Spinetoram against sucking pests and bollworms in comparison with other insecticides in Bt Cotton under field condition. Field experiment was laid out during 2013-14 and 2014-15 at Agricultural Research station Dharwad (Karnataka-India) in a randomized block design comprising eight treatments and three replications. Bt cotton genotype, Bunny BG-II was sown in a plot size of 5.4 m x5.4 m. Recommend agronomical practices were followed. The Spinetoram 12% SC alone and incombination with sulfaxaflore with varied dosages against pest complex was tested. Performance was compared with Spinosad 45% SC and thiamethoxam 25% WG. The results of consecutive seasons revealed that nonsignificant difference in thrips and leafhopper population and varied significantly after 3 days of imposition. Among the treatments, combiproduct, Spinetoram 10%WG + Sulfoxaflor 30% WG@ 140 gai/ha registered lowest population of thrips (3.91/3 leaves) and leaf hoppers (1.08/3 leaves) followed by its lower dosages viz 120 gai/ha (4.86/3 leaves and 1.14/3 leaves of thrips and leaf hoppers, respectively) and 100 gai/ha (6.02 and 1.23./3 leaves of thrips and leaf hoppers respectively) being at par, significantly superior to rest of the treatments. On the contrary, the population of thrips, leaf hopper and miridbugs in untreated control was on higher side. Similarly the higher dosage of Spinetoram 10% WG+ Sulfoxaflor 30% WG (140 gai/ha) proved its bioefficacy by registering lowest miridbug incidence of 1.70/25 squares, followed by its lower dosage (1.78 and 1.83/25 squares respectively) Further observation made on bollworms incidence revealed that the higher dosage of Spinetoram 10% WG+Sulfoxaflor 30% WG (140 gai/ha) registered lowest percentage of boll damage (7.22%), more number of good opened bolls (36.89/plant) and higher seed cotton yield (19.45q/ha) followed by rest of its lower dosages, Spinetoram 12% SC alone and Spinosad 45% SC being at par significantly superior to rest of the treatments. However, significantly higher boll damage (15.13%) and lower seed cotton yield (14.45 q/ha) was registered in untreated control. Thus Spinetoram10% WG+Sulfoxaflor 30% WG can be a promising option for pest management in Bt Cotton.

Keywords: Spinetoram10% WG+Sulfoxaflor 30% WG, sucking pests, bollworms, Bt cotton, management

Procedia PDF Downloads 218
293 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: process map, drilling loss matrix, SIPOC, productivity, percussion rate

Procedia PDF Downloads 188
292 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network

Authors: T. Lydon, A. McNabola, P. Coughlan

Abstract:

Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.

Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network

Procedia PDF Downloads 237
291 Energy Atlas: Geographic Information Systems-Based Energy Analysis and Planning Tool

Authors: Katarina Pogacnik, Ursa Zakrajsek, Nejc Sirk, Ziga Lampret

Abstract:

Due to an increase in living standards along with global population growth and a trend of urbanization, municipalities and regions are faced with an ever rising energy demand. A challenge has arisen for cities around the world to modify the energy supply chain in order to reduce its consumption and CO₂ emissions. The aim of our work is the development of a computational-analytical platform for dynamic support in decision-making and the determination of economic and technical indicators of energy efficiency in a smart city, named Energy Atlas. Similar products in this field focuse on a narrower approach, whereas in order to achieve its aim, this platform encompasses a wider spectrum of beneficial and important information for energy planning on a local or regional scale. GIS based interactive maps provide an extensive database on the potential, use and supply of energy and renewable energy sources along with climate, transport and spatial data of the selected municipality. Beneficiaries of Energy atlas are local communities, companies, investors, contractors as well as residents. The Energy Atlas platform consists of three modules named E-Planning, E-Indicators and E-Cooperation. The E-Planning module is a comprehensive data service, which represents a support towards optimal decision-making and offers a sum of solutions and feasibility of measures and their effects in the area of efficient use of energy and renewable energy sources. The E-Indicators module identifies, collects and develops optimal data and key performance indicators and develops an analytical application service for dynamic support in managing a smart city in regards to energy use and sustainable environment. In order to support cooperation and direct involvement of citizens of the smart city, the E-cooperation is developed with the purpose of integrating the interdisciplinary and sociological aspects of energy end-users. Interaction of all the above-described modules contributes to regional development because it enables for a precise assessment of the current situation, strategic planning, detection of potential future difficulties and also the possibility of public involvement in decision-making. From the implementation of the technology in Slovenian municipalities of Ljubljana, Piran, and Novo mesto, there is evidence to suggest that the set goals are to be achieved to a great extent. Such thorough urban energy planning tool is viewed as an important piece of the puzzle towards achieving a low-carbon society, circular economy and therefore, sustainable society.

Keywords: circular economy, energy atlas, energy management, energy planning, low-carbon society

Procedia PDF Downloads 281
290 Institutional and Economic Determinants of Foreign Direct Investment: Comparative Analysis of Three Clusters of Countries

Authors: Ismatilla Mardanov

Abstract:

There are three types of countries, the first of which is willing to attract foreign direct investment (FDI) in enormous amounts and do whatever it takes to make this happen. Therefore, FDI pours into such countries. In the second cluster of countries, even if the country is suffering tremendously from the shortage of investments, the governments are hesitant to attract investments because they are at the hands of local oligarchs/cartels. Therefore, FDI inflows are moderate to low in such countries. The third type is countries whose companies prefer investing in the most efficient locations globally and are hesitant to invest in the homeland. Sorting countries into such clusters, the present study examines the essential institutions and economic factors that make these countries different. Past literature has discussed various determinants of FDI in all kinds of countries. However, it did not classify countries based on government motivation, institutional setup, and economic factors. A specific approach to each target country is vital for corporate foreign direct investment risk analysis and decisions. The research questions are 1. What specific institutional and economic factors paint the pictures of the three clusters; 2. What specific institutional and economic factors are determinants of FDI; 3. Which of the determinants are endogenous and exogenous variables? 4. How can institutions and economic and political variables impact corporate investment decisions Hypothesis 1: In the first type, country institutions and economic factors will be favorable for FDI. Hypothesis 2: In the second type, even if country economic factors favor FDI, institutions will not. Hypothesis 3: In the third type, even if country institutions favorFDI, economic factors will not favor domestic investments. Therefore, FDI outflows occur in large amounts. Methods: Data come from open sources of the World Bank, the Fraser Institute, the Heritage Foundation, and other reliable sources. The dependent variable is FDI inflows. The independent variables are institutions (economic and political freedom indices) and economic factors (natural, material, and labor resources, government consumption, infrastructure, minimum wage, education, unemployment, tax rates, consumer price index, inflation, and others), the endogeneity or exogeneity of which are tested in the instrumental variable estimation. Political rights and civil liberties are used as instrumental variables. Results indicate that in the first type, both country institutions and economic factors, specifically labor and logistics/infrastructure/energy intensity, are favorable for potential investors. In the second category of countries, the risk of loss of assets is very high due to governmentshijacked by local oligarchs/cartels/special interest groups. In the third category of countries, the local economic factors are unfavorable for domestic investment even if the institutions are well acceptable. Cluster analysis and instrumental variable estimation were used to reveal cause-effect patterns in each of the clusters.

Keywords: foreign direct investment, economy, institutions, instrumental variable estimation

Procedia PDF Downloads 139
289 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 24
288 Agriculture and Forests: A Perception of Farmers on Sustainable Agro-Ecological Practices

Authors: Kever Gomes, Rosana Martins

Abstract:

The use of environmental indicators is today an important strategy for analyzing the sustainability of agricultural systems. Despite of the considerable importance of family agriculture for Brazilian economy, sustainable agricultural practices are still weakly known, and the known ones, underused. Currently, economic aspects of the relationship between man and nature lead to the destruction of natural ecosystems, which justifies the urgent need for dissemination and usage of new sustainable production techniques. The study shows the agro-social and social-cultural trajectory of the farmers and hypothesis are advanced on what would imply the adoption of agroforestry systems in family agriculture. This study aimed to investigate aspects related to the perception of sustainable agriculture, especially on agroforestry systems in farms of farmers from Distrito Federal-Brazil. Agro-social characteristics of farmers were systematized considering their perceptions about agroforestry systems for the preparation of proposal for a program of Environmental Services Payment, intended for families who are involved in the various activities of home gardens. This study used qualitative methodological approaches of quantitative research, using descriptive exploratory research. To get the necessary elements for the intended analysis, interviews were conducted at 40 heads of households of which 15 were men and 25 women. The results were analyzed using descriptive statistics, having been considered in the analysis the frequency, consistency, coherence and originality of responses. It was found that the lack of financial resources and lack of technical assistance are limiting factors for the dissemination and use of sustainable agricultural practices. Considering the great number of species found for the main categories of use, it can be inferred that the home gardens play important functions for the interviewed families, contributing for the food and medicine production destined for the consumption by the families themselves, and also playing an important esthetic function thanks to the variety of their ornamental plants. The wealth of these home gardens may be related to the rural origin and to the culture of the owners, who still keep a cultivation tradition. It was found that the products obtained from the home gardens contributed for the diet’s variety of the informants, representing a promising potential for the improvement of the population alimentation. The study reached the conclusion over the need to motivate the interest of these farmers to seek information and resources to enable the implementation of Agroforestry projects, including the recovery of areas in their properties, even those distinct from their backyards. The study shows the agro-social and social-cultural trajectory of the farmers and hypothesis are advanced on what would imply the adoption of agroforestry systems in family agriculture.

Keywords: agro-biodiversity, natural conservation, silviculture, urban agriculture

Procedia PDF Downloads 170
287 The Relationship between Osteoporosis-Related Knowledge and Physical Activity among Women Age over 50 Years

Authors: P. Tardi, B. Szilagyi, A. Makai, P. Acs, M. Hock, M. Jaromi

Abstract:

Osteoporosis is becoming a major public health problem, particularly in postmenopausal women, as the incidence of this disease is getting higher. Nowadays, one of the most common chronic musculoskeletal diseases is osteoporosis. Osteoporosis-related knowledge is an important contributor to prevent or to treat osteoporosis. The most important strategies to prevent or treat the disease are increasing the level of physical activity at all ages, cessation of smoking, reduction of alcohol consumption, adequate dietary calcium, and vitamin D intake. The aim of the study was to measure the osteoporosis-related knowledge and physical activity among women age over 50 years. For the measurements, we used the osteoporosis questionnaire (OPQ) to examine the disease-specific knowledge and the global physical activity questionnaire (GPAQ) to measure the quantity and quality of the physical activity. The OPQ is a self-administered 20-item questionnaire with five categories: general information, risk factors, investigations, consequences, and treatment. There are four choices per question (one of them is the 'I do not know'). The filler gets +1 for a good answer, -1 point for a bad answer, and 0 for 'I do not know' answer. We contacted with 326 women (63.08 ± 9.36 year) to fill out the questionnaires. Descriptive analysis was carried out, and we calculated Spearman's correlation coefficient to examine the relationship between the variables. Data were entered into Microsoft Excel, and all statistical analyses were performed using SPSS (Version 24). The participants of the study (n=326) reached 8.76 ± 6.94 points on OPQ. Significant (p < 0.001) differences were found in the results of OPQ according to the highest level of education. It was observed that the score of the participants with osteoporosis (10.07 ± 6.82 points) was significantly (p=0.003) higher than participants without osteoporosis (9.38 ± 6.66 points) and the score of those women (6.49 ± 6.97 points) who did not know that osteoporosis exists in their case. The GPAQ results showed the sample physical activity in the dimensions of vigorous work (479.86 ± 684.02 min/week); moderate work (678.16 ± 804.5 min/week); travel (262.83 ± 380.27 min/week); vigorous recreation (77.71 ± 123.46 min/week); moderate recreation (115.15 ± 154.82 min/week) and total weekly physical activity (1645.99 ± 1432.88 min/week). Significant correlations were found between the osteoporosis-related knowledge and the physical activity in travel (R=0.21; p < 0.001), vigorous recreation (R=0.35; p < 0.001), moderate recreation (R=0.35; p < 0.001), total vigorous minutes/week (R=0.15; p=0.001) and total moderate minutes/week (R=0.13; p=0.04) dimensions. According to the results that were achieved, the highest level of education significantly determines osteoporosis-related knowledge. Physical activity is an important contributor to prevent or to treat osteoporosis, and it showed a significant correlation with osteoporosis-related knowledge. Based on the results, the development of osteoporosis-related knowledge may help to improve the level of physical activity, especially recreation. Acknowledgment: Supported by the ÚNKP-20-1 New National Excellence Program of The Ministry for Innovation and Technology from the Source of the National Research, Development and Innovation Fund.

Keywords: osteoporosis, osteoporosis-related knowledge, physical activity, prevention

Procedia PDF Downloads 89
286 Bio-Hub Ecosystems: Profitability through Circularity for Sustainable Forestry, Energy, Agriculture and Aquaculture

Authors: Kimberly Samaha

Abstract:

The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding biomass as a feedstock for power plants. Yet the lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. This study analyzed data and submittals to the Born Global Maine Innovation Challenge. The Innovation Challenge was a global innovation challenge to identify process innovations that could address a ‘whole-tree’ approach of maximizing the products, byproducts, energy value and process slip-streams into a circular zero-waste design. Participating companies were at various stages of developing bioproducts and included biofuels, lignin-based products, carbon capture platforms and biochar used as both a filtration medium and as a soil amendment product. This case study shows the QCA (Qualitative Comparative Analysis) methodology of the prequalification process and the resulting techno-economic model that was developed for the maximizing profitability of the Bio-Hub Ecosystem through continuous expansion of system waste streams into valuable process inputs for co-hosts. A full site plan for the integration of co-hosts (biorefinery, land-based shrimp and salmon aquaculture farms, a tomato green-house and a hops farm) at an operating forestry-based biomass to energy plant in West Enfield, Maine USA. This model and process for evaluating the profitability not only proposes models for integration of forestry, aquaculture and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. In this particular study, profitability is assessed at two levels CAPEX (Capital Expenditures) and in OPEX (Operating Expenditures). Given that these projects start with repurposing facilities where the industrial level infrastructure is already built, permitted and interconnected to the grid, the addition of co-hosts first realizes a dramatic reduction in permitting, development times and costs. In addition, using the biomass energy plant’s waste streams such as heat, hot water, CO₂ and fly ash as valuable inputs to their operations and a significant decrease in the OPEX costs, increasing overall profitability to each of the co-hosts bottom line. This case study utilizes a proprietary techno-economic model to demonstrate how utilizing waste streams of a biomass energy plant and/or biorefinery, results in significant reduction in OPEX for both the biomass plants and the agriculture and aquaculture co-hosts. Economically viable Bio-Hubs with favorable environmental and community impacts may prove critical in garnering local and federal government support for pilot programs and more wide-scale adoption, especially for those living in severely economically depressed rural areas where aging industrial sites have been shuttered and local economies devastated.

Keywords: bio-economy, biomass energy, financing, zero-waste

Procedia PDF Downloads 108
285 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity

Procedia PDF Downloads 195
284 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 198
283 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine

Procedia PDF Downloads 137
282 Ecological Planning Method of Reclamation Area Based on Ecological Management of Spartina Alterniflora: A Case Study of Xihu Harbor in Xiangshan County

Authors: Dong Yue, Hua Chen

Abstract:

The study region Xihu Harbor in Xiangshan County, Ningbo City is located in the central coast of Zhejiang Province. Concerning the wave dispating issue, Ningbo government firstly introduced Spartina alterniflora in 1980s. In the 1990s, S. alterniflora spread so rapidly thus a ‘grassland’ in the sea has been created nowadays. It has become the most important invasive plant of China’s coastal tidal flats. Although S. alterniflora had some ecological and economic functions, it has also brought series of hazards. It has ecological hazards on many aspects, including biomass and biodiversity, hydrodynamic force and sedimentation process, nutrient cycling of tidal flat, succession sequence of soil and plants and so on. On engineering, it courses problems of poor drainage and channel blocking. On economy, the hazard mainly reflected in the threat on aquaculture industry. The purpose of this study is to explore an ecological, feasible and economical way to manage Spartina alterniflora and use the land formed by it, taking Xihu Harbor in Xiangshan County as a case. Comparison method, mathematical modeling, qualitative and quantitative analysis are utilized to proceed the study. Main outcomes are as follows. By comparing a series of S. alterniflora managing methods which include the combination of mechanical cutting and hydraulic reclamation, waterlogging, herbicide and biological substitution from three standpoints – ecology, engineering and economy. It is inferred that the combination of mechanical cutting and hydraulic reclamation is among the top rank of S. alternifora managing methods. The combination of mechanical cutting and hydraulic reclamation means using large-scale mechanical equipment like large screw seagoing dredger to excavate the S. alterniflora with root and mud together. Then the mix of mud and grass was blown off nearby coastal tidal zone transported by pipelines, which can cushion the silt of tidal zone to form a land. However, as man-made land by coast, the reclamation area’s ecological sensitivity is quite high and will face high possibility of flood threat. Therefore, the reclamation area has many reasonability requirements, including ones on location, specific scope, water surface rate, direction of main watercourse, site of water-gate, the ratio of ecological land to urban construction land. These requirements all became important basis when the planning was being made. The water system planning, green space system planning, road structure and land use all need to accommodate the ecological requests. Besides, the profits from the formed land is the managing project’s source of funding, so how to utilize land efficiently is another considered point in the planning. It is concluded that by aiming at managing a large area of S. alterniflora, the combination of mechanical cutting and hydraulic reclamation is an ecological, feasible and economical method. The planning of reclamation area should fully respect the natural environment and possible disasters. Then the planning which makes land use efficient, reasonable, ecological will promote the development of the area’s city construction.

Keywords: ecological management, ecological planning method, reclamation area, Spartina alternifora, Xihu harbor

Procedia PDF Downloads 290
281 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 295
280 An Approach to Determine the in Transit Vibration to Fresh Produce Using Long Range Radio (LORA) Wireless Transducers

Authors: Indika Fernando, Jiangang Fei, Roger Stanely, Hossein Enshaei

Abstract:

Ever increasing demand for quality fresh produce by the consumers, had increased the gravity on the post-harvest supply chains in multi-fold in the recent years. Mechanical injury to fresh produce was a critical factor for produce wastage, especially with the expansion of supply chains, physically extending to thousands of miles. The impact of vibration damages in transit was identified as a specific area of focus which results in wastage of significant portion of the fresh produce, at times ranging from 10% to 40% in some countries. Several studies were concentrated on quantifying the impact of vibration to fresh produce, and it was a challenge to collect vibration impact data continuously due to the limitations in battery life or the memory capacity in the devices. Therefore, the study samples were limited to a stretch of the transit passage or a limited time of the journey. This may or may not give an accurate understanding of the vibration impacts encountered throughout the transit passage, which limits the accuracy of the results. Consequently, an approach which can extend the capacity and ability of determining vibration signals in the transit passage would contribute to accurately analyze the vibration damage along the post-harvest supply chain. A mechanism was developed to address this challenge, which is capable of measuring the in transit vibration continuously through the transit passage subject to a minimum acceleration threshold (0.1g). A system, consisting six tri-axel vibration transducers installed in different locations inside the cargo (produce) pallets in the truck, transmits vibration signals through LORA (Long Range Radio) technology to a central device installed inside the container. The central device processes and records the vibration signals transmitted by the portable transducers, along with the GPS location. This method enables to utilize power consumption for the portable transducers to maximize the capability of measuring the vibration impacts in the transit passage extending to days in the distribution process. The trial tests conducted using the approach reveals that it is a reliable method to measure and quantify the in transit vibrations along the supply chain. The GPS capability enables to identify the locations in the supply chain where the significant vibration impacts were encountered. This method contributes to determining the causes, susceptibility and intensity of vibration impact damages to fresh produce in the post-harvest supply chain. Extensively, the approach could be used to determine the vibration impacts not limiting to fresh produce, but for products in supply chains, which may extend from few hours to several days in transit.

Keywords: post-harvest, supply chain, wireless transducers, LORA, fresh produce

Procedia PDF Downloads 241
279 Food Composition Tables Used as an Instrument to Estimate the Nutrient Ingest in Ecuador

Authors: Ortiz M. Rocío, Rocha G. Karina, Domenech A. Gloria

Abstract:

There are several tools to assess the nutritional status of the population. A main instrument commonly used to build those tools is the food composition tables (FCT). Despite the importance of FCT, there are many error sources and variability factors that can be presented on building those tables and can lead to an under or over estimation of ingest of nutrients of a population. This work identified different food composition tables used as an instrument to estimate the nutrient ingest in Ecuador.The collection of data for choosing FCT was made through key informants –self completed questionnaires-, supplemented with institutional web research. A questionnaire with general variables (origin, year of edition, etc) and methodological variables (method of elaboration, information of the table, etc) was passed to the identified FCT. Those variables were defined based on an extensive literature review. A descriptive analysis of content was performed. Ten printed tables and three databases were reported which were all indistinctly treated as food composition tables. We managed to get information from 69% of the references. Several informants referred to printed documents that were not accessible. In addition, searching the internet was not successful. Of the 9 final tables, n=8 are from Latin America, and, n= 5 of these were constructed by indirect method (collection of already published data) having as a main source of information a database from the United States department of agriculture USDA. One FCT was constructed by using direct method (bromatological analysis) and has its origin in Ecuador. The 100% of the tables made a clear distinction of the food and its method of cooking, 88% of FCT expressed values of nutrients per 100g of edible portion, 77% gave precise additional information about the use of the table, and 55% presented all the macro and micro nutrients on a detailed way. The more complete FCT were: INCAP (Central America), Composition of foods (Mexico). The more referred table was: Ecuadorian food composition table of 1965 (70%). The indirect method was used for most tables within this study. However, this method has the disadvantage that it generates less reliable food composition tables because foods show variations in composition. Therefore, a database cannot accurately predict the composition of any isolated sample of a food product.In conclusion, analyzing the pros and cons, and, despite being a FCT elaborated by using an indirect method, it is considered appropriate to work with the FCT of INCAP Central America, given the proximity to our country and a food items list that is very similar to ours. Also, it is imperative to have as a reference the table of composition for Ecuadorian food, which, although is not updated, was constructed using the direct method with Ecuadorian foods. Hence, both tables will be used to elaborate a questionnaire with the purpose of assessing the food consumption of the Ecuadorian population. In case of having disparate values, we will proceed by taking just the INCAP values because this is an updated table.

Keywords: Ecuadorian food composition tables, FCT elaborated by direct method, ingest of nutrients of Ecuadorians, Latin America food composition tables

Procedia PDF Downloads 403
278 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine

Procedia PDF Downloads 110
277 The Coaching on Lifestyle Intervention (CooL): Preliminary Results and Implementation Process

Authors: Celeste E. van Rinsum, Sanne M. P. L. Gerards, Geert M. Rutten, Ien A. M. van de Goor, Stef P. J. Kremers

Abstract:

Combined lifestyle interventions have shown to be effective in changing and maintaining behavioral lifestyle changes and reducing overweight and obesity. A lifestyle coach is expected to promote lifestyle changes in adults related to physical activity and diet. The present Coaching on Lifestyle (CooL) study examined participants’ physical activity level, dietary behavioral, and motivational changes immediately after the intervention and at 1.5 years after baseline. In CooL intervention a lifestyle coach coaches individuals from eighteen years and older with (a high risk of) obesity in group and individual sessions. In addition a process evaluation was conducted in order to examine the implementation process and to be able to interpret the changes within the participants. This action-oriented research has a pre-post design. Participants of the CooL intervention (N = 200) completed three questionnaires: at baseline, immediately after the intervention (on average after 44 weeks), and at 1.5 years after baseline. T-tests and linear regressions were conducted to test self-reported changes in physical activity (IPAQ), dietary behaviors, their quality of motivation for physical activity (BREQ-3) and for diet (REBS), body mass index (BMI), and quality of life (EQ-5D-3L). For the process evaluation, we used individual and group interviews, observations and document analyses to gain insight in the implementation process (e.g. the recruitment) and how the intervention was valued by the participants, lifestyle coaches, and referrers. The study is currently ongoing and therefore the results presented here are preliminary. On average, the participants that finished the intervention and those that have completed the long-term measurement improved their level of vigorous-intense physical activity, sedentary behavior, sugar-sweetened beverage consumption and BMI. Mixed results were observed in motivational regulation for physical activity and nutrition. Moreover, an improvement on the quality of life dimension anxiety/depression was found, also in the long-term. All the other constructs did not show significant change over time. The results of the process evaluation have shown that recruitment of clients was difficult. Participants evaluated the intervention positively and the lifestyle coaches have continuously adapted the structure and contents of the intervention throughout the study period, based on their experiences and feedback from research. Preliminary results indicate that the CooL-intervention may have beneficial effects on overweight and obese participants in terms of energy balance-related behaviors, weight reduction, and quality of life. Recruitment of participants and embedding the position of the lifestyle coach in traditional care structures is challenging.

Keywords: combined lifestyle intervention, effect evaluation, lifestyle coaching, process evaluation, overweight, the Netherlands

Procedia PDF Downloads 207
276 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer

Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller

Abstract:

Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.

Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine

Procedia PDF Downloads 70
275 The Impact of Tourism on the Intangible Cultural Heritage of Pilgrim Routes: The Case of El Camino de Santiago

Authors: Miguel Angel Calvo Salve

Abstract:

This qualitative and quantitative study will identify the impact of tourism pressure on the intangible cultural heritage of the pilgrim route of El Camino de Santiago (Saint James Way) and propose an approach to a sustainable touristic model for these Cultural Routes. Since 1993, the Spanish Section of the Pilgrim Route of El Camino de Santiago has been on the World Heritage List. In 1994, the International Committee on Cultural Routes (CIIC-ICOMOS) initiated its work with the goal of studying, preserving, and promoting the cultural routes and their significance as a whole. Another ICOMOS group, the Charter on Cultural Routes, pointed out in 2008 the importance of both tangible and intangible heritage and the need for a holistic vision in preserving these important cultural assets. Tangible elements provide a physical confirmation of the existence of these cultural routes, while the intangible elements serve to give sense and meaning to it as a whole. Intangible assets of a Cultural Route are key to understanding the route's significance and its associated heritage values. Like many pilgrim routes, the Route to Santiago, as the result of a long evolutionary process, exhibits and is supported by intangible assets, including hospitality, cultural and religious expressions, music, literature, and artisanal trade, among others. A large increase in pilgrims walking the route, with very different aims and tourism pressure, has shown how the dynamic links between the intangible cultural heritage and the local inhabitants along El Camino are fragile and vulnerable. Economic benefits for the communities and population along the cultural routes are commonly fundamental for the micro-economies of the people living there, substituting traditional productive activities, which, in fact, modifies and has an impact on the surrounding environment and the route itself. Consumption of heritage is one of the major issues of sustainable preservation promoted with the intention of revitalizing those sites and places. The adaptation of local communities to new conditions aimed at preserving and protecting existing heritage has had a significant impact on immaterial inheritance. Based on questionnaires to pilgrims, tourists and local communities along El Camino during the peak season of the year, and using official statistics from the Galician Pilgrim’s Office, this study will identify the risk and threats to El Camino de Santiago as a Cultural Route. The threats visible nowadays due to the impact of mass tourism include transformations of tangible heritage, consumerism of the intangible, changes of local activities, loss in the authenticity of symbols and spiritual significance, and pilgrimage transformed into a tourism ‘product’, among others. The study will also approach some measures and solutions to mitigate those impacts and better preserve this type of cultural heritage. Therefore, this study will help the Route services providers and policymakers to better preserve the Cultural Route as a whole to ultimately improve the satisfying experience of pilgrims.

Keywords: cultural routes, El Camino de Santiago, impact of tourism, intangible heritage

Procedia PDF Downloads 47
274 Learning from TikTok Food Pranks to Promote Food Saving Among Adolescents

Authors: Xuan (Iris) Li, Jenny Zhengye Hou, Greg Hearn

Abstract:

Food waste is a global issue, with an estimated 30% to 50% of food created never being consumed. Therefore, it is vital to reduce food waste and convert wasted food into recyclable outputs. TikTok provides a simple way of creating and duetting videos in just a few steps by using templates with the same sound/vision/caption effects to produce personalized content – this is called a duet, which is revealing to study the impact of TikTok on wasting more food or saving food. The research focuses on examining food-related content on TikTok, with particular attention paid to two distinct themes, food waste pranks and food-saving practices, to understand the potential impacts of these themes on adolescents and their attitudes toward sustainable food consumption practices. Specifically, the analysis explores how TikTok content related to food waste and/or food saving may contribute to the normalization and promotion of either positive or negative food behaviours among young viewers. The research employed content analysis and semi-structured interviews to understand what factors contribute to the difference in popularity between food pranks and food-saving videos and insights from the former can be applied to the latter to increase their communication effectiveness. The first category of food content on TikTok under examination pertains to food waste, including videos featuring pranks and mukbang. These forms of content have the potential to normalize or even encourage food waste behaviours among adolescents, exacerbating the already significant food waste problem. The second category of TikTok food content under examination relates to food saving, for example, videos teaching viewers how to maximize the use of food to reduce waste. This type of content can potentially empower adolescents to act against food waste and foster positive and sustainable food practices in their communities. The initial findings of the study suggest that TikTok content related to pranks appears to be more popular among viewers than content focused on teaching people how to save food. Additionally, these types of videos are gaining fans at a faster rate than content promoting more sustainable food practices. However, we argue there is a great potential for social media platforms like TikTok to play an educative role in promoting positive behaviour change among young people by sharing engaging content suitable to target audiences. This research serves as the first to investigate the potential utility of TikTok in food waste reduction and underscores the important role social media platforms can play in promoting sustainable food practices. The findings will help governments, organizations, and communities promote tailored and effective interventions to reduce food waste and help achieve the United Nations’ sustainable development goal of halving food waste by 2030.

Keywords: food waste reduction, behaviour, social media, TikTok, adolescents

Procedia PDF Downloads 47
273 Acrylate-Based Photopolymer Resin Combined with Acrylated Epoxidized Soybean Oil for 3D-Printing

Authors: Raphael Palucci Rosa, Giuseppe Rosace

Abstract:

Stereolithography (SLA) is one of the 3D-printing technologies that has been steadily growing in popularity for both industrial and personal applications due to its versatility, high accuracy, and low cost. Its printing process consists of using a light emitter to solidify photosensitive liquid resins layer-by-layer to produce solid objects. However, the majority of the resins used in SLA are derived from petroleum and characterized by toxicity, stability, and recalcitrance to degradation in natural environments. Aiming to develop an eco-friendly resin, in this work, different combinations of a standard commercial SLA resin (Peopoly UV professional) with a vegetable-based resin were investigated. To reach this goal, different mass concentrations (varying from 10 to 50 wt%) of acrylated epoxidized soybean oil (AESO), a vegetable resin produced from soyabean oil, were mixed with a commercial acrylate-based resin. 1.0 wt% of Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) was used as photo-initiator, and the samples were printed using a Peopoly moai 130. The machine was set to operate at standard configurations when printing commercial resins. After the print was finished, the excess resin was drained off, and the samples were washed in isopropanol and water to remove any non-reacted resin. Finally, the samples were post-cured for 30 min in a UV chamber. FT-IR analysis was used to confirm the UV polymerization of the formulated resin with different AESO/Peopoly ratios. The signals from 1643.7 to 1616, which corresponds to the C=C stretching of the AESO acrylic acids and Peopoly acrylic groups, significantly decreases after the reaction. The signal decrease indicates the consumption of the double bonds during the radical polymerization. Furthermore, the slight change of the C-O-C signal from 1186.1 to 1159.9 decrease of the signals at 809.5 and 983.1, which corresponds to unsaturated double bonds, are both proofs of the successful polymerization. Mechanical analyses showed a decrease of 50.44% on tensile strength when adding 10 wt% of AESO, but it was still in the same range as other commercial resins. The elongation of break increased by 24% with 10 wt% of AESO and swelling analysis showed that samples with a higher concentration of AESO mixed absorbed less water than their counterparts. Furthermore, high-resolution prototypes were printed using both resins, and visual analysis did not show any significant difference between both products. In conclusion, the AESO resin was successful incorporated into a commercial resin without affecting its printability. The bio-based resin showed lower tensile strength than the Peopoly resin due to network loosening, but it was still in the range of other commercial resins. The hybrid resin also showed better flexibility and water resistance than Peopoly resin without affecting its resolution. Finally, the development of new types of SLA resins is essential to provide new sustainable alternatives to the commercial petroleum-based ones.

Keywords: 3D-printing, bio-based, resin, soybean, stereolithography

Procedia PDF Downloads 107
272 A Perspective on Allelopathic Potential of Corylus avellana L.

Authors: Tugba G. Isin Ozkan, Yoshiharu Fujii

Abstract:

One of the most important constrains that decrease the crop yields are weeds. Increased amount and number of chemical herbicides are being utilized every day to control weeds. Chemical herbicides which cause environmental effects, and limitations on implementation of them have led to the nonchemical alternatives in the management of weeds. It is needed increasingly the application of allelopathy as a nonherbicidal innovation to control weed populations in integrated weed management. It is not only because of public concern about herbicide use, but also increased agricultural costs and herbicide resistance weeds. Allelopathy is defined as a common biological phenomenon, direct or indirect interaction which one plant or organism produces biochemicals influence the physiological processes of another neighboring plant or organism. Biochemicals involved in allelopathy are called allelochemicals that influence beneficially or detrimentally the growth, survival, development, and reproduction of other plant or organisms. All plant parts could have allelochemicals which are secondary plant metabolites. Allelochemicals are released to environment, influence the germination and seedling growth of neighbors' weeds; that is the way how allelopathy is applied for weed control. Crop cultivars have significantly different ability for inhibiting the growth of certain weeds. So, a high commercial value crop Corylus avellana L. and its byproducts were chosen to introduce for their allelopathic potential in this research. Edible nut of Corylus avellana L., commonly known as hazelnut is commercially valuable crop with byproducts; skin, hard shell, green leafy cover, and tree leaf. Research on allelopathic potential of a plant by using the sandwich bioassay method and investigation growth inhibitory activity is the first step to develop new and environmentally friendly alternatives for weed control. Thus, the objective of this research is to determine allelopathic potential of C. avellana L. and its byproducts by using sandwich method and to determine effective concentrations (EC) of their extracts for inducing half-maximum elongation inhibition on radicle of test plant, EC50. The sandwich method is reliable and fast bioassay, very useful for allelopathic screening under laboratory conditions. In experiments, lettuce (Lactuca sativa L.) seeds will be test plant, because of its high sensitivity to inhibition by allelochemicals and reliability for germination. In sandwich method, the radicle lengths of dry material treated lettuce seeds and control lettuce seeds will be measured and inhibition of radicle elongation will be determined. Lettuce seeds will also be treated by the methanol extracts of dry hazelnut parts to calculate EC₅₀ values, which are required to induce half-maximal inhibition of growth, as mg dry weight equivalent mL-1. Inhibitory activity of extracts against lettuce seedling elongation will be evaluated, like in sandwich method, by comparing the radicle lengths of treated seeds with that of control seeds and EC₅₀ values will be determined. Research samples are dry parts of Turkish hazelnut, C. avellana L. The results would suggest the opportunity for allelopathic potential of C. avellana L. with its byproducts in plant-plant interaction, might be utilized for further researches, could be beneficial in finding bioactive chemicals from natural products and developing of natural herbicides.

Keywords: allelopathy, Corylus avellana L., EC50, Lactuca sativa L., sandwich method, Turkish hazelnut

Procedia PDF Downloads 148
271 Counteract Heat Stress on Broiler Chicks by Adding Anti-Heat Stress Vitamins (Vitamin C and E) with Organic Zinc

Authors: Omnia Y. Shawky, Asmaa M. Megahed, Alaa E. ElKomy, A. E. Abd-El-Hamid, Y. A. Attia

Abstract:

This study was carried out to elevate the broilers physiological response against heat stress and reduce this impact by adding vitamin C (VC), vitamin E (VE) alone/or with organic zinc (Zn) to chicks’ rations. A total of 192, 26-day-old Arbor Acers male chicks were randomly divided into equal 8 groups (4 replicates for each). All experimental groups were treated as follow: Group 2 was served as a heat stress control that reared at 37ºC with relative humidity 53 ± 8% for 6 hours/day for three successive days/week and fed the basal diet only. Groups 3-8 were heat stressed in a like manner to group 2 and fed basal diet inclusion 200mg VC (group 3), 200mg VE (group 4), 200mg VC+200mg VE (group 5), 200mg VC+30mg Zn (group 6), 200mg VE+30mg Zn (group 7) and 200mg VC+200mg VE+30mg Zn (group 8) /kg feed, while Group 1 was served as a positive control that reared on a neutral temperature (NT) (approximately 21ºC) and fed the basal diet only. Respiration rate and rectal temperature were boosted of HS chicks (80.8 breath/min and 41.97ºC) compared to NT group (60.12 breath/min and 40.9ºC), while, adding VC alone and with VE or Zn resulted in decrease these measurements. Heat stress had a significantly negative effect on chicks body weight gain, feed consumption and feed conversion ratio compared to the NT group, this harmful effect could be overcome by adding VC and VE individually or with Zn. Chicks exposed to heat stress showed slightly increase hemoglobin concentration compared to NT group, while, adding VC, VE individually or with Zn alleviated this effect. Plasma glucose concentration was significantly increased in HS group than the NT group, but adding VC, VE individually or with Zn resulted in a reduction plasma glucose level, which it was still higher than the NT group. Heat stress caused an increase in plasma total lipids and cholesterol concentration compared to the NT group and inclusion VC or VE alone or with Zn was not able to reduce this effect. The increased liver enzymes activities (AST and ALT) that observed in HS group compared to NT group were removed by adding VC and VE individually or with Zn. As well, exposure of broiler chicks to heat stress resulted in a slightly decrease in plasma total antioxidant capacity level (TAC) superoxide dismutase and catalase enzymes activities, while inclusion VC and VE individually or with Zn in chicks rations caused an increased in these measurements. Broiler chicks that exposed to HS revealed a significant increase in heat shock protein (Hsp 70) compared to the NT group, while, adding VC or VE individually or with Zn resulted in a significant decrease in Hsp70 than the HS group and VE alone or with VC had the greatest effect. In conclusion, it could be overcome the harmful and the negative effect of heat stress on broiler chicks’ productive performance and physiological status by inclusion VC (200mg) or VE (200mg) individual or in a combination with organic zinc (30 mg) in chicks’ rations.

Keywords: heat stress, broiler, vitamin C, vitamin E, organic zinc

Procedia PDF Downloads 177
270 Urban Heat Islands Analysis of Matera, Italy Based on the Change of Land Cover Using Satellite Landsat Images from 2000 to 2017

Authors: Giuseppina Anna Giorgio, Angela Lorusso, Maria Ragosta, Vito Telesca

Abstract:

Climate change is a major public health threat due to the effects of extreme weather events on human health and on quality of life in general. In this context, mean temperatures are increasing, in particular, extreme temperatures, with heat waves becoming more frequent, more intense, and longer lasting. In many cities, extreme heat waves have drastically increased, giving rise to so-called Urban Heat Island (UHI) phenomenon. In an urban centre, maximum temperatures may be up to 10° C warmer, due to different local atmospheric conditions. UHI occurs in the metropolitan areas as function of the population size and density of a city. It consists of a significant difference in temperature compared to the rural/suburban areas. Increasing industrialization and urbanization have increased this phenomenon and it has recently also been detected in small cities. Weather conditions and land use are one of the key parameters in the formation of UHI. In particular surface urban heat island is directly related to temperatures, to land surface types and surface modifications. The present study concern a UHI analysis of Matera city (Italy) based on the analysis of temperature, change in land use and land cover, using Corine Land Cover maps and satellite Landsat images. Matera, located in Southern Italy, has a typical Mediterranean climate with mild winters and hot and humid summers. Moreover, Matera has been awarded the international title of the 2019 European Capital of Culture. Matera represents a significant example of vernacular architecture. The structure of the city is articulated by a vertical succession of dug layers sometimes excavated or partly excavated and partly built, according to the original shape and height of the calcarenitic slope. In this study, two meteorological stations were selected: MTA (MaTera Alsia, in industrial zone) and MTCP (MaTera Civil Protection, suburban area located in a green zone). In order to evaluate the increase in temperatures (in terms of UHI occurrences) over time, and evaluating the effect of land use on weather conditions, the climate variability of temperatures for both stations was explored. Results show that UHI phenomena is growing in Matera city, with an increase of maximum temperature values at a local scale. Subsequently, spatial analysis was conducted by Landsat satellite images. Four years was selected in the summer period (27/08/2000, 27/07/2006, 11/07/2012, 02/08/2017). In Particular, Landsat 7 ETM+ for 2000, 2006 and 2012 years; Landsat 8 OLI/TIRS for 2017. In order to estimate the LST, Mono Window Algorithm was applied. Therefore, the increase of LST values spatial scale trend has been verified, in according to results obtained at local scale. Finally, the analysis of land use maps over the years by the LST and/or the maximum temperatures measured, show that the development of industrialized area produces a corresponding increase in temperatures and consequently a growth in UHI.

Keywords: climate variability, land surface temperature, LANDSAT images, urban heat island

Procedia PDF Downloads 98