Search results for: synthetic resin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1398

Search results for: synthetic resin

948 Mechanical Properties of Kenaf Fibre Reinforced Epoxy Composites

Authors: C. Tezara, H. Y. Lim, M. H. Yazdi, J. W. Lim, J. P. Siregar

Abstract:

Natural fibre has become an element in human lives. A lot of researchers have conducted research about natural fibre reinforced polymer. Malaysian government has spent a lot of money on the research funding for researchers and academician especially research on kenaf fibre due to exclusion of tobacco from AFTA (Asean Free Trade Area) list. This work is to investigate the mechanical properties of kenaf fiber reinforced epoxy composite where short kenaf fibre was applied and the mechanical properties of 5%, 10% and 15% wt. of kenaf fibre were added into the mixture of epoxy resin. Hand lay-up process was selected in the fabrication of the specimen for testing. The tensile, flexural and impact test were conducted following ASTM D3039, ASTM D790 and ASTM D256 accordingly. From the experiment result, the effect of different fiber loading of the specimen on its mechanical properties would be analyzed and compared in the result and discussion.

Keywords: Kenaf fibre, epoxy, composite, fibre

Procedia PDF Downloads 270
947 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 552
946 Fabrication and Evaluation of Particleboards from Oil Palm Fronds Blend with Empty Fruit Bunch Fibre

Authors: Ghazi Faisal Najmuldeen, Wahida Amat Fadzila

Abstract:

The aim of this study is to investigate physical and mechanical properties of experimental particleboards manufactured from mixing the oil palm fronds particles with empty fruit bunch fibers. Variables were two blending ratios (100:0 and 70:30), press temperature (160°C and 180°C) and press time (180 and 300 s). Experimental boards with a target density of 750 kg m-3 were manufactured from these two particles and fibers blended with urea formaldehyde resin and compressed into targeted thickness. The effect of these manufacturing conditions on bending strength, internal bonding, water absorption and thickness swelling were determined. From this research, it can be concluded that hybridization of fibers with fronds particles improved some properties of particleboard. Empty fruit bunch fibers and fronds particleboard showed better modulus of rupture and internal bonding than fronds particleboards.

Keywords: oil palm fronds, empty fruit bunch, particleboards, chemistry, environment

Procedia PDF Downloads 313
945 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses

Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos

Abstract:

Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.

Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid state electrolyte, semi-transparency, scale up

Procedia PDF Downloads 127
944 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials

Procedia PDF Downloads 215
943 Effect of Synthetic L-Lysine and DL-Methionine Amino Acids on Performance of Broiler Chickens

Authors: S. M. Ali, S. I. Mohamed

Abstract:

Reduction of feed cost for broiler production is at most importance in decreasing the cost of production. The objectives of this study were to evaluate the use of synthetic amino acids (L-lysine – DL-methionine) instead of super concentrate and groundnut cake versus meat powder as protein sources. A total of 180 male broiler chicks (Cobb – strain) at 15 day of age (DOA) were selected according to their average body weight (380 g) from a broiler chicks flock at Elbashair Farm. The chicks were randomly divided into six groups of 30 chicks. Each group was further sub divided into three replicates with 10 birds. Six experimental diets were formulated. The first diet contained groundnut cake and super concentrate as the control (GNC + C); in the second diet, meat powder and super concentrate (MP + C) were used. The third diet contained groundnut cake and amino acids (GNC + AA); the forth diet contained meat powder and amino acids (MP + AA). The fifth diet contained groundnut cake, meat powder and super concentrate (GNC + MP + C) and the sixth diet contained groundnut cake, meat powder and amino acids (GNC + MP + AA). The formulated rations were randomly assigned for the different sub groups in a completely randomized design of six treatments and three replicates. Weekly feed intake, body weight and mortality were recorded and body weight gain and feed conversion ratio were calculated. At the end of the experiment (49 DOA), nine birds from each treatment were slaughtered. Live body weight, carcass weight, head, shank, and some internal organs (gizzard, heart, liver, small intestine, and abdominal fat pad) weights were taken. For the overall experimental period the (GNC + C +MP) consumed significantly (P≤0.01) the highest cumulative feed while the (MP + AA) group consumed the lowest amount of feed. The (GNC + C) and the (GNC + AA) groups had the heaviest live body weight while (MP + AA) had the lowest live body weight. The overall FCR was significantly (P≤0.01) the best for (GNC + AA) group while the (MP + AA) reported the worst FCR. However, the (GNC + AA) had significantly (P≤0.01) the lowest AFP. The (GNC + MP + Con) group had the highest dressing % while the (MP + AA) group had the lowest dressing %. It is concluded that amino acids can be used instead of super concentrate in broiler feeding with perfect performance and less cost and that meat powder is not advisable to be used with amino acids.

Keywords: broiler chickens, DL-lysine, methionine, performance

Procedia PDF Downloads 257
942 Development and Analysis of Waste Human Hair Fiber Reinforced Composite

Authors: Tesfaye Worku

Abstract:

Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.

Keywords: composite, human hair fiber, matrix, unsaturated polyester

Procedia PDF Downloads 44
941 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 237
940 Microbial Inoculants to Increase the Biomass and Nutrient Uptake of Tithonia Cultivated as Hedgerow Plants to Control Erosion in Ultisols

Authors: Nurhajati Hakim, Kiki Amalia, A. Agustian, H. Hermansah, Y. Yulnafatmawita

Abstract:

Ultisols require greater amounts of fertilizer application compared to other soils and susceptible to erosion. Unfortunately, the price of synthetic fertilizers has increased over time during the years, making them unaffordable for most Indonesian farmers. While terrace technique to control erosion very costly.Over the last century, efforts to reduce reliance on synthetic agro-chemicals fertilizers and erosion control have recently focused on Tithonia diversifolia as a fertilizer alternative, and as hedgerow plant to control erosion. Generally known by its common name of tree marigold or Mexican sunflower, this plant has attracted considerable attention for its prolific production of green biomass, rich in nitrogen, phosphorous and potassium (NPK). In pot experiments has founded some microbial such as Mycorrhizal, Azotobacter, Azospirillum, phosphate solubilizing bacterial (PSB) and fungi (PSF) are expected to play an important role in biomass production and high nutrient uptake of this plant. This issue of importance was pursued further in the following investigation in field condition. The aim of this study was to determine the type of microbial combination suitable for Tithonia cultivation as hedgerow plants in Ultisols which have higher biomass production and nutrient content, and decline soil erosion. The field experiment was conducted with 6 treatments in a randomized block design (RBD) using 3 replications. The treatments were: Tithonia rhizosphere without microbial inoculated (A); Inokulanted by Mycorrhizal + Azotobacter + Azospirillium (B); Mycorrhizal + PSF (C); Mycorrhizal + PSB(D); Mycorrhizal + PSB + PSF(E);and without hedgerow Tithonia (F).The microbial substrates were inoculated into the Tithonia rhizosphere in the nursery. The young Tithonia plants were then planted as hedgerow on Ultisols in the experimental field for 8 months, and pruned once every 2 months. Soil erosion were collected every rainy time. The differences between treatments were statistically significant by HSD test at the 95% level of probability. The result showed that treatment C (mycorrhizal + PSB) was the most effective, and followed by treatment D (mycorrhizal + PSF) in producing higher Tithonia biomass about 8 t dry matter 2000 m-2 ha-1 y-1 and declined soil erosion 71-75%.

Keywords: hedgerow tithonia, microbial inoculants, organic fertilizer, soil erosion control

Procedia PDF Downloads 345
939 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites

Authors: Nisrin R. Abdelal, Steven L. Donaldson

Abstract:

Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.

Keywords: carbon, delamination, Kevlar, mode I, nylon, stitching

Procedia PDF Downloads 279
938 A FR Fire-Off with Polysilicic Acid for Pes/Co Blends

Authors: Raziye Atakan, Ebru Celebi, Gulay Ozcan, Neda Soydan, A. Sezai Sarac

Abstract:

In this study, a novel polymeric flame retardant chemical with phosphorous-nitrogen synergism was synthesized by polyvinyl alcohol (PVA), hydrophilic polyester resin (PR), phosphoric acid and dicyandiamide (DCDA). Polyester/Cotton (Pes/Co) blend fabrics were treated via pad-dry-cure process with this synthesized chemical. PVA (PR)-P-DCDA has shown that it is an effective flame retardant on the fabrics. In order to improve durable flame retardancy for cotton part of the blend, polysilicic acid and citric acid monohydrate auxiliaries were added in FR finishing bath at different concentrations. Flammability and characteristic properties of the sample were tested according to relevant ISO standard and procedures. To do so, ISO 6940 vertical flammability test, TGA, DTA, LOI and FTIR analysis have been performed. The obtained results showed that this new finishing formulation is a good char-forming agent for the PES/CO blends and polysilicic acid could be used for cellulosic blends with PVA (PR)-P-DCDA.

Keywords: flame retardancy, flammability, Pes/Co blends, polysilicic acid

Procedia PDF Downloads 396
937 Solutions for Food-Safe 3D Printing

Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov

Abstract:

Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this study

Keywords: food safety, 3D printing, filaments, microbial, temperature

Procedia PDF Downloads 129
936 Microfiber Release During Laundry Under Different Rinsing Parameters

Authors: Fulya Asena Uluç, Ehsan Tuzcuoğlu, Songül Bayraktar, Burak Koca, Alper Gürarslan

Abstract:

Microplastics are contaminants that are widely distributed in the environment with a detrimental ecological effect. Besides this, recent research has proved the existence of microplastics in human blood and organs. Microplastics in the environment can be divided into two main categories: primary and secondary microplastics. Primary microplastics are plastics that are released into the environment as microscopic particles. On the other hand, secondary microplastics are the smaller particles that are shed as a result of the consumption of synthetic materials in textile products as well as other products. Textiles are the main source of microplastic contamination in aquatic ecosystems. Laundry of synthetic textiles (34.8%) accounts for an average annual discharge of 3.2 million tons of primary microplastics into the environment. Recently, microfiber shedding from laundry research has gained traction. However, no comprehensive study was conducted from the standpoint of rinsing parameters during laundry to analyze microfiber shedding. The purpose of the present study is to quantify microfiber shedding from fabric under different rinsing conditions and determine the effective rinsing parameters on microfiber release in a laundry environment. In this regard, a parametric study is carried out to investigate the key factors affecting the microfiber release from a front-load washing machine. These parameters are the amount of water used during the rinsing step and the spinning speed at the end of the washing cycle. Minitab statistical program is used to create a design of the experiment (DOE) and analyze the experimental results. Tests are repeated twice and besides the controlled parameters, other washing parameters are kept constant in the washing algorithm. At the end of each cycle, released microfibers are collected via a custom-made filtration system and weighted with precision balance. The results showed that by increasing the water amount during the rinsing step, the amount of microplastic released from the washing machine increased drastically. Also, the parametric study revealed that increasing the spinning speed results in an increase in the microfiber release from textiles.

Keywords: front load, laundry, microfiber, microfiber release, microfiber shedding, microplastic, pollution, rinsing parameters, sustainability, washing parameters, washing machine

Procedia PDF Downloads 83
935 Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete

Authors: Mustafa Hasan Omar

Abstract:

The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively.

Keywords: epoxy resin, hydrocarbon solutions, mechanical properties, polymer concrete, ultrasonic pulse velocity

Procedia PDF Downloads 116
934 Composite Components Manufacturing in SAE Formula Student, a Case Study of AGH Racing

Authors: Hanna Faron, Wojciech Marcinkowski, Daniel Prusak, Władysław Hamiga

Abstract:

Interest in composite materials comes out of two basic premises: their supreme mechanical and strength properties,combined with a small specific weight. Origin and evolution of modern composite materials bonds with development of manufacturing of synthetic fibers, which have begun during Second World War. Main condition to achieve intended properties of composite materials is proper bonding of reinforcing layer with appropriate adhesive in manufacturing process. It is one of the fundamental quality evaluation criterion of fabrication processes.

Keywords: SAE, formula student, composite materials, carbon fiber, Aramid fiber, hot wire cutter

Procedia PDF Downloads 502
933 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets

Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu

Abstract:

Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.

Keywords: GEO SAR, radar, simulation, ship

Procedia PDF Downloads 163
932 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 433
931 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 48
930 Dry-Extrusion of Asian Carp, a Sustainable Source of Natural Methionine for Organic Poultry Production

Authors: I. Upadhyaya, K. Arsi, A. M. Donoghue, C. N. Coon, M. Schlumbohm, M. N. Riaz, M. B. Farnell, A. Upadhyay, A. J. Davis, D. J. Donoghue

Abstract:

Methionine, a sulfur containing amino acid, is essential for healthy poultry production. Synthetic methionine is commonly used as a supplement in conventional poultry. However, for organic poultry, a natural, cost effective source of methionine that can replace synthetic methionine is unavailable. Invasive Asian carp (AC) are a potential natural methionine source; however, there is no proven technology to utilize this fish methionine. Commercially available rendering is environmentally challenging due to the offensive smell produced during production. We explored extrusion technology as a potential cost effective alternative to fish rendering. We also determined the amino acid composition, digestible amino acids and total metabolizable energy (TMEn) for the extruded AC fish meal. Dry extrusion of AC was carried out by mixing the fish with soybean meal (SBM) in a 1:1 proportion to reduce high moisture in the fishmeal using an Insta Pro Jr. dry extruder followed by drying and grinding of the product. To determine the digestible amino acids and TMEn of the extruded product, a colony of cecectomized Bovans White Roosters was used. Adult roosters (48 weeks of age) were fasted for 30 h and tube fed 35 grams of 3 treatments: (1) extruded AC fish meal, (2) SBM and (3) corn. Excreta from each individual bird was collected for the next 48 h. An additional 10 unfed roosters served as endogenous controls. The gross energy and protein content of the feces from the treatments were determined to calculate the TMEn. Fecal samples and treatment feeds were analyzed for amino acid content and percent digestible amino acid. Results from the analysis suggested that addition of Asian carp increased the methionine content of SBM from 0.63 to 0.83%. Also, the digestibility of amino acid and the TMEn values were greater for the AC meal with SBM than SBM alone. The dry extruded AC meal analysis is indicative that the product can replace SBM alone and enhance natural methionine in a standard poultry ration. The results from feed formulation using different concentrations of the AC fish meal depict a potential diet which can supplement the required methionine content in organic poultry production.

Keywords: Asian carp, extrusion, natural methionine, organic poultry

Procedia PDF Downloads 206
929 Sublethal Effects of Entomopathogenic Nematodes and Fungus against the Red Palm Weevil, Rhynchophorus Ferrugineus (Olivier) (Curculionidae: Coleoptera)

Authors: M. Manzoor, J. N. Ahmad, R. M. Giblin Davis, N. Javed, M. S. Haider

Abstract:

The invasive Red Palm Weevil (RPW) (Rhynchophorus ferrugineus [Olivier] (Coleoptera: Curculionidae) is one of the most destructive palm pests in the world. Synthetic pesticides are environmentally hazardous pest control strategies being used in the past with emerging need of eco-friendly biological approaches including microbial entomopathogens for RPW management. The sublethal effects of a single entomopathogenic fungus (EPF) Beauveria bassiana (WG-11) (Ascomycota: Hypocreales) and two entomopathogenic nematode (EPN) species Heterorhabditis bacteriophora (Poinar) and Steinernema carpocapsae (Weiser) (Nematoda: Rhabditida) were evaluated in various combinations against laboratory-reared 3rd, 5th and 8th instar larvae of RPW in laboratory assays. Individual and combined effects of both entomopathogens (EP) were observed after the pre-application of B. bassiana fungus at 1-2-week intervals. A number of parameters were measured after the application of sub-lethal doses of EPF such as diet consumption, development, frass production, mortality, and weight gain. Combined treatments were tested for additive and synergistic effects. Synergism was more frequently observed in B. bassiana and S. carpocapsae combined treatments than in B. bassiana and H. bacteriophora combinations. Early instar larvae of RPW were more susceptible than older instars. Synergistic effects were observed in the 3rd and 5th instars exposed to B. bassiana and S. carpocapsae at 0, 7 and 14-day intervals. Whereas, in 8th instar larvae, the synergistic effect was observed only in B. bassiana and S. carpocapsae treatments after 0 and 7 days intervals. EPN treatments decreased pupation, egg hatching and emergence of adults. Lethal effects of nematodes were also observed in all growth stages of R. ferrugineus. Reduced larval weight, increased larval, pre-pupal and pupal duration, reduced adult weight and life span were observed. Sub-lethal concentrations of both entomopathogens induced variations in the different developmental stages and reduced food consumption, frass production, growth, and weight gain. So, on the basis of results, it is concluded that synthetic pesticides should be replaced with environmentally friendly sustainable biopesticides.

Keywords: H. bacteriophora, S. carpocapsae, B. bassiana, mortality

Procedia PDF Downloads 151
928 Synthesis and Characterization of Thiourea-Formaldehyde Coated Fe3O4 (TUF@Fe3O4) and Its Application for Adsorption of Methylene Blue

Authors: Saad M. Alshehri, Tansir Ahamad

Abstract:

Thiourea-Formaldehyde Pre-Polymer (TUF) was prepared by the reaction thiourea and formaldehyde in basic medium and used as a coating materials for magnetite Fe3O4. The synthesized polymer coated microspheres (TUF@Fe3O4) was characterized using FTIR, TGA SEM and TEM. Its BET surface area was up to 1680 m2 g_1. The adsorption capacity of this ACF product was evaluated in its adsorption of Methylene Blue (MB) in water under different pH values and different temperature. We found that the adsorption process was well described both by the Langmuir and Freundlich isotherm model. The kinetic processes of MB adsorption onto TUF@Fe3O4 were described in order to provide a more clear interpretation of the adsorption rate and uptake mechanism. The overall kinetic data was acceptably explained by a pseudo second-order rate model. Evaluated ∆Go and ∆Ho specify the spontaneous and exothermic nature of the reaction. The adsorption takes place with a decrease in entropy (∆So is negative). The monolayer capacity for MB was up to 450 mg g_1 and was one of the highest among similar polymeric products. It was due to its large BET surface area.

Keywords: TGA, FTIR, magentite, thiourea formaldehyde resin, methylene blue, adsorption

Procedia PDF Downloads 325
927 Development of One-Pot Sequential Cyclizations and Photocatalyzed Decarboxylative Radical Cyclization: Application Towards Aspidospermatan Alkaloids

Authors: Guillaume Bélanger, Jean-Philippe Fontaine, Clémence Hauduc

Abstract:

There is an undeniable thirst from organic chemists and from the pharmaceutical industry to access complex alkaloids with short syntheses. While medicinal chemists are interested in the fascinating wide range of biological properties of alkaloids, synthetic chemists are rather interested in finding new routes to access these challenging natural products of often low availability from nature. To synthesize complex polycyclic cores of natural products, reaction cascades or sequences performed one-pot offer a neat advantage over classical methods for their rapid increase in molecular complexity in a single operation. In counterpart, reaction cascades need to be run on substrates bearing all the required functional groups necessary for the key cyclizations. Chemoselectivity is thus a major issue associated with such a strategy, in addition to diastereocontrol and regiocontrol for the overall transformation. In the pursuit of synthetic efficiency, our research group developed an innovative one-pot transformation of linear substrates into bi- and tricyclic adducts applied to the construction of Aspidospermatan-type alkaloids. The latter is a rich class of indole alkaloids bearing a unique bridged azatricyclic core. Despite many efforts toward the synthesis of members of this family, efficient and versatile synthetic routes are still coveted. Indeed, very short, non-racemic approaches are rather scarce: for example, in the cases of aspidospermidine and aspidospermine, syntheses are all fifteen steps and over. We envisaged a unified approach to access several members of the Aspidospermatan alkaloids family. The key sequence features a highly chemoselective formamide activation that triggers a Vilsmeier-Haack cyclization, followed by an azomethine ylide generation and intramolecular cycloaddition. Despite the high density and variety of functional groups on the substrates (electron-rich and electron-poor alkenes, nitrile, amide, ester, enol ether), the sequence generated three new carbon-carbon bonds and three rings in a single operation with good yield and high chemoselectivity. A detailed study of amide, nucleophile, and dipolarophile variations to finally get to the successful combination required for the key transformation will be presented. To complete the indoline fragment of the natural products, we developed an original approach. Indeed, all reported routes to Aspidospermatan alkaloids introduce the indoline or indole early in the synthesis. In our work, the indoline needs to be installed on the azatricyclic core after the key cyclization sequence. As a result, typical Fischer indolization is not suited since this reaction is known to fail on such substrates. We thus envisaged a unique photocatalyzed decarboxylative radical cyclization. The development of this reaction as well as the scope and limitations of the methodology, will also be presented. The original Vilsmeier-Haack and azomethine ylide cyclization sequence as well as the new photocatalyzed decarboxylative radical cyclization will undoubtedly open access to new routes toward polycyclic indole alkaloids and derivatives of pharmaceutical interest in general.

Keywords: Aspidospermatan alkaloids, azomethine ylide cycloaddition, decarboxylative radical cyclization, indole and indoline synthesis, one-pot sequential cyclizations, photocatalysis, Vilsmeier-Haack Cyclization

Procedia PDF Downloads 67
926 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites

Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il

Abstract:

Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.

Keywords: composite, flexural strength, matrix, sisal fibre

Procedia PDF Downloads 379
925 Effect of Dietary Fortification with Hibiscus Sabdariffa Calyces Meal on Egg Production and Egg Qualiy of Japanese Quail

Authors: Nomagugu Ndlovu, Kennedy H. Erlwanger, Eliton Chivandi

Abstract:

In order to enhance egg production and egg quality from layer poultry, producers use synthetic feed additives that enhance nutrient digestion and absorption in the gut. Synthetic feed additives have negative effects on consumer health hence the need to replace them with natural alternatives which are deemed safer for consumer health. Hibiscus sabdariffa calyces meal has hypolipidemic, probiotic and antioxidant activities; hence we investigated the effect of fortifying Japanese quail pullet diets with its calyces meal on egg production and egg quality. A standard Japanese quail layer diet was supplemented with H. sabdariffa calyces meal at 0%, 5% and 10% in diets 1, 2 and 3, respectively. Ninety, 5-week old Japanese quail hens were randomly allocated to and fed the layer diets for 56 days. Body mass, feed intake and egg mass, width, length, shell mass and thickness, yolk mass, height and diameter, albumen mass, length, width and height, and the proximate content and fatty acid profile of the egg albumen and yolk were determined. Supplemental fortification of the Japanese quail layer diet with H. sabdariffa calyces meal had no effect on growth performance and feed intake and conversion rate of the quail (P>0.05). The meal delayed the onset of laying and reduced (P < 0.0001) the number of eggs laid. It did not affect the external and internal egg quality parameters of Japanese quail (P > 0.05). Dietary fortification with H. sabdariffa calyces meal at 10% significantly increased the dry matter and reduced the fat content of the yolk and albumin of Japanese quail eggs (P < 0.05). Dietary H. sabdariffa calyces meal reduced the total omega 3 fatty acids in the yolk and significantly increased arachidonic acid (P = 0.0019), an omega 6 fatty acid. Inclusion of Hibiscus sabdariffa meal depressed egg production, suppressed omega 3 fatty acids and increased arachidonic acid thus, using it as a dietary supplement may result in losses to producers of Japanese quail eggs and may result in eggs whose fatty acid profile can compromise consumer health.

Keywords: quail, eggs, hibiscus sabdariffa, quality

Procedia PDF Downloads 53
924 Heat Setting of Polyester: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Heat setting is a commonly used technique in textile industry for treating synthetic fibers. In this study, we examined the effect of heat-setting process on the dyeing properties of polyester fabric. The heat setting conditions were varied, and these conditions would affect the dyeing results. The aim of this study is to illustrate the proper application method of heat setting process to polyester fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, heat setting, polyester, dyeing

Procedia PDF Downloads 236
923 New Method for the Synthesis of Different Pyrroloquinazolinoquinolin Alkaloids

Authors: Abdulkareem M. Hamid, Yaseen Elhebshi, Adam Daïch

Abstract:

Luotonins and its derivatives (Isoluotonins) are alkaloids from the aerial parts of Peganum nigellastrum Bunge that display three major skeleton types. Luotonins A, B, and E are pyrroloquinazolinoquinoline alkaloids. A few methods were known for the sysnthesis of Isoluotonin. All luotonins have shown promising cytotoxicities towards selected human cancer cell lines, especially against leukemia P-388 cells. Luotonin A is the most active one, with its activity stemming from topoisomerase I-dependent DNA-cleavage. Such intriguing biological activities and unique structures have led not only to the development of synthetic methods for the efficient synthesis of these compounds, but also to interest in structural modifications for improving the biological properties. Recent progress in the study of luotonins is covered.

Keywords: luotonin A, isoluotonin, pyrroloquiolines, alkaloids

Procedia PDF Downloads 407
922 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 49
921 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

Authors: Hireni R. Mankodi, D. J. Chudasama

Abstract:

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

Keywords: preform, non-crimp structure, laminates, bi-axial, multiaxial

Procedia PDF Downloads 483
920 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glass, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000 kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4 %. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: foamed concrete, fibres, durability, construction, geological engineering

Procedia PDF Downloads 436
919 Synthesis of DHA Rich Glycerides with Immobilized Lipases from Mucor miehei and Rhizopus oryzae

Authors: Satyendra P. Chaurasia, Aditi Sharma, Ajay K. Dalai

Abstract:

The esterification of Docosahexaenoic acid (DHA) with glycerol using immobilized Mucor mie-hei lipase (MML) and Rhizopus oryzae lipase (ROL) have been studied in the present paper to synthesize triglycerides (TG) rich in DHA. Both immobilized lipases (MML and ROL), and their support materials (immobead-150 and ion-exchange resin) were characterized and compared for surface properties with BET, for chemical functional groups with FT-IR, and for particle size distribution with particle size analyzer. The most suitable reaction conditions for synthesis of DHA rich TG in biphasic solvent system were found as 1:3 (wt/wt) glycerol to DHA ratio, 1:1 (wt/wt) buffer to DHA ratio, 1:1 (wt/wt) solvent to DHA ratio at 50 ºC temperature, and 600 rpm speed of agitation with 100 mg of immobilized lipases. Maximum 95.9 % esterification was obtained with immobilized MML in 14 days reaction with formation of 65.7 wt% DHA rich TG. Whereas, immobilized ROL has shown formation of only 23.8 wt% DHA rich TG with total 78.9 % esterification in 15 days. Additionally, repeated use of both immobilized lipases was con-ducted up to five cycles, indicated 50.4% and 41.2 % activity retention after fifth repeated use of immobilized MML and ROL, respectively.

Keywords: DHA, immobilized Mucor miehei lipase, Rhizopus oryzae lipase, esterification

Procedia PDF Downloads 342