Search results for: stress intensity factors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15396

Search results for: stress intensity factors

14946 Determination of Stress-Strain Curve of Duplex Stainless Steel Welds

Authors: Carolina Payares-Asprino

Abstract:

Dual-phase duplex stainless steel comprised of ferrite and austenite has shown high strength and corrosion resistance in many aggressive environments. Joining duplex alloys is challenging due to several embrittling precipitates and metallurgical changes during the welding process. The welding parameters strongly influence the quality of a weld joint. Therefore, it is necessary to quantify the weld bead’s integral properties as a function of welding parameters, especially when part of the weld bead is removed through a machining process due to aesthetic reasons or to couple the elements in the in-service structure. The present study uses the existing stress-strain model to predict the stress-strain curves for duplex stainless-steel welds under different welding conditions. Having mathematical expressions that predict the shape of the stress-strain curve is advantageous since it reduces the experimental work in obtaining the tensile test. In analysis and design, such stress-strain modeling simplifies the time of operations by being integrated into calculation tools, such as the finite element program codes. The elastic zone and the plastic zone of the curve can be defined by specific parameters, generating expressions that simulate the curve with great precision. There are empirical equations that describe the stress-strain curves. However, they only refer to the stress-strain curve for the stainless steel, but not when the material is under the welding process. It is a significant contribution to the applications of duplex stainless steel welds. For this study, a 3x3 matrix with a low, medium, and high level for each of the welding parameters were applied, giving a total of 27 weld bead plates. Two tensile specimens were manufactured from each welded plate, resulting in 54 tensile specimens for testing. When evaluating the four models used to predict the stress-strain curve in the welded specimens, only one model (Rasmussen) presented a good correlation in predicting the strain stress curve.

Keywords: duplex stainless steels, modeling, stress-stress curve, tensile test, welding

Procedia PDF Downloads 167
14945 Determination of Optimum Parameters for Thermal Stress Distribution in Composite Plate Containing a Triangular Cutout by Optimization Method

Authors: Mohammad Hossein Bayati Chaleshtari, Hadi Khoramishad

Abstract:

Minimizing the stress concentration around triangular cutout in infinite perforated plates subjected to a uniform heat flux induces thermal stresses is an important consideration in engineering design. Furthermore, understanding the effective parameters on stress concentration and proper selection of these parameters enables the designer to achieve a reliable design. In the analysis of thermal stress, the effective parameters on stress distribution around cutout include fiber angle, flux angle, bluntness and rotation angle of the cutout for orthotropic materials. This paper was tried to examine effect of these parameters on thermal stress analysis of infinite perforated plates with central triangular cutout. In order to achieve the least amount of thermal stress around a triangular cutout using a novel swarm intelligence optimization technique called dragonfly optimizer that inspired by the life method and hunting behavior of dragonfly in nature. In this study, using the two-dimensional thermoelastic theory and based on the Likhnitskiiʼ complex variable technique, the stress analysis of orthotropic infinite plate with a circular cutout under a uniform heat flux was developed to the plate containing a quasi-triangular cutout in thermal steady state condition. To achieve this goal, a conformal mapping function was used to map an infinite plate containing a quasi- triangular cutout into the outside of a unit circle. The plate is under uniform heat flux at infinity and Neumann boundary conditions and thermal-insulated condition at the edge of the cutout were considered.

Keywords: infinite perforated plate, complex variable method, thermal stress, optimization method

Procedia PDF Downloads 147
14944 Response of Pavement under Temperature and Vehicle Coupled Loading

Authors: Yang Zhong, Mei-Jie Xu

Abstract:

To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out.

Keywords: asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress

Procedia PDF Downloads 502
14943 Discussion on Microstructural Changes Caused by Deposition Temperature of LZO Doped Mg Piezoelectric Films

Authors: Cheng-Ying Li, Sheng-Yuan Chu

Abstract:

This article deposited LZO-doped Mg piezoelectric thin films via RF sputtering and observed microstructure and electrical characteristics by varying the deposition temperature. The XRD analysis results indicate that LZO-doped Mg exhibits excellent (002) orientation, and there is no presence of ZnO(100), Influenced by the temperature's effect on the lattice constant, the (002) peak intensity increases with rising temperature. Finally, we conducted deformation intensity analysis on the films, revealing an over fourfold increase in deformation at a processing temperature of 500°C.

Keywords: RF sputtering, piezoelectricity, ZnO, Mg

Procedia PDF Downloads 41
14942 Psychological Stress and Accelerated Aging in SCI Patients - A Longitudinal Pilot Feasibility Study

Authors: Simona Capossela, Ramona Schaniel, Singer Franziska, Aquino Fournier Catharine, Daniel Stekhoven, Jivko Stoyanov

Abstract:

A spinal cord injury (SCI) is a traumatic life event that often results in ageing associated health conditions such as muscle mass decline, adipose tissue increase, decline in immune function, frailty, systemic chronic inflammation, and psychological distress and depression. Psychological, oxidative, and metabolic stressors may facilitate accelerated ageing in the SCI population with reduced life expectancy. Research designs using biomarkers of aging and stress are needed to elucidate the role of psychological distress in accelerated aging. The aim of this project is a feasibility pilot study to observe changes in stress biomarkers and correlate them with aging markers in SCI patients during their first rehabilitation (longitudinal cohort study). Biological samples were collected in the SwiSCI (Swiss Spinal Cord Injury Cohort Study) Biobank in Nottwil at 4 weeks±12 days after the injury (T1) and at the end of the first rehabilitation (discharge, T4). The "distress thermometer" is used as a selfassessment tool for psychological distress. Stress biomarkers, as cortisol and protein carbonyl content (PCC), and markers of cellular aging, such as telomere lengths, will be measured. 2 Preliminary results showed that SCI patients (N= 129) are still generally distressed at end of rehabilitation, however we found a statistically significant (p< 0.001) median decrease in distress from 6 (T1) to 5 (T4) during the rehabilitation. In addition, an explorative transcriptomics will be conducted on N=50 SCI patients to compare groups of persons with SCI who have different trajectories of selfreported distress at the beginning and end of the first rehabilitation after the trauma. We identified 4 groups: very high chronic stress (stress thermometer values above 7 at T1 and T4; n=14); transient stress (high to low; n=14), low stress (values below 5 at T1 and T4; n=14), increasing stress (low to high; n=8). The study will attempt to identify and address issues that may occur in relation to the design and conceptualization of future study on stress and aging in the SCI population.

Keywords: stress, aging, spinal cord injury, biomarkers

Procedia PDF Downloads 105
14941 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content

Authors: S. Asreazad

Abstract:

This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.

Keywords: unsaturated soils, silty sand, clayey sand, triaxial test

Procedia PDF Downloads 331
14940 Geographical Parthenogenesis in Plants

Authors: Elvira Hörandl

Abstract:

The term “Geographical parthenogenesis” describes the phenomenon that asexual organisms usually occupy larger and more northern distribution areas than their sexual relatives and tend to colonize previously glaciated areas. Several case studies in flowering plants confirm the geographical pattern, but the causal factors behind the phenomenon are still unclear. Previous authors regarded predominant polyploidy in asexual (apomictic) plants as the main factor. However, the geographical pattern is not the rule for sexual polyploids. Recent research confirmed a previous hypothesis of the author that a combination of factors is acting: Although uniparental reproduction provides better colonization abilities, it is most efficient in combination with polyploidy. I will present results on case studies in the genus Ranunculus of both autopolyploid and allopolyploid species and species complexes reproducing via facultative apomixis. Polyploidy seems to contribute mainly to a better tolerance of colder climates and temperate extremes, whereby epigenetic flexibility, changes in gene expression, and phenotypic plasticity play an important role in occupying ecological niches under harsh conditions. Phylogenomic studies entangle complex hybrid origins of asexual taxa, which increases intragenomic heterozygosity of asexual plants. Interestingly, our results suggest an association of sexuality with abiotic stresses, specifically with light stress, which might explain that still, most plants in high altitudes and in southern areas retain sexual reproduction despite other climatic conditions that would favor apomictic plants. We conclude that geographical parthenogenesis results from the complex interplay of the genomic constitution, mode of reproduction and environmental factors.

Keywords: apomixis, polyploidy, hybridization, abiotic stress, epigenetics, phylogenomics

Procedia PDF Downloads 74
14939 A Reading Light That Can Adjust Indoor Light Intensity According to the Activity and Person for Improve Indoor Visual Comfort of Occupants and Tested using Post-occupancy Evaluation Techniques for Sri Lankan Population

Authors: R.T.P. De Silva, T. K. Wijayasiriwardhane, B. Jayawardena

Abstract:

Most people nowadays spend their time indoor environment. Because of that, a quality indoor environment needs for them. This study was conducted to identify how to improve indoor visual comfort using a personalized light system. Light intensity, light color, glare, and contrast are the main facts that affect visual comfort. The light intensity which needs to perform a task is changed according to the task. Using necessary light intensity and we can improve the visual comfort of occupants. The hue can affect the emotions of occupants. The preferred light colors and intensity change according to the occupant's age and gender. The research was conducted to identify is there any relationship between personalization and visual comfort. To validate this designed an Internet of Things-based reading light. This light can work according to the standard light levels and personalized light levels. It also can measure the current light intensity of the environment and maintain continuous light levels according to the task. The test was conducted by using 25 undergraduates, and 5school students, and 5 adults. The feedbacks are gathered using Post-occupancy evaluation (POE) techniques. Feedbacks are gathered in three steps, It was done without any light control, with standard light level, and with personalized light level Users had to spend 10 minutes under each condition. After finishing each step, collected their feedbacks. According to the result gathered, 94% of participants rated a personalized light system as comfort for them. The feedbacks show stay under continuous light level help to keep their concentrate. Future research can be conducted on how the color of indoor light can affect for indoor visual comfort of occupants using a personalized light system. Further proposed IoT based can improve to change the light colors according to the user's preference.

Keywords: indoor environment quality, internet of things based light system, post occupancy evaluation, visual comfort

Procedia PDF Downloads 154
14938 Proposed Organizational Development Interventions in Managing Occupational Stressors for Business Schools in Batangas City

Authors: Marlon P. Perez

Abstract:

The study intended to determine the level of occupational stress that was experienced by faculty members of private and public business schools in Batangas City with the end in view of proposing organizational development interventions in managing occupational stressors. Stressors such as factors intrinsic to the job, role in the organization, relationships at work, career development and organizational structure and climate were used as determinants of occupational stress level. Descriptive method of research was used as its research design. There were only 64 full-time faculty members coming from private and public business schools in Batangas City – University of Batangas, Lyceum of the Philippines University-Batangas, Golden Gate Colleges, Batangas State University and Colegio ng Lungsod ng Batangas. Survey questionnaire was used as data gathering instrument. It was found out that all occupational stressors were assessed stressful when grouped according to its classification of tertiary schools while response of subject respondents differs on their assessment of occupational stressors. Age variable has become significantly related to respondents’ assessments on factors intrinsic to the job and career development; however, it was not significantly related to role in the organization, relationships at work and organizational structure and climate. On the other hand, gender, marital status, highest educational attainment, employment status, length of service, area of specialization and classification of tertiary school were revealed to be not significantly related to all occupational stressors. Various organizational development interventions have been proposed to manage the occupational stressors that are experienced by business faculty members in the institution.

Keywords: occupational stress, business school, organizational development, intervention, stressors, faculty members, assessment, manage

Procedia PDF Downloads 431
14937 Regionalization of IDF Curves, by Interpolating Intensity and Adjustment Parameters - Application to Boyacá, Colombia

Authors: Pedro Mauricio Acosta, Carlos Andrés Caro

Abstract:

This research presents the regionalization of IDF curves for the department of Boyacá, Colombia, which comprises 16 towns, including the provincial capital, Tunja. For regionalization adjustment parameters (U and alpha) of the IDF curves stations referred to in the studied area were used. Similar regionalization is used by the interpolation of intensities. In the case of regionalization by parameters found by the construction of the curves intensity, duration and frequency estimation methods using ordinary moments and maximum likelihood. Regionalization and interpolation of data were performed with the assistance of Arcgis software. Within the development of the project the best choice to provide a level of reliability such as to determine which of the options and ways to regionalize is best sought. The resulting isolines maps were made in the case of regionalization intensities, each map is associated with a different return period and duration in order to build IDF curves in the studied area. In the case of the regionalization maps parameters associated with each parameter were performed last.

Keywords: intensity duration, frequency curves, regionalization, hydrology

Procedia PDF Downloads 325
14936 Beneficial Effects of Curcumin against Stress Oxidative and Mitochondrial Dysfunction Induced by Trinitrobenzene Sulphonic Acid in Colon

Authors: Souad Mouzaoui, Bahia Djerdjouri

Abstract:

Oxidative stress is one of the main factors involved in the onset and chronicity of inflammatory bowel disease (IBD). In this study, we investigated the beneficial effects of a potent natural antioxidant, curcumin (Cur) on colitis and mitochondrial dysfunction in trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Rectal instillation of the chemical irritant TNBS (30 mg kg-1) induced the disruption of distal colonic architecture and a massive inflammatory cells influx to the mucosa and submucosa layers. Under these conditions, daily administration of Cur (25 mg kg-1) efficiently decreased colitis scores in the inflamed distal colon by reducing leukocyte infiltrate as attested by reduced myeloperoxidase (MPO) activity. Moreover, the levels of nitrite, an end product of inducible NO synthase activity (iNOS) and malonyl dialdehyde (MDA), a marker of lipid peroxidation increased in a time depending manner in response to TNBS challenge. Conversely, the markers of the antioxidant pool, reduced glutathione (GSH) and catalase activity (CAT) were drastically reduced. Cur attenuated oxidative stress markers and partially restored CAT and GSH levels. Moreover, our results expanded the effect of Cur on TNBS-induced colonic mitochondrial dysfunction. In fact, TNBS induced mitochondrial swelling and lipids peroxidation. These events reflected in the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. TNBS inhibited also mitochondrial respiratory activity, caused overproduction of mitochondrial superoxide anion (O2-.) and reduced level of mitochondrial GSH. Nevertheless, Cur reduced the extent of mitochondrial oxidative stress induced by TNBS and restored colonic mitochondrial function. In conclusion, our results showed the critical role of oxidative stress in TNBS-induced colitis. They highlight the role of colonic mitochondrial dysfunction induced by TNBS, as a potential source of oxidative damages. Due to its potent antioxidant properties, Cur opens a promising therapeutic approach against oxidative inflammation in IBD.

Keywords: colitis, curcumin, mitochondria, oxidative stress, TNBS

Procedia PDF Downloads 253
14935 Factors Affecting the Mental and Physical Health of Nurses during the Outbreak of COVID-19: A Case Study of a Hospital in Mashhad

Authors: Ghorbanali Mohammadi

Abstract:

Background: Due to the widespread outbreak of the COVID-19 virus, a large number of people become infected with the disease every day and go to hospitals. The acute condition of this disease has caused the death of many people. Since all the stages of treatment for these people happen in the hospitals, nurses are at the forefront of the fight against this virus. This causes nurses to suffer from physical and mental health problems. Methods: Physical and mental problems in nurses were assessed using the Depression, Anxiety and Stress Scale (DASS-42) of Lovibond (1995) and the Nordic Questionnaire. Results: 90 nurses from emergency, intensive care, and coronary care units were examined, and a total of 180 questionnaires were collected and evaluated. It was found that 37.78%, 47.78%, and 21.11% of nurses have symptoms of depression, anxiety, and stress, respectively. 40% of the nurses had physical problems. In total, 65.17% of them were involved in one or more mental or physical illnesses. Conclusions: Of the three units surveyed, the nurses in intensive care, emergency room, and coronary care units worked more than ten hours a day. Examining the interaction of physical and mental health problems indicated that physical problems can aggravate mental problems.

Keywords: depression anxiety and stress scale of Lovibond, nordic questionnaire, mental health of nurses, physical health problems in nurses

Procedia PDF Downloads 122
14934 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker

Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro

Abstract:

Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.

Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor

Procedia PDF Downloads 256
14933 Effects of Varied Packages of Plyometric Traning on Leg Explosive Power and VO2 Max Among College Men Students

Authors: Nisithkumar Datta, Rakesh Bharti

Abstract:

The purpose of the study was to find out the effects of varied packages of plyometric training on leg explosive power and VO2 max among college men students. Sixty male students were selected and divided into four equal groups. Group I underwent low-intensity plyometric training, Group II underwent medium intensity plyometric training and Group III underwent high-intensity plyometric training for three days per week for twelve weeks. Group IV acted as control group. The variables namely leg explosive power and VO2 max were selected as dependent variables. The analysis of covariance was used to analyze the significant difference. The 0.05 level of confidence was fixed as the level of significance to test the ‘F’ ratio obtained by the analysis of covariance. The result of the study indicates due to varied packages of plyometric training, the leg explosive power and VO2 max has been improved significantly.

Keywords: leg explosive power, plyometric exercise, VO2 max, men students

Procedia PDF Downloads 377
14932 Compared Psychophysiological Responses under Stress in Patients of Chronic Fatigue Syndrome and Depressive Disorder

Authors: Fu-Chien Hung, Chi‐Wen Liang

Abstract:

Background: People who suffer from chronic fatigue syndrome (CFS) frequently complain about continuous tiredness, weakness or lack of strength, but without apparent organic etiology. The prevalence rate of the CFS is nearly from 3% to 20%, yet more than 80% go undiagnosed or misdiagnosed as depression. The biopsychosocial model has suggested the associations among the CFS, depressive syndrome, and stress. This study aimed to investigate the difference between individuals with the CFS and with the depressive syndrome on psychophysiological responses under stress. Method: There were 23 participants in the CFS group, 14 participants in the depression group, and 23 participants in the healthy control group. All of the participants first completed the measures of demographic data, CFS-related symptoms, daily life functioning, and depressive symptoms. The participants were then asked to perform a stressful cognitive task. The participants’ psychophysiological responses including the HR, BVP and SC were measured during the task. These indexes were used to assess the reactivity and recovery rates of the automatic nervous system. Results: The stress reactivity of the CFS and depression groups was not different from that of the healthy control group. However, the stress recovery rate of the CFS group was worse than that of the healthy control group. Conclusion: The results from this study suggest that the CFS is a syndrome which can be independent from the depressive syndrome, although the depressive syndrome may include fatigue syndrome.

Keywords: chronic fatigue syndrome, depression, stress response, misdiagnosis

Procedia PDF Downloads 457
14931 Biophysical Modeling of Anisotropic Brain Tumor Growth

Authors: Mutaz Dwairy

Abstract:

Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.

Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment

Procedia PDF Downloads 46
14930 3D Estimation of Synaptic Vesicle Distributions in Serial Section Transmission Electron Microscopy

Authors: Mahdieh Khanmohammadi, Sune Darkner, Nicoletta Nava, Jens Randel Nyengaard, Jon Sporring

Abstract:

We study the effect of stress on nervous system and we use two experimental groups of rats: sham rats and rats subjected to acute foot-shock stress. We investigate the synaptic vesicles density as a function of distance to the active zone in serial section transmission electron microscope images in 2 and 3 dimensions. By estimating the density in 2D and 3D we compare two groups of rats.

Keywords: stress, 3-dimensional synaptic vesicle density, image registration, bioinformatics

Procedia PDF Downloads 278
14929 Adjustment of Parents of Children with Autism: A Multivariate Model

Authors: Ayelet Siman-Tov, Shlomo Kaniel

Abstract:

Objectives: The research validates a multivariate model that predicts parental adjustment to coping successfully with an autistic child. The model comprises four elements: parental stress, parental resources, parental adjustment and the child's autism symptoms. Background and aims: The purpose of the current study is the construction and validation of a model for the adjustment of parents and a child with autism. The suggested model is based on theoretical views on stress and links personal resources, stress, perception, parental mental health and quality of marriage and child adjustment with autism. The family stress approach focuses on the family as a system made up of a dynamic interaction between its members, who constitute interdependent parts of the system, and thus, a change in one family member brings about changes in the processes of the entire family system. From this perspective, a rise of new demands in the family and stress in the role of one family member affects the family system as a whole. Materials and methods: 176 parents of children aged between 6 to 16 diagnosed with ASD answered several questionnaires measuring parental stress, personal resources (sense of coherence, locus of control, social support), adjustment (mental health and marriage quality) and the child's autism symptoms. Results: Path analysis showed that a sense of coherence, internal locus of control, social support and quality of marriage increase the ability to cope with the stress of parenting an autistic child. Directions for further research are suggested.

Keywords: stress, adjustment, resources, Autism, parents, coherence

Procedia PDF Downloads 140
14928 Motivational Qualities of and Flow State Responses to Participant-Selected Music and Researcher-Selected Music

Authors: Nurul A. Hamzah, Tony Morris, Dan Van Der Westhuizen

Abstract:

Music listening can potentially promote the achievement of flow state during exercise. Selecting music for exercise should consider the motivational factors-internal factors (music tempo and musicality) and external factors (cultural impact and association). This study was a cross-over study which was designed to examine the motivational qualities of music (participant-selected music and researcher-selected music) and flow state responses during exercise accompanying with music. 17 healthy participants (M=30.2, SD=6.3 years old) were among low physical activity individuals. Participants completed two separate sessions of 30 minutes of moderate intensity exercise (40-60% of Heart Rate Reserve) while listening to music. Half the participants at random were assigned to exercise with participant-selected music first, and half were assigned to exercise with researcher-selected music first. Parameters including flow state responses (Flow State Scale-2) and motivational music rating (Brunel Music Rating Inventory-2) were administered immediately after the exercise. Results from this study showed that there were no significant differences for both flow state t(32)=0.00, p>0.05 and motivational music rating t(32)= .393, p>0.05 between exercise with participant-selected music and exercise with researcher-selected music. Listening to music either participant or researcher selected music could promote flow experience during exercise when music is perceived as motivational. Music tempo and music preference are factors that could influence individuals to enjoy exercise and improve the exercise performance.

Keywords: motivational music, flow state, researcher-selected music, participant-selected music

Procedia PDF Downloads 384
14927 Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics

Authors: Vivian A. Panes, Raymond John S. Rebong, Miel Q. Diaz

Abstract:

Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders.

Keywords: stress response, genes, Moringa oleifera, transcriptomics

Procedia PDF Downloads 147
14926 Simulation and Fabrication of Plasmonic Lens for Bacteria Detection

Authors: Sangwoo Oh, Jaewoo Kim, Dongmin Seo, Jaewon Park, Yongha Hwang, Sungkyu Seo

Abstract:

Plasmonics has been regarded one of the most powerful bio-sensing modalities to evaluate bio-molecular interactions in real-time. However, most of the plasmonic sensing methods are based on labeling metallic nanoparticles, e.g. gold or silver, as optical modulation markers, which are non-recyclable and expensive. This plasmonic modulation can be usually achieved through various nano structures, e.g., nano-hole arrays. Among those structures, plasmonic lens has been regarded as a unique plasmonic structure due to its light focusing characteristics. In this study, we introduce a custom designed plasmonic lens array for bio-sensing, which was simulated by finite-difference-time-domain (FDTD) approach and fabricated by top-down approach. In our work, we performed the FDTD simulations of various plasmonic lens designs for bacteria sensor, i.e., Samonella and Hominis. We optimized the design parameters, i.e., radius, shape, and material, of the plasmonic lens. The simulation results showed the change in the peak intensity value with the introduction of each bacteria and antigen i.e., peak intensity 1.8711 a.u. with the introduction of antibody layer of thickness of 15nm. For Salmonella, the peak intensity changed from 1.8711 a.u. to 2.3654 a.u. and for Hominis, the peak intensity changed from 1.8711 a.u. to 3.2355 a.u. This significant shift in the intensity due to the interaction between bacteria and antigen showed a promising sensing capability of the plasmonic lens. With the batch processing and bulk production of this nano scale design, the cost of biological sensing can be significantly reduced, holding great promise in the fields of clinical diagnostics and bio-defense.

Keywords: plasmonic lens, FDTD, fabrication, bacteria sensor, salmonella, hominis

Procedia PDF Downloads 270
14925 Grain Growth in Nanocrystalline and Ultra-Fine Grained Materials

Authors: Haiming Wen

Abstract:

Grain growth is an important and consequential phenomenon that generally occurs in the presence of thermal and/or stress/strain fields. Thermally activated grain growth has been extensively studied and similarly, there are numerous experimental and theoretical studies published describing stress-induced grain growth in single-phase materials. However, studies on grain growth during the simultaneous presence of an elevated temperature and an external stress are very limited, and moreover, grain growth phenomena in materials containing second-phase particles and solute segregation at GBs have received limited attention. This lecture reports on a study of grain growth in the presence of second-phase particles and solute/impurity segregation at grain boundaries (GBs) during high-temperature deformation of an ultra-fine grained (UFG) Al alloy synthesized via consolidation of mechanically milled powders. The mechanisms underlying the grain growth were identified as GB migration and grain rotation, which were accompanied by dynamic recovery and geometric dynamic recrystallization, while discontinuous dynamic recrystallization was not operative. A theoretical framework that incorporates the influence of second-phase particles and solute/impurity segregation at GBs on grain growth in presence of both elevated temperature and external stress is formulated and discussed. The effect of second-phase particles and solute/impurity segregation at GBs on GB migration and grain rotation was quantified using the proposed theoretical framework, indicating that both second-phase particles and solutes/impurities segregated GBs reduce the velocities of GB migration and grain rotation as compared to those in commercially pure Al. Our results suggest that grain growth predicted by the proposed theoretical framework is in agreement with experimental results. Hence, the developed theoretical framework can be applied to quantify grain growth in simultaneous presence of external stress, elevated temperature, GB segregation and second-phase particles, or in presence of one or more of the aforementioned factors.

Keywords: nanocrystalline materials, ultra-fine grained materials, grain growth, grain boundary migration, grain rotation

Procedia PDF Downloads 325
14924 Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave

Authors: Dong-Hyun Kim, Wan-Ho Chung, Hak-Sung Kim

Abstract:

In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance.

Keywords: terahertz wave, sheet resistance, non-destructive evaluation, silver nanowire

Procedia PDF Downloads 490
14923 Stress Variation of Underground Building Structure during Top-Down Construction

Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung

Abstract:

In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.

Keywords: construction of building, top-down construction method, earth pressure distribution, member force, stress concentration

Procedia PDF Downloads 305
14922 Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency

Authors: Shun-Chang Yen, You-Lun Peng, Kuo-Ching San

Abstract:

A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc.

Keywords: bluff body with multiple holes, computational fluid dynamics, swirl-jet flow, mixing efficiency

Procedia PDF Downloads 357
14921 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation

Authors: Pratch Kittipongpattana, Thongchai Fongsamootr

Abstract:

This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.

Keywords: boiler water wall tube, finite element, stress analysis, strain gage rosette

Procedia PDF Downloads 389
14920 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion

Procedia PDF Downloads 137
14919 Comparison of Two Theories for the Critical Laser Radius in Thermal Quantum Plasma

Authors: Somaye Zare

Abstract:

The critical beam radius is a significant factor that predicts the behavior of the laser beam in the plasma, so if the laser beam radius is adequately greater in comparison to it, the beam will experience stable focusing on the plasma; otherwise, the beam will diverge after entering into the plasma. In this work, considering the paraxial approximation and moment theories, the localization of a relativistic laser beam in thermal quantum plasma is investigated. Using the dielectric function obtained in the quantum hydrodynamic model, the mathematical equation for the laser beam width parameter is attained and solved numerically by the fourth-order Runge-Kutta method. The results demonstrate that the stouter focusing effect is occurred in the moment theory compared to the paraxial approximation. Besides, similar to the two theories, with increasing Fermi temperature, plasma density, and laser intensity, the oscillation rate of the beam width parameter growths and focusing length reduces which means improving the focusing effect. Furthermore, it is understood that behaviors of the critical laser radius are different in the two theories, in the paraxial approximation, the critical radius after a minimum value is enhanced with increasing laser intensity, but in the moment theory, with increasing laser intensity, the critical radius decreases until it becomes independent of the laser intensity.

Keywords: laser localization, quantum plasma, paraxial approximation, moment theory, quantum hydrodynamic model

Procedia PDF Downloads 72
14918 Does The Implementation Of A Mindfulness Based Intervention Effect Stress and Burnout In Nursing

Authors: Jennifer Foss, DNP, RN-BC, NEA-BC

Abstract:

Stress and burnout in the bedside registered nurse have deleterious consequences for registered nurses, patients, and the hospitals that employ them. The objective of this study was to determine whether a sixty-minute mindfulness workshop was effective in reducing perceived levels of stress and decreasing mindfulness in registered nurses working in the acute care setting. Registered nurses at a community hospital in the Northeast part of the country were recruited through e-mail and flyers in breakrooms. Participants completed the Perceived Stress Scale (PSS) and Mindfulness Attention Awareness Scale (MAAS) two weeks prior to taking part in the intervention and two weeks post intervention. Of the twenty-three registered nurses who completed the baseline questionnaires, 91% were female with an average age between 30-39 years. Sixty-five percent of subjects completed the questionnaires two weeks post intervention. Two weeks post intervention, registered nurses reported a decrease in perception of stress (pre and post PSS was .133) and was not significant (t=1.293, df=14, p=.217). Likewise, an increase in mindful attention .325 was reported two-weeks post intervention and indicated a favorable tendency to enter a mindful state. This finding was also not significant (t=-1.990, df=14, p=.066). In this study, nurses reported decreases in perceived stress and increases in mindfulness after attending a sixty-minute mindfulness workshop. Further research is needed to determine the long-term impact of mindfulness-based training on nurses' stress and mindfulness skills. The results of this study add to the body of literature that supports the benefits of mindfulness-based interventions in the healthcare setting.

Keywords: Stress, burnout, nursing, acute care nursing

Procedia PDF Downloads 68
14917 Family Relationships and Coping with the Stress of Young People from Migrant Families with Cerebral Palsy

Authors: A. Gagat-Matuła

Abstract:

The aim of this article is to present a relation between family relationships and styles of approach to coping with stress among young people from migrant families with cerebral palsy. The study involved 70 persons (with cerebral palsy in the standard intellectual capacity) from families, in which at least one of parents is a migrant. To measure the level of communication in the family, the Family Relationships Questionnaire (FRQ) was employed, while the styles of coping with stress was investigated with the CISS Questionnaire. The relation between family relationships and styles of coping with stressful situations of the respondents was investigated. It was shown that there is an affiliation between the emotion-oriented style of coping with the stress and the variable of “communication in my family”. Moreover, it was demonstrated that there is a linkage between the task-oriented style of coping with the stress and the variable of “maternal control in mother-child relationship”. Young people with CP subjected to overprotection and control from their mothers in problem situations tend to focus on their own emotions instead of trying to undertake constructive actions. Excessive control in daily life by mothers results in passivity and a lack of motivation to cope with difficult situations.

Keywords: young people with cerebral palsy, family relationships, styles of coping with stress, migration

Procedia PDF Downloads 410