Search results for: green infrastructure network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8402

Search results for: green infrastructure network

3602 Characterization of Waste Thermocol Modified Bitumen by Spectroscopy, Microscopic Technique, and Dynamic Shear Rheometer

Authors: Supriya Mahida, Sangita, Yogesh U. Shah, Shanta Kumar

Abstract:

The global production of thermocol increasing day by day, due to vast applications of the use of thermocole in many sectors. Thermocol being non-biodegradable and more toxic than plastic leads towards a number of problems like its management into value-added products, environmental damage and landfill problems due to weight to volume ratio. Utilization of waste thermocol for modification of bitumen binders resulted in waste thermocol modified bitumen (WTMB) used in road construction and maintenance technology. Modification of bituminous mixes through incorporating thermocol into bituminous mixes through a dry process is one of the new options besides recycling process which consumes lots of waste thermocol. This process leads towards waste management and remedies against thermocol waste disposal. The present challenge is to dispose the thermocol waste under different forms in road infrastructure, either through the dry process or wet process to be developed in future. This paper focuses on the use of thermocol wastes which is mixed with VG 10 bitumen in proportions of 0.5%, 1%, 1.5%, and 2% by weight of bitumen. The physical properties of neat bitumen are evaluated and compared with modified VG 10 bitumen having thermocol. Empirical characterization like penetration, softening, and viscosity of bitumen has been carried out. Thermocol and waste thermocol modified bitumen (WTMB) were further analyzed by Fourier Transform Infrared Spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and Dynamic Shear Rheometer (DSR).

Keywords: DSR, FESEM, FT-IR, thermocol wastes

Procedia PDF Downloads 170
3601 Evaluation of Critical Success Factors in Public-Private Partnership Projects Based on Structural Equation Model

Authors: Medya Fathi

Abstract:

Today, success in the construction industry is not merely about project completion in a timely manner within an established budget and meeting required quality considerations. Management practices and partnerships need to be emphasized as well. In this regard, critical success factors (CSFs) cover necessary considerations for a successful project beyond the traditional success definition, which vary depending on project outcomes, delivery methods, project types, and partnering processes. Despite the extensive research on CSFs, there is a paucity of studies that examine CSFs for public-private partnership (PPP); the delivery method, which has gained increasing attention from researchers and practitioners over the last decade with a slow but growing adoption in the transportation infrastructure, particularly, highway industry. To fill this knowledge gap, data are collected through questionnaire surveys among private and public parties involved in PPP transportation projects in the United States. Then, the collected data are analyzed to explore the causality relationships between CSFs and PPP project success using structural equation model and provide a list of factors with the greatest influence. This study advocates adopting a critical success factor approach to enhance PPP success in the U.S. transportation industry and identify elements essential for public and private organizations to achieve this success.

Keywords: project success, critical success factors, public-private partnership, transportation

Procedia PDF Downloads 103
3600 Ab Initio Study of Electronic Structure and Transport of Graphyne and Graphdiyne

Authors: Zeljko Crljen, Predrag Lazic

Abstract:

Graphene has attracted a tremendous interest in the field of nanoelectronics and spintronics due to its exceptional electronic properties. However, pristine graphene has no band gap, a feature needed in building some of the electronic elements. Recently, a growing attention has been given to a class of carbon allotropes of graphene with honeycomb structures, in particular to graphyne and graphdiyne. They are characterized with a single and double acetylene bonding chains respectively, connecting the nearest-neighbor hexagonal rings. With an electron density comparable to that of graphene and a prominent gap in electronic band structures they appear as promising materials for nanoelectronic components. We studied the electronic structure and transport of infinite sheets of graphyne and graphdiyne and compared them with graphene. The method based on the non-equilibrium Green functions and density functional theory has been used in order to obtain a full ab initio self-consistent description of the transport current with different electrochemical bias potentials. The current/voltage (I/V) characteristics show a semi-conducting behavior with prominent nonlinearities at higher voltages. The calculated band gaps are 0.52V and 0.59V, respectively, and the effective masses are considerably smaller compared to typical semiconductors. We analyzed the results in terms of transmission eigenchannels and showed that the difference in conductance is directly related to the difference of the internal structure of the allotropes.

Keywords: electronic transport, graphene-like structures, nanoelectronics, two-dimensional materials

Procedia PDF Downloads 194
3599 Analysis of Urban Slum: Case Study of Korail Slum, Dhaka

Authors: Sanjida Ahmed Sinthia

Abstract:

Bangladesh is one of the poorest countries in the world. There are several reasons for this insufficiency and uncontrolled population growth is one of the prime reasons. Others include low economic progress, imbalanced resource management, unemployment and underemployment, urban migration and natural catastrophes etc. As a result, the rate of urban poor is increasing inevitably in every sphere of urban cities in Bangladesh and Dhaka is the most affected one. Besides there is scarcity of urban land, housing, urban infrastructure and amenities which create pressure on urban cities and mostly encroach the open space, wetlands that causes environmental degradation. Government has no or limited control over these due to poor government policy and management, political pressure and lack of resource management. Unfortunately, over centralization and bureaucracy creates unnecessary delay and interruptions in any government initiations. There is also no coordination between government and private sector developer to solve the problem of urban Poor. To understand the problem of these huge populations this paper analyzes one of the single largest slum areas in Dhaka, Korail Slum. The study focuses on socio demographic analysis, morphological pattern and role of different actors responsible for the improvements of the area and recommended some possible steps for determining the potential outcomes.

Keywords: demographic analysis, environmental degradation, government policy, housing and land management policy

Procedia PDF Downloads 192
3598 The Practice and Research of Computer-Aided Language Learning in China

Authors: Huang Yajing

Abstract:

Context: Computer-aided language learning (CALL) in China has undergone significant development over the past few decades, with distinct stages marking its evolution. This paper aims to provide a comprehensive review of the practice and research in this field in China, tracing its journey from the early stages of audio-visual education to the current multimedia network integration stage. Research Aim: The study aims to analyze the historical progression of CALL in China, identify key developments in the field, and provide recommendations for enhancing CALL practices in the future. Methodology: The research employs document analysis and literature review to synthesize existing knowledge on CALL in China, drawing on a range of sources to construct a detailed overview of the evolution of CALL practices and research in the country. Findings: The review highlights the significant advancements in CALL in China, showcasing the transition from traditional audio-visual educational approaches to the current integrated multimedia network stage. The study identifies key milestones, technological advancements, and theoretical influences that have shaped CALL practices in China. Theoretical Importance: The evolution of CALL in China reflects not only technological progress but also shifts in educational paradigms and theories. The study underscores the significance of cognitive psychology as a theoretical underpinning for CALL practices, emphasizing the learner's active role in the learning process. Data Collection and Analysis Procedures: Data collection involved extensive review and analysis of documents and literature related to CALL in China. The analysis was carried out systematically to identify trends, developments, and challenges in the field. Questions Addressed: The study addresses the historical development of CALL in China, the impact of technological advancements on teaching practices, the role of cognitive psychology in shaping CALL methodologies, and the future outlook for CALL in the country. Conclusion: The review provides a comprehensive overview of the evolution of CALL in China, highlighting key stages of development and emerging trends. The study concludes by offering recommendations to further enhance CALL practices in the Chinese context.

Keywords: English education, educational technology, computer-aided language teaching, applied linguistics

Procedia PDF Downloads 60
3597 Effect of Information and Communication Intervention on Stable Economic Growth in Ethiopia

Authors: Medhin Haftom Hailu

Abstract:

The advancement of information technology has significantly impacted Ethiopia's economy, driving innovation, productivity, job creation, and global connectivity. This research examined the impact of contemporary information and communication technologies on Ethiopian economic progress. The study examined eight variables, including mobile, internet, and fixed-line penetration rates, and five macroeconomic control variables. The results showed a positive and strong effect of ICT on economic growth in Ethiopia, with 1% increase in mobile, internet, and fixed line services penetration indexes resulting in an 8.03, 10.05, and 30.06% increase in real GDP. The Granger causality test showed that all ICT variables Granger caused economic growth, but economic growth Granger caused mobile penetration rate only. The study suggests that coordinated ICT infrastructure development, increased telecom service accessibility, and increased competition in the telecom market are crucial for Ethiopia's economic growth. Ethiopia is attempting to establish a digital economy through massive investment in ensuring ICT quality and accessibility. Thus, the research could enhance in understanding of the economic impact of ICT expansion for successful ICT policy interventions for future research.

Keywords: economic growth, cointegration and error correction, ICT expansion, granger causality, penetration

Procedia PDF Downloads 85
3596 The Green Propaganda: Paradoxes of Costa Rica as the Poster Child for Sustainable Tourism

Authors: Maria Jose Ramos Villagra

Abstract:

Since the boom of tourism in the late 80s and 90s, Costa Rica is considered as one of the leading countries for tourism. The size and geography of its territory, its low population density, and its image of being one of the most stable Latin American democracies make Costa Rica an attractive and safe target for foreign investors. Land ownership by foreign investors has increased as the natural resources in rural communities have been exhausted. When nature becomes an instrument to increase profit, it loses its communal value contributing to local communities losing their sovereignty and access to basic resources. The rural regions in proximity to the most tourist areas are often the most marginalized. The purpose of this research is to use the case of the rural community Sardinal and its struggle to protect its aquifer to investigate the economic and cultural consequences of the tourism boom in Costa Rican rural communities. The process of reclaiming the access to and the preservation of the aquifer enabled individuals to redefine their political views and their political power. The case of Sardinal broke the stereotypes about rural individuals and their ability to politically educate themselves and organize. Sardinal´s conflict brought to light the necessity of questioning the role of modern tourism as part of Costa Rica’s national identity, and as a tool for development

Keywords: Costa Rica, tourism, rural development, economy, ecotourism, environment, water, Sardinal

Procedia PDF Downloads 476
3595 ACOPIN: An ACO Algorithm with TSP Approach for Clustering Proteins in Protein Interaction Networks

Authors: Jamaludin Sallim, Rozlina Mohamed, Roslina Abdul Hamid

Abstract:

In this paper, we proposed an Ant Colony Optimization (ACO) algorithm together with Traveling Salesman Problem (TSP) approach to investigate the clustering problem in Protein Interaction Networks (PIN). We named this combination as ACOPIN. The purpose of this work is two-fold. First, to test the efficacy of ACO in clustering PIN and second, to propose the simple generalization of the ACO algorithm that might allow its application in clustering proteins in PIN. We split this paper to three main sections. First, we describe the PIN and clustering proteins in PIN. Second, we discuss the steps involved in each phase of ACO algorithm. Finally, we present some results of the investigation with the clustering patterns.

Keywords: ant colony optimization algorithm, searching algorithm, protein functional module, protein interaction network

Procedia PDF Downloads 618
3594 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 95
3593 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star

Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu

Abstract:

The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).

Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership

Procedia PDF Downloads 248
3592 Canadian Business Leaders’ Phenomenological Online Education Expansion

Authors: Amna Khaliq

Abstract:

This research project centers on Canadian business leaders’ phenomenological online education expansion by navigating the challenges faced by strategic leaders concerning the expansion of online education in the Canadian higher education sector from a business perspective. The study identifies the problems and opportunities of faculty members’ transition from traditional face-to-face to online instruction, particularly in the context of technology-enhanced learning (TEL), and their influence on the growth strategies of Canadian educational institutions. It explores strategic leaders’ approaches and the impact of emerging technologies to assist with developing and executing business strategies to expand online education in Canada. As online education has gained prominence in the country, this research addresses a relevant business problem for educational institutions. The research employs a phenomenological approach in the qualitative research design to conduct this investigation. The study interviews eighteen faculty members engaged in online education in Canada. The interview data is analyzed to answer the three research questions for strategic leaders to expand online education with higher education institutions in Canada. The recommendations include 1) data privacy, infrastructure, security, and technology, 2) support and training for student engagement, 3) accessibility and inclusion, and 4) collaboration among institutions associated with expanding online education.

Keywords: strategic leadership, Canada, education, technology

Procedia PDF Downloads 68
3591 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 129
3590 A Long Tail Study of eWOM Communities

Authors: M. Olmedilla, M. R. Martinez-Torres, S. L. Toral

Abstract:

Electronic Word-Of-Mouth (eWOM) communities represent today an important source of information in which more and more customers base their purchasing decisions. They include thousands of reviews concerning very different products and services posted by many individuals geographically distributed all over the world. Due to their massive audience, eWOM communities can help users to find the product they are looking for even if they are less popular or rare. This is known as the long tail effect, which leads to a larger number of lower-selling niche products. This paper analyzes the long tail effect in a well-known eWOM community and defines a tool for finding niche products unavailable through conventional channels.

Keywords: eWOM, online user reviews, long tail theory, product categorization, social network analysis

Procedia PDF Downloads 427
3589 Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process

Authors: Kamalesh Kumar Singh

Abstract:

Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters.

Keywords: printed circuit boards, delamination, leaching, solvent extraction, recovery

Procedia PDF Downloads 62
3588 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 23
3587 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN

Procedia PDF Downloads 530
3586 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 299
3585 Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree

Authors: Joe Modise, Bamidel Joseph Okoli, Nas Molefe, Imelda Ledwaba

Abstract:

The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner.

Keywords: Acacia decurrens, antioxidant, DPPH, ABTS, hyperaccumulation, Menstruum, ICP-OES, GC-MS, UV/visible

Procedia PDF Downloads 331
3584 Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles

Authors: Despina Vamvuka, Despina Pentari

Abstract:

Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively.

Keywords: gasification, biomass, steam, carbon dioxide

Procedia PDF Downloads 102
3583 Phone Number Spoofing Attack in VoLTE 4G

Authors: Joo-Hyung Oh

Abstract:

The number of service users of 4G VoLTE (voice over LTE) using LTE data networks is rapidly growing. VoLTE based on all-IP network enables clearer and higher-quality voice calls than 3G. It does, however, pose new challenges; a voice call through IP networks makes it vulnerable to security threats such as wiretapping and forged or falsified information. And in particular, stealing other users’ phone numbers and forging or falsifying call request messages from outgoing voice calls within VoLTE result in considerable losses that include user billing and voice phishing to acquaintances. This paper focuses on the threats of caller phone number spoofing in the VoLTE and countermeasure technology as safety measures for mobile communication networks.

Keywords: LTE, 4G, VoLTE, phone number spoofing

Procedia PDF Downloads 436
3582 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter

Procedia PDF Downloads 398
3581 Detection of Cytotoxicity of Green Synthesized Silver, Gold, and Silver/Gold Bimetallic on Baby Hamster Kidney-21 Cells Using MTT Assay

Authors: Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali Khan

Abstract:

In cancer therapy, nanoparticles (NPs) shall be applied possibly by inoculation in the veins of humans. This action will connect them with white (WBCs) and red blood cells (RBCs) in the bloodstream before they reach their main targeted cancer cells. However, possible effects of silver, gold, and silver/gold bimetallic NPs (Ag, Au, and Ag/Au BNPs) on baby hamster kidney-21 (BHK-21) cells were studied by MTT assay. Here, Ag, Au, and their Ag/Au BNPs (bimetallic nanoparticles) were synthesized by using Hippeastrum hybridum (HH) extract. These NPs were characterized by UV-visible spectroscopy, FT-IR, XRD, and EDX, and SEM analysis. XRD analysis conferring the crystal structure with an average size of 13.3, 10.72, and 8.34nm of Ag, Au, and Ag/Au BNPs, respectively. SEM showed that Ag, Au, and Ag/Au BNPs had irregular morphologies, with nano measures calculated sizes of 40, 30, and 20 nm respectively. EDX spectrometers confirmed the presence of elemental Ag signal of the AgNPs with 22.75%, Au signal of the AuNPs with 48.08%, Ag signal with 12%, and Au signal with 38.26% of the Ag/Au BNPs. The BHK-21cells were incubated in the existence of doxorubicin, plant extract, Ag, Au, and Ag/Au BNPs. The cytotoxic effects could be observed in a dose-dependent mode; doxorubicin and Ag/Au BNPs were more toxic than plant extract, Ag, and Au NPs. It is demonstrated that NPs interact with BHK-21cells and significantly reduce cell viability in a concentration-dependent manner. However, to reduce the potential threats of NPs further studies are recommended.

Keywords: hippeastrum hybridum, nanoparticle, BHK-21cells

Procedia PDF Downloads 138
3580 Development of a Mathematical Model to Characterize the Oil Production in the Federal Republic of Nigeria Environment

Authors: Paul C. Njoku, Archana Swati Njoku

Abstract:

The study deals with the development of a mathematical model to characterize the oil production in Nigeria. This is calculated by initiating the dynamics of oil production in million barrels revenue plan cost of oil production in million nairas and unit cost of production from 1974-1982 in the contest of the federal Republic of Nigeria. This country export oil to other countries as well as importing specialized crude. The transport network from origin/destination tij to pairs is taking into account simulation runs, optimization have been considered in this study.

Keywords: mathematical oil model development dynamics, Nigeria, characterization barrels, dynamics of oil production

Procedia PDF Downloads 390
3579 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices

Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett

Abstract:

Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.

Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor

Procedia PDF Downloads 224
3578 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
3577 A Corpus-Based Analysis of Japanese Learners' English Modal Auxiliary Verb Usage in Writing

Authors: S. Nakayama

Abstract:

For non-native English speakers, using English modal auxiliary verbs appropriately can be among the most challenging tasks. This research sought to identify differences in modal verb usage between Japanese non-native English speakers (JNNS) and native speakers (NS) from two different perspectives: frequency of use and distribution of verb phrase structures (VPS) where modal verbs occur. This study can contribute to the identification of JNNSs' interlanguage with regard to modal verbs; the main aim is to make a suggestion for the improvement of teaching materials as well as to help language teachers to be able to teach modal verbs in a way that is helpful for learners. To address the primary question in this study, usage of nine central modals (‘can’, ‘could’, ‘may’, ‘might’, ‘shall’, ‘should’, ‘will’, ‘would’, and ‘must’) by JNNS was compared with that by NSs in the International Corpus Network of Asian Learners of English (ICNALE). This corpus is one of the largest freely-available corpora focusing on Asian English learners’ language use. The ICNALE corpus consists of four modules: ‘Spoken Monologue’, ‘Spoken Dialogue’, ‘Written Essays’, and ‘Edited Essays’. Among these, this research adopted the ‘Written Essays’ module only, which is the set of 200-300 word essays and contains approximately 1.3 million words in total. Frequency analysis revealed gaps as well as similarities in frequency order. Specifically, both JNNSs and NSs used ‘can’ with the most frequency, followed by ‘should’ and ‘will’; however, usage of all the other modals except for ‘shall’ was not identical to each other. A log-likelihood test uncovered JNNSs’ overuse of ‘can’ and ‘must’ as well as their underuse of ‘will’ and ‘would’. VPS analysis revealed that JNNSs used modal verbs in a relatively narrow range of VPSs as compared to NSs. Results showed that JNNSs used most of the modals with bare infinitives or the passive voice only whereas NSs used the modals in a wide range of VPSs including the progressive construction and the perfect aspect, both of which were the structures where JNNSs rarely used the modals. Results of frequency analysis suggest that language teachers or teaching materials should explain other modality items so that learners can avoid relying heavily on certain modals and have a wide range of lexical items to reflect their feelings more accurately. Besides, the underused modals should be more stressed in the classroom because they are members of epistemic modals, which allow us to not only interject our views into propositions but also build a relationship with readers. As for VPSs, teaching materials should present more examples of the modals occurring in a wide range of VPSs to help learners to be able to express their opinions from a variety of viewpoints.

Keywords: corpus linguistics, Japanese learners of English, modal auxiliary verbs, International Corpus Network of Asian Learners of English

Procedia PDF Downloads 129
3576 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures

Authors: Moumita Sit, Chaitali Ray

Abstract:

The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.

Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress

Procedia PDF Downloads 153
3575 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 366
3574 Seismic Fragility Curves Methodologies for Bridges: A Review

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

As a part of the transportation network, bridges are one of the most vulnerable structures. In order to investigate the vulnerability and seismic evaluation of bridges performance, identifying of bridge associated with various state of damage is important. Fragility curves provide important data about damage states and performance of bridges against earthquakes. The development of vulnerability information in the form of fragility curves is a widely practiced approach when the information is to be developed accounting for a multitude of uncertain source involved. This paper presents the fragility curve methodologies for bridges and investigates the practice and applications relating to the seismic fragility assessment of bridges.

Keywords: fragility curve, bridge, uncertainty, NLTHA, IDA

Procedia PDF Downloads 287
3573 Effect of Cap and Trade Policies for Carbon Emission Reduction on Delhi Households

Authors: Vikram Singh

Abstract:

This paper aims to take into account carbon tax or cap-and-trade legislation to manage Delhi carbon emissions after a post-Kyoto treaty. This report estimated the influence of the carbon taxes or rebate/compensation cost at the household level. Here, the three possible scenarios will help to comprehend the difference between a straightforward compensation/rebate, and two clearly denoting progressive formula. The straightforward compensation is basically minimizing the regressive applications that will bears on cost. On the other hand, both the progressive formula will generate extra revenue, which will help for feasibility of more efficient, vehicles, appliances and buildings in the low-income household. For the hypothetical case of carbon price $40/tonne, low-income household for both urban and rural region could experience price burden up to 5% and 9% on their income as compared to 3% and 7% for high-income household respectively. The survey report also shown that carbon emission due low-income household are primarily by the substantive requirement like housing and transportation whereas almost 40% emission due to high-income household are by luxurious and non-essential items. The equal distribution of revenue cum incentives will not completely overcome high-income household’s investment in inessential items. However, it will merely help in investing their income in energy efficient and less carbon intensive items. Therefore, the rebate distribution on per capita basis instead on per households will benefit more especially large families at low-income group.

Keywords: household emission, carbon credit, carbon intensity, green house gas emission, carbon generation based insentives

Procedia PDF Downloads 442