Search results for: resonance energy transfer
10648 A Method Development for Improving the Efficiency of Solid Waste Collection System Using Network Analyst
Authors: Dhvanidevi N. Jadeja, Daya S. Kaul, Anurag A. Kandya
Abstract:
Municipal Solid Waste (MSW) collection in a city is performed in less effective manner which results in the poor management of the environment and natural resources. Municipal corporation does not possess efficient waste management and recycling programs because of the complex task involving many factors. Solid waste collection system depends upon various factors such as manpower, number and size of vehicles, transfer station size, dustbin size and weight, on-road traffic, and many others. These factors affect the collection cost, energy and overall municipal tax for the city. Generally, different types of waste are scattered throughout the city in a heterogeneous way that poses changes for efficient collection of solid waste. Efficient waste collection and transportation strategy must be effectively undertaken which will include optimization of routes, volume of waste, and manpower. Being these optimized, the overall cost can be reduced as the fuel and energy requirements would be less and also the municipal waste taxes levied will be less. To carry out the optimization study of collection system various data needs to be collected from the Ahmedabad municipal corporation such as amount of waste generated per day, number of workers, collection schedule, road maps, number of transfer station, location of transfer station, number of equipment (tractors, machineries), number of zones, route of collection etc. The ArcGis Network Analyst is introduced for the best routing identification applied in municipal waste collection. The simulation consists of scenarios of visiting loading spots in the municipality of Ahmedabad, considering dynamic factors like network traffic changes, closed roads due to natural or technical causes. Different routes were selected in a particular area of Ahmedabad city, and present routes were optimized to reduce the length of the routes, by using ArcGis Network Analyst. The result indicates up to 35% length minimization in the routes.Keywords: collection routes, efficiency, municipal solid waste, optimization
Procedia PDF Downloads 13510647 Low-Cost Wireless Power Transfer System for Smart Recycling Containers
Authors: Juan Luis Leal, Rafael Maestre, Ovidio López
Abstract:
As innovation progresses, more possibilities are made available to increase the efficiency and reach of solutions for Smart Cities, most of which require the data provided by the Internet of Things (IoT) devices and may even have higher power requirements such as motors or actuators. A reliable power supply with the lowest maintenance is a requirement for the success of these solutions in the long term. Energy harvesting, mainly solar, becomes the solution of choice in most cases, but only if there is enough power to be harvested, which may depend on the device location (e.g., outdoors vs. indoor). This is the case of Smart Waste Containers with compaction systems, which have moderately high-power requirements, and may be installed in places with little sunlight for solar generation. It should be noted that waste is unloaded from the containers with cranes, so sudden and irregular movements may happen, making wired power unviable. In these cases, a wireless power supply may be a great alternative. This paper proposes a cost-effective two coil resonant wireless power transfer (WPT) system and describes its implementation, which has been carried out within an R&D project and validated in real settings with smart containers. Experimental results prove that the developed system achieves wireless power transmission up to 35W in the range of 5 cm to 1 m with a peak efficiency of 78%. The circuit is operated at relatively low resonant frequencies, which combined with enough wire-to-wire separation between the coil windings, reduce the losses caused by the proximity effect and, therefore, allow the use of common stranded wire instead of Litz wire, this without reducing the efficiency significantly. All these design considerations led to a final system that achieves a high efficiency for the desired charging range, simplifying the energy supply for Smart Containers as well as other devices that may benefit from a cost-effective wireless charging system.Keywords: electromagnetic coupling, resonant wireless charging, smart recycling containers, wireless power transfer
Procedia PDF Downloads 9210646 Promotion of Renewable Marines Energies in Morocco: Perspectives and Strategies
Authors: Nachtane Mourad, Tarfaoui Mostapha, Saifaoui Dennoun, El Moumen Ahmed
Abstract:
The current energy policy recommends the subject of energy efficiency and to phase out fossil energy as a master question for the prospective years. The kingdom requires restructuring its power equipment by improving the percentage of renewable energy supply and optimizing power systems and storage. Developing energy efficiency, therefore, obliges as a consubstantial objection to reducing energy consumption. The objective of this work is to show the energy transition in Morocco towards renewable energies, in particular, to show the great potential of renewable marine energies in Morocco, This goes back to the advantages of cost and non-pollution in addition to that of the independence of fossil energies. Bearing in mind the necessity of the balance of the Moroccan energy mix, hydraulic and thermal power plants have also been installed which will be added to the power stations already established as a prospect for a balanced network that is flexible to fluctuate demand.Keywords: renewable marine energy, energy transition, efficiency energy, renewable energy
Procedia PDF Downloads 28510645 Energy Consumption, Population and Economic Development Dynamics in Nigeria: An Empirical Evidence
Authors: Evelyn Nwamaka Ogbeide-Osaretin, Bright Orhewere
Abstract:
This study examined the role of the population in the linkage between energy consumption and economic development in Nigeria. Time series data on energy consumption, population, and economic development were used for the period 1995 to 2020. The Autoregressive Distributed Lag -Error Correction Model (ARDL-ECM) was engaged. Economic development had a negative substantial impact on energy consumption in the long run. Population growth had a positive significant effect on energy consumption. Government expenditure was also found to impact the level of energy consumption, while energy consumption is not a function of oil price in Nigeria.Keywords: dynamic analysis, energy consumption, population, economic development, Nigeria
Procedia PDF Downloads 18010644 Energy Efficiency Factors in Toll Plazas
Authors: S. Balubaid, M. Z. Abd Majid, R. Zakaria
Abstract:
Energy efficiency is one of the most important issues for green buildings and their sustainability. This is not only due to the environmental impacts, but also because of significantly high energy cost. The aim of this study is to identify the potential actions required for toll plaza that lead to energy reduction. The data were obtained through set of questionnaire and interviewing targeted respondents, including the employees at toll plaza, and architects and engineers who are directly involved in design of highway projects. The data was analyzed using descriptive statistics analysis method. The findings of this study are the critical elements that influence the energy usage and factors that lead to energy wastage. Finally, potential actions are recommended to reduce energy consumption in toll plazas.Keywords: energy efficiency, toll plaza, energy consumption
Procedia PDF Downloads 54710643 Phosphorus Recovery Optimization in Microbial Fuel Cell
Authors: Abdullah Almatouq
Abstract:
Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.Keywords: energy, microbial fuel cell, phosphorus, struvite
Procedia PDF Downloads 15710642 Experimental and Numerical Investigation of Heat Transfer in THTL Test Loop Shell and Tube Heat Exchanger
Authors: M. Moody, R. Mahmoodi, A. R. Zolfaghari, A. Aminottojari
Abstract:
In this study, flow inside the shell side of a shell-and-tube heat exchanger is simulated numerically for laminar and turbulent flows in both steady state and transient mode. Governing equations of fluid flow are discrete using finite volume method and central difference scheme and solved with simple algorithm which is staggered grid by using MATLAB programming language. The heat transfer coefficient is obtained using velocity field from equation Dittus-Bolter. In comparison with, heat exchanger is simulated with ANSYS CFX software and experimental data measured in the THTL test loop. Numerical results obtained from the study show good agreement with experimental data and ANSYS CFX results. In addition, by deliberation the effect of the baffle spacing and the baffle cut on the heat transfer rate for turbulent flow, it is illustrated that the heat transfer rate depends on the baffle spacing and the baffle cut directly. In other word in spied of large turbulence, if these two parameters are not selected properly in the heat exchanger, the heat transfer rate can reduce.Keywords: shell-and-tube heat exchanger, flow and heat transfer, laminar and turbulence flow, turbulence model, baffle spacing, baffle cut
Procedia PDF Downloads 53610641 Numerical Prediction of Entropy Generation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
The concept of second law is assumed to be important to optimize the energy losses in heat exchangers. The present study is devoted to the numerical prediction of entropy generation due to heat transfer and friction in a double tube heat exchanger partly or fully filled with a porous medium. The goal of this work is to find the optimal conditions that allow minimizing entropy generation. For this purpose, numerical modeling based on the control volume method is used to describe the flow and heat transfer phenomena in the fluid and the porous medium. Effects of the porous layer thickness, its permeability, and the effective thermal conductivity have been investigated. Unexpectedly, the fully porous heat exchanger yields a lower entropy generation than the partly porous case or the fluid case even if the friction increases the entropy generation.Keywords: heat exchangers, porous medium, second law approach, turbulent flow
Procedia PDF Downloads 30010640 Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall
Authors: Muzna Tariq, Ihtzaz Qamar
Abstract:
In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.Keywords: computational fluid dynamics, conduction, conjugate heat transfer, convection, fluid flow, thermocouples
Procedia PDF Downloads 14710639 Parallel Version of Reinhard’s Color Transfer Algorithm
Authors: Abhishek Bhardwaj, Manish Kumar Bajpai
Abstract:
An image with its content and schema of colors presents an effective mode of information sharing and processing. By changing its color schema different visions and prospect are discovered by the users. This phenomenon of color transfer is being used by Social media and other channel of entertainment. Reinhard et al’s algorithm was the first one to solve this problem of color transfer. In this paper, we make this algorithm efficient by introducing domain parallelism among different processors. We also comment on the factors that affect the speedup of this problem. In the end by analyzing the experimental data we claim to propose a novel and efficient parallel Reinhard’s algorithm.Keywords: Reinhard et al’s algorithm, color transferring, parallelism, speedup
Procedia PDF Downloads 61410638 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 9010637 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria
Authors: Okorowo Cyril Agochi
Abstract:
More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.Keywords: electric, power, renewable energy, solar energy, sun, tropical
Procedia PDF Downloads 54310636 The Analysis of Application of Green Bonds in New Energy Vehicles in China: From Evolutionary Game Theory
Authors: Jing Zhang
Abstract:
Sustainable development in the new energy vehicles field is the requirement of the net zero aim. Green bonds are accepted as a practical financial tool to boost the transformation of relevant enterprises. The paper analyzes the interactions among governments, enterprises of new energy vehicles, and financial institutions by an evolutionary game theory model and offers advice to stakeholders in China. The decision-making subjects of green behavior are affected by experiences, interests, perception ability, and risk preference, so it is difficult for them to be completely rational. Based on the bounded rationality hypothesis, this paper applies prospect theory in the evolutionary game analysis framework and analyses the costs of government regulation of enterprises adopting green bonds. The influence of the perceived value of revenue prospect and the probability and risk transfer coefficient of the government's active regulation on the decision-making agent's strategy is verified by numerical simulation. Finally, according to the research conclusions, policy suggestions are given to promote green bonds.Keywords: green bonds, new energy vehicles, sustainable development, evolutionary Game Theory model
Procedia PDF Downloads 8610635 Analysis of Thermal Damage Characteristics of High Pressure Turbine Blade According to Off-Design Operating Conditions
Authors: Seon Ho Kim, Minho Bang, Seok Min Choi, Young Moon Lee, Dong Kwan Kim, Hyung Hee Cho
Abstract:
Gas turbines are heat engines that convert chemical energy into electrical energy through mechanical energy. Since their high energy density per unit volume and low pollutant emissions, gas turbines are classified as clean energy. In order to obtain better performance, the turbine inlet temperature of the current gas turbine is operated at about 1600℃, and thermal damage is a very serious problem. Especially, these thermal damages are more prominent in off-design conditions than in design conditions. In this study, the thermal damage characteristics of high temperature components of a gas turbine made of a single crystal material are studied numerically for the off-design operating conditions. The target gas turbine is configured as a reheat cycle and is operated in peak load operation mode, not normal operation. In particular, the target gas turbine features a lot of low-load operation. In this study, a commercial code, ANSYS 18.2, was used for analyzing the thermal-flow coupling problems. As a result, the flow separation phenomenon on the pressure side due to the flow reduction was remarkable at the off-design condition, and the high heat transfer coefficient at the upper end of the suction surface due to the tip leakage flow was appeared.Keywords: gas turbine, single crystal blade, off-design, thermal analysis
Procedia PDF Downloads 21310634 Uncommon Causes of Acute Abdominal Pain: A Pictorial Essay
Authors: Mahesh Hariharan, Rajan Balasubramaniam, Sharath Kumar Shetty, Shanthala Yadavalli, Mohammed Ahetasham, Sravya Devarapalli
Abstract:
Acute abdomen is one of the most common clinical conditions requiring a radiological investigation. Ultrasound is the primary modality of choice which can diagnose some of the common causes of acute abdomen. However, sometimes the underlying cause for the pain is far more complicated than expected to mandate a high degree of suspicion to suggest further investigation with contrast-enhanced computed tomography or magnetic resonance imaging. Here, we have compiled a comprehensive series of selected cases to highlight the conditions which can be easily overlooked unless carefully sought for. This also emphasizes the importance of multimodality approach to arrive at the final diagnosis with an increased overall diagnostic accuracy which in turn improves patient management and prognosis.Keywords: acute abdomen, contrast-enhanced computed tomography scan, magnetic resonance imaging, plain radiographs, ultrasound
Procedia PDF Downloads 36410633 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell
Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh
Abstract:
Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity
Procedia PDF Downloads 14310632 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device
Authors: Long Kim Vu
Abstract:
The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.Keywords: CFD, FPGA, heat transfer, thermal analysis
Procedia PDF Downloads 18410631 Seismic Analysis of Structurally Hybrid Wind Mill Tower
Authors: Atul K. Desai, Hemal J. Shah
Abstract:
The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.Keywords: dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history
Procedia PDF Downloads 15010630 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture
Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho
Abstract:
Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.Keywords: bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer
Procedia PDF Downloads 25910629 The Role of Building Services in Energy Conservation into Residential Buildings
Authors: Osama Ahmed Ibrahim Masoud, Mohamed Ibrahim Mohamed Abdelhadi, Ahmed Mohamed Seddik Hassan
Abstract:
The problem of study focuses on thermal comfort realization in a residential building during hot and dry climate periods consumes a major electrical energy for air conditioning operation. Thermal comfort realization in a residential building during such climate becomes more difficult regarding the phenomena of climate change, and the use of building and construction materials which have the feature of heat conduction as (bricks-reinforced concrete) and the global energy crises. For that, this study aims to how to realize internal thermal comfort through how to make the best use of building services (temporarily used service spaces) for reducing the electrical energy transfer and saving self-shading. In addition, the possibility of reduction traditional energy (fossil fuel) consumed in cooling through the use of building services for reducing the internal thermal comfort and the relationship between them. This study is based on measuring the consumed electrical energy rate in cooling (by using Design-Builder program) for a residential building (the place of study is: Egypt- Suez Canal- Suez City), this design model has lots of alternatives designs for the place of building services (center of building- the eastern front- southeastern front- the southern front- the south-west front, the western front). The building services are placed on the fronts with different rates for determining the best rate on fronts which realizes thermal comfort with the lowest of energy consumption used in cooling. Findings of the study indicate to that the best position for building services is on the west front then the south-west front, and the more the building services increase, the more energy consumption used in cooling of residential building decreases. Recommendations indicate to the need to study the building services positions in the new projects progress to select the best alternatives to realize ‘Energy conservation’ used in cooling or heating into the buildings in general, residential buildings particularly.Keywords: residential buildings, energy conservation, thermal comfort, building services, temporary used service spaces, DesignBuilder
Procedia PDF Downloads 29410628 Knowledge Transfer from Experts to Novice: An Empirical Study on Online Communities
Authors: Firmansyah David
Abstract:
This paper aims to investigate factors that drive individuals to transfer their knowledge in the context of online communities. By revisiting tacit-to-explicit knowledge creation, this research attempts to contribute empirically using three online forums (1) Software Engineering; (2) Aerospace Simulator; (3) Health Insurance System. A qualitative approach was deployed to map and recognize the pattern of users ‘Knowledge Transfer (KT), particularly from expert to novice. The findings suggest a common form on how experts give their effort to formulate ‘explicit’ knowledge and how novices ‘understand’ such knowledge. This research underlines that skill; intuition, judgment; value and belief are the prominent factors, both for experts and novice. Further, this research has recognized the groups of expert and novice by their ability to transfer and to ‘adopt’ new knowledge. Future research infers to triangulate the method in which the quantitative study is needed to measure the level of adoption of (new) knowledge by individuals.Keywords: explicit, expert, knowledge, online community
Procedia PDF Downloads 26810627 Application of Nanoparticles in Biomedical and MRI
Authors: Raziyeh Mohammadi
Abstract:
At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible.Keywords: nanoparticles, MRI, biomedical, iron oxide, spions
Procedia PDF Downloads 21510626 Energy Management Techniques in Mobile Robots
Authors: G. Gurguze, I. Turkoglu
Abstract:
Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.Keywords: energy management, mobile robot, robot administration, robot management, robot planning
Procedia PDF Downloads 26610625 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications
Authors: W. Schellong
Abstract:
Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control
Procedia PDF Downloads 21010624 Activation of Mirror Neuron System Response to Drumming Training: A Functional Magnetic Resonance Imaging Study
Authors: Manal Alosaimi
Abstract:
Many rehabilitation strategies exist to aid persons with neurological disorders relearn motor skills through intensive training. Evidence supporting the theory that cortical areas involved in motor execution can be triggered by observing actions performed by others is attributed to the function of the mirror neuron system (MNS) indicates that activation of the MNS is associated with improvements in physical action and motor learning. Therefore, it is important to investigate the relationship between motor training (in this case, playing the drums) and the activation of the MNS. To achieve this, 15 healthy right-handed participants received drum-kit training for 21 weeks, during which time blood oxygen level-dependent (BOLD) signals were monitored in the brain using functional magnetic resonance imaging (fMRI). Participants were required to perform action–observation and action–execution fMRI tasks. The main results are that BOLD signals in classical regions of the MNS such as supramarginal gyri, inferior parietal lobule, and supplementary motor area increase significantly over the training period. Activation of these areas indicates that passive-observation of others performing these same skills may facilitate recovery of persons suffering from neurological disorders, and complement conventional rehabilitation programs that focus on action execution or intense training.Keywords: fMRI, mirror neuron system, magnetic resonance imaging, neuroplasticity, drumming, learning, music, action observation, action execution
Procedia PDF Downloads 3710623 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall
Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.Keywords: building energy management, machine learning, operation planning, simulation-based optimization
Procedia PDF Downloads 32210622 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition
Authors: H. Niranjan, S. Sivasankaran, Zailan Siri
Abstract:
This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, soret/dufour, stagnation-point
Procedia PDF Downloads 37510621 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.Keywords: couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection
Procedia PDF Downloads 33710620 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate
Authors: Kwame B. O. Amoah
Abstract:
This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.Keywords: energy consumption, building energy analysis, energy retrofits, energy-efficiency
Procedia PDF Downloads 22210619 Technical and Vocational Education and Technology Transfer: Departments of Electrical Engineering at the Public Authority for Applied Education and Training, PAAE&T, Kuwait, a case Study
Authors: Salah Al-Ali
Abstract:
The role of technology transfer in technical and vocational education is significant since lecturers, trainers, and students can obtain the updated knowledge, skills, and attitudes that are currently being practiced by local and international businesses and industries. Technology transfer can indeed close the gap between what is being learned and practiced in technical and vocational institutions and the world of work. However, the success of technology transfer in technical and vocational education perspectives would depend entirely on the quality of management. It is their responsibility when signing an agreement with internal or external providers of technology, to include calluses that enable academic staff in related specialty to interact positively and freely with the supplier of technology. In other terms, ensuring no clear or hidden restriction is imposed by the supplier of technology to acquire the know-how and know-why that are embedded in the agreement. In this paper, I present some of the empirical results and observations which describe the interactions between the supplier of technology (Electrical Engineering System) and the recipient of the technology (PAAE&T) in the field of technology transfer. In another word, whether the PAAE&T have taken the opportunity while building its new headquarter, the transfer of technology from the supplier of an electrical engineering system to its academic staff in its various Electrical Engineering Academic Departments at the PAAE&T colleges and institutions. The paper argues that, for effective and efficient transfer of technology, the recipient (PAAE&T) must ensure that the agreement with the supplier of the Electrical Engineering System must include calluses that would allow the PAAE&T academic staff in its various Electrical Engineering Academic Departments in its various colleges and institutions to acquire the technology embedded in the agreement. The paper concludes that the transfer of technology and the building of a local scientific and technical infrastructure must be viewed by Kuwaiti decision-makers as complementary to one another. Thus, reducing, to great extent, the level of dependence on expatriates, particularly in the essential sectors of the economy.Keywords: vocational and technical education, technology transfer, enhancing indigenous capabilities, Kuwait
Procedia PDF Downloads 136