Search results for: mathematical cognition
1691 Spatial Conceptualization in French and Italian Speakers: A Contrastive Approach in the Context of the Linguistic Relativity Theory
Authors: Camilla Simoncelli
Abstract:
The connection between language and cognition has been one of the main interests of linguistics from several years. According to the Sapir-Whorf Linguistic Relativity Theory, the way we perceive reality depends on the language we speak which in turn has a central role in the human cognition. This paper is in line with this research work with the aim of analyzing how language structures reflect on our cognitive abilities even in the description of space, which is generally considered as a human natural and universal domain. The main objective is to identify the differences in the encoding of spatial inclusion relationships in French and Italian speakers to make evidence that a significant variation exists at various levels even in two similar systems. Starting from the constitution a corpora, the first step of the study has been to establish the relevant complex prepositions marking an inclusion relation in French and Italian: au centre de, au cœur de, au milieu de, au sein de, à l'intérieur de and the opposition entre/parmi in French; al centro di, al cuore di, nel mezzo di, in seno a, all'interno di and the fra/tra contrast in Italian. These prepositions had been classified on the base of the type of Noun following them (e.g. mass nouns, concrete nouns, abstract nouns, body-parts noun, etc.) following the Collostructional Analysis of lexemes with the purpose of analyzing the preferred construction of each preposition comparing the relations construed. Comparing the Italian and the French results it has been possible to define the degree of representativeness of each target Noun for the chosen preposition studied. Lexicostatistics and Statistical Association Measures showed the values of attraction or repulsion between lexemes and a given preposition, highlighting which words are over-represented or under-represented in a specific context compared to the expected results. For instance, a Noun as Dibattiti has a negative value for the Italian Al cuore di (-1,91), but it has a strong positive representativeness for the corresponding French Au cœur de (+677,76). The value, positive or negative, is the result of a hypergeometric distribution law which displays the current use of some relevant nouns in relations of spatial inclusion by French and Italian speakers. Differences on the kind of location conceptualization denote syntactic and semantic constraints based on spatial features as well as on linguistic peculiarity, too. The aim of this paper is to demonstrate that the domain of spatial relations is basic to human experience and is linked to universally shared perceptual mechanisms which create mental representations depending on the language use. Therefore, linguistic coding strongly correlates with the way spatial distinctions are conceptualized for non-verbal tasks even in close language systems, like Italian and French.Keywords: cognitive semantics, cross-linguistic variations, locational terms, non-verbal spatial representations
Procedia PDF Downloads 1131690 Recursion, Merge and Event Sequence: A Bio-Mathematical Perspective
Authors: Noury Bakrim
Abstract:
Formalization is indeed a foundational Mathematical Linguistics as demonstrated by the pioneering works. While dialoguing with this frame, we nonetheless propone, in our approach of language as a real object, a mathematical linguistics/biosemiotics defined as a dialectical synthesis between induction and computational deduction. Therefore, relying on the parametric interaction of cycles, rules, and features giving way to a sub-hypothetic biological point of view, we first hypothesize a factorial equation as an explanatory principle within Category Mathematics of the Ergobrain: our computation proposal of Universal Grammar rules per cycle or a scalar determination (multiplying right/left columns of the determinant matrix and right/left columns of the logarithmic matrix) of the transformable matrix for rule addition/deletion and cycles within representational mapping/cycle heredity basing on the factorial example, being the logarithmic exponent or power of rule deletion/addition. It enables us to propone an extension of minimalist merge/label notions to a Language Merge (as a computing principle) within cycle recursion relying on combinatorial mapping of rules hierarchies on external Entax of the Event Sequence. Therefore, to define combinatorial maps as language merge of features and combinatorial hierarchical restrictions (governing, commanding, and other rules), we secondly hypothesize from our results feature/hierarchy exponentiation on graph representation deriving from Gromov's Symbolic Dynamics where combinatorial vertices from Fe are set to combinatorial vertices of Hie and edges from Fe to Hie such as for all combinatorial group, there are restriction maps representing different derivational levels that are subgraphs: the intersection on I defines pullbacks and deletion rules (under restriction maps) then under disjunction edges H such that for the combinatorial map P belonging to Hie exponentiation by intersection there are pullbacks and projections that are equal to restriction maps RM₁ and RM₂. The model will draw on experimental biomathematics as well as structural frames with focus on Amazigh and English (cases from phonology/micro-semantics, Syntax) shift from Structure to event (especially Amazigh formant principle resolving its morphological heterogeneity).Keywords: rule/cycle addition/deletion, bio-mathematical methodology, general merge calculation, feature exponentiation, combinatorial maps, event sequence
Procedia PDF Downloads 1271689 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth in Patients with Lymph Nodes Metastases
Authors: Ella Tyuryumina, Alexey Neznanov
Abstract:
This paper is devoted to mathematical modelling of the progression and stages of breast cancer. We propose Consolidated mathematical growth model of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases (CoM-III) as a new research tool. We are interested in: 1) modelling the whole natural history of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; 2) developing adequate and precise CoM-III which reflects relations between primary tumor and secondary distant metastases; 3) analyzing the CoM-III scope of application; 4) implementing the model as a software tool. Firstly, the CoM-III includes exponential tumor growth model as a system of determinate nonlinear and linear equations. Secondly, mathematical model corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for secondary distant metastases growth in patients with lymph nodes metastases; 3) ‘visible period’ for secondary distant metastases growth in patients with lymph nodes metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-III model and predictive software: a) detect different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; b) make forecast of the period of the distant metastases appearance in patients with lymph nodes metastases; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoM-III: the number of doublings for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases. The CoM-III enables, for the first time, to predict the whole natural history of primary tumor and secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-III describes correctly primary tumor and secondary distant metastases growth of IA, IIA, IIB, IIIB (T1-4N1-3M0) stages in patients with lymph nodes metastases (N1-3); b) facilitates the understanding of the appearance period and inception of secondary distant metastases.Keywords: breast cancer, exponential growth model, mathematical model, primary tumor, secondary metastases, survival
Procedia PDF Downloads 3021688 Mathematical Model for Interaction Energy of Toroidal Molecules and Other Nanostructures
Authors: Pakhapoom Sarapat, James M. Hill, Duangkamon Baowan
Abstract:
Carbon nanotori provide several properties such as high tensile strength and heat resistance. They are promised to be ideal structures for encapsulation, and their encapsulation ability can be determined by the interaction energy between the carbon nanotori and the encapsulated nanostructures. Such interaction energy is evaluated using Lennard-Jones potential and continuum approximation. Here, four problems relating to toroidal molecules are determined in order to find the most stable configuration. Firstly, the interaction energy between a carbon nanotorus and an atom is examined. The second problem relates to the energy of a fullerene encapsulated inside a carbon nanotorus. Next, the interaction energy between two symmetrically situated and parallel nanotori is considered. Finally, the classical mechanics is applied to model the interaction energy between the toroidal structure of cyclodextrin and the spherical DNA molecules. These mathematical models might be exploited to study a number of promising devices for future developments in bio and nanotechnology.Keywords: carbon nanotori, continuum approximation, interaction energy, Lennard-Jones potential, nanotechnology
Procedia PDF Downloads 1481687 Financial Crises in the Context of Behavioral Finance
Authors: Nousheen Tariq Bhutta, Syed Zulfiqar Ali Shah
Abstract:
Financial crises become a key impediment towards the development of countries especially in emerging economies. Based on standard finance, many researchers investigated the financial crises in different countries in order to find the underlying reason regarding occurrence these event; however they were unable to provide it. In this essence behavioral finance may be helpful in providing answers to some queries regarding occurrence and prevention of financial crises. In this paper, we explore the some psychological factors comprises of our inspiration, emotion, cognition and culture along with their reflection companies, financial markets and governments that present some supportive arguments. Moreover, we compared the views of Keynes and Minsky in order to validate the underling justification towards occurrence of financial crises and their prevention in future. This study helps the practitioners and policy makers through providing valuable recommendation in order to protect the economies.Keywords: financial crises, behavioral finance, financial markets, emerging economies
Procedia PDF Downloads 4991686 Guided Energy Theory of a Particle: Answered Questions Arise from Quantum Foundation
Authors: Desmond Agbolade Ademola
Abstract:
This work aimed to introduce a theory, called Guided Energy Theory of a particle that answered questions that arise from quantum foundation, quantum mechanics theory, and interpretation such as: what is nature of wavefunction? Is mathematical formalism of wavefunction correct? Does wavefunction collapse during measurement? Do quantum physical entanglement and many world interpretations really exist? In addition, is there uncertainty in the physical reality of our nature as being concluded in the Quantum theory? We have been able to show by the fundamental analysis presented in this work that the way quantum mechanics theory, and interpretation describes nature is not correlated with physical reality. Because, we discovered amongst others that, (1) Guided energy theory of a particle fundamentally provides complete physical observable series of quantized measurement of a particle momentum, force, energy e.t.c. in a given distance and time.In contrast, quantum mechanics wavefunction describes that nature has inherited probabilistic and indeterministic physical quantities, resulting in unobservable physical quantities that lead to many worldinterpretation.(2) Guided energy theory of a particle fundamentally predicts that it is mathematically possible to determine precise quantized measurementof position and momentum of a particle simultaneously. Because, there is no uncertainty in nature; nature however naturally guides itself against uncertainty. Contrary to the conclusion in quantum mechanics theory that, it is mathematically impossible to determine the position and the momentum of a particle simultaneously. Furthermore, we have been able to show by this theory that, it is mathematically possible to determine quantized measurement of force acting on a particle simultaneously, which is not possible on the premise of quantum mechanics theory. (3) It is evidently shown by our theory that, guided energy does not collapse, only describes the lopsided nature of a particle behavior in motion. This pretty offers us insight on gradual process of engagement - convergence and disengagement – divergence of guided energy holders which further highlight the picture how wave – like behavior return to particle-like behavior and how particle – like behavior return to wave – like behavior respectively. This further proves that the particles’ behavior in motion is oscillatory in nature. The mathematical formalism of Guided energy theory shows that nature is certainty whereas the mathematical formalism of Quantum mechanics theory shows that nature is absolutely probabilistics. In addition, the nature of wavefunction is the guided energy of the wave. In conclusion, the fundamental mathematical formalism of Quantum mechanics theory is wrong.Keywords: momentum, physical entanglement, wavefunction, uncertainty
Procedia PDF Downloads 2951685 Piezoelectric Approach on Harvesting Acoustic Energy
Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap
Abstract:
An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.Keywords: piezoelectric, acoustic, energy harvester
Procedia PDF Downloads 2821684 Mathematical Modelling of Wastewater Collection System in Cha-Am Municipality Using PCSWMM
Authors: Thawtar Htun, Kim N. Irvine, Ranjna Jindal
Abstract:
This study aimed at modelling the wastewater collection system in Cha-Am Municipality using PCSWMM to investigate the quantity of combined sewage delivered to the aeration lagoon treatment system (ALTS). Cha-Am is a small sea resort town in Petchaburi Province located about 175 km southwest of Bangkok and is facing increasing development so it is important to understand current system performance and plan for future build out. PCSWMM was calibrated using observed ALTS inflow data for the period 15 June to 20 July 2015. The model was validated using observed ALTS inflow data for the periods 19 July to 20 October 2015 and 1 October to 31 December 2015, respectively. The 1:1 lines between modeled and observed peak flow and event volume for the calibration events qualitatively showed good correspondence. The r2 values between modeled and observed peak flow (99%) and event volume (89%) also were strong.Keywords: combined sewer system, mathematical modelling, PCSWMM, wastewater collection system
Procedia PDF Downloads 2131683 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink
Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu
Abstract:
A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation
Procedia PDF Downloads 2281682 Augmented Reality Applications for Active Learning in Geometry: Enhancing Mathematical Intelligence at Phra Dabos School
Authors: Nattamon Srithammee, Ratchanikorn Chonchaiya
Abstract:
This study explores the impact of Augmented Reality (AR) technology on mathematics education, focusing on Area and Volume concepts at Phra Dabos School in Thailand. We developed a mobile augmented reality application to present these mathematical concepts innovatively. Using a mixed-methods approach, we assessed the knowledge of 79 students before and after using the application. The results showed a significant improvement in students' understanding of Area and Volume, with average test scores increasing from 3.70 to 9.04 (p < 0.001, Cohen's d = 2.05). Students also reported increased engagement and satisfaction. Our findings suggest that augmented reality technology can be a valuable tool in mathematics education, particularly for enhancing the understanding of abstract concepts like Area and Volume. This study contributes to research on educational technology in STEM education and provides insights for educators and educational technology developers.Keywords: augmented reality, mathematics education, area and volume, educational technology, STEM education
Procedia PDF Downloads 241681 Mathematical Modelling for Diesel Consumption of Articulated Vehicle Used in Oyo State, Nigeria
Authors: Ganiyu Samson Okunlola, Ladanu Abiodun Ajala, Olaide Oluwaseun Adegbayo
Abstract:
Since the usefulness of articulated vehicles is becoming more apparent and the diesel consumption of these vehicles constitutes a major portion of operating costs, development of mathematical model for their diesel consumption is of a great importance. Therefore, the present work developed a quantitative relationship between diesel consumption and vehicle age, annual use and cost of maintenance of the different makes of articulated vehicles. The vehicles selected for the study were FIAT 682 T3, IVECO 19036 and M.A.N. Diesel 19.240. The operating parameters for 90 vehicles of different age groups were recorded. Multiple regression models for diesel consumption of articulated vehicles of different makes were developed. From the analysis of results, it can be concluded that as the age of the vehicles increases, the diesel consumption increases. Also, as the diesel consumption increases, the cost of maintenance increases and there is a subsequent decrease in annual use. Moreover, FIAT 682 T3 and IVECO 19036 should be replaced at 7 years of age while M.A.N diesel should be replaced at 8 years of age. These are the ages where the diesel consumption becomes abnormal and uneconomical and they are points of optimal overhaul.Keywords: vehicle, overhaul, age, uneconomical, diesel, consumption
Procedia PDF Downloads 2511680 Application of Blockchain Technology in Geological Field
Authors: Mengdi Zhang, Zhenji Gao, Ning Kang, Rongmei Liu
Abstract:
Management and application of geological big data is an important part of China's national big data strategy. With the implementation of a national big data strategy, geological big data management becomes more and more critical. At present, there are still a lot of technology barriers as well as cognition chaos in many aspects of geological big data management and application, such as data sharing, intellectual property protection, and application technology. Therefore, it’s a key task to make better use of new technologies for deeper delving and wider application of geological big data. In this paper, we briefly introduce the basic principle of blockchain technology at the beginning and then make an analysis of the application dilemma of geological data. Based on the current analysis, we bring forward some feasible patterns and scenarios for the blockchain application in geological big data and put forward serval suggestions for future work in geological big data management.Keywords: blockchain, intellectual property protection, geological data, big data management
Procedia PDF Downloads 901679 Mathematical Analysis of Variation in Inlet Shock Wave Angle on Specific Impulse of Scramjet Engine
Authors: Shrikant Ghadage
Abstract:
Study of shock waves generated in the Scramjet engine is typically restricted to pressure, temperature, density, entropy and Mach number variation across the shock wave. The present work discusses the impact of inlet shock wave angles on the specific impulse of the Scramjet engine. A mathematical analysis has done for the isentropic hypersonic flow of air flowing through a Scramjet with hydrogen fuel at an altitude of 30 km. Analysis has been done in order to get optimum shock wave angle to achieve maximum impulse. Since external drag has excluded from the analysis, the losses due to friction are not considered for the present analysis. When Mach number of the airflow at the entry of the nozzle reaches unity, then that flow is choked. This condition puts limitations on increasing the inlet shock wave angle. As inlet shock wave angle increases, speed of the flow entering into the nozzle decreases, which results in an increase in the specific impulse of the engine. When the speed of the flow at the entry of the nozzle reduces below sonic speed, then there is no further increase in the specific impulse of the engine. Here the Conclusion is the thrust and specific impulse of a scramjet engine, which increases gradually with an increase in inlet shock wave angle up to the condition when airflow speed reaches sonic velocity at the exit of the combustor. In addition to that, variation in drag force at the inlet of the scramjet and variation in hypersonic flow conditions at every stage of the scramjet also studied in order to understand variation on flow characteristics with respect to flow deflection angle. Essentially, it helps in designing inlet profile for the Scramjet engine to achieve optimum specific impulse.Keywords: hypersonic flow, scramjet, shock waves, specific impulse, mathematical analysis
Procedia PDF Downloads 1681678 Solid-Liquid-Solid Interface of Yakam Matrix: Mathematical Modeling of the Contact Between an Aircraft Landing Gear and a Wet Pavement
Authors: Trudon Kabangu Mpinga, Ruth Mutala, Shaloom Mbambu, Yvette Kalubi Kashama, Kabeya Mukeba Yakasham
Abstract:
A mathematical model is developed to describe the contact dynamics between the landing gear wheels of an aircraft and a wet pavement during landing. The model is based on nonlinear partial differential equations, using the Yakam Matrix to account for the interaction between solid, liquid, and solid phases. This framework incorporates the influence of environmental factors, particularly water or rain on the runway, on braking performance and aircraft stability. Given the absence of exact analytical solutions, our approach enhances the understanding of key physical phenomena, including Coulomb friction forces, hydrodynamic effects, and the deformation of the pavement under the aircraft's load. Additionally, the dynamics of aquaplaning are simulated numerically to estimate the braking performance limits on wet surfaces, thereby contributing to strategies aimed at minimizing risk during landing on wet runways.Keywords: aircraft, modeling, simulation, yakam matrix, contact, wet runway
Procedia PDF Downloads 81677 Using Project MIND - Math Is Not Difficult Strategies to Help Children with Autism Improve Mathematics Skills
Authors: Hui Fang Huang Su, Leanne Lai, Pei-Fen Li, Mei-Hwei Ho, Yu-Wen Chiu
Abstract:
This study aimed to provide a practical, systematic, and comprehensive intervention for children with Autism Spectrum Disorder (ASD). A pilot study of quasi-experimental pre-post intervention with control group design was conducted to evaluate if the mathematical intervention (Project MIND - Math Is Not Difficult) increases the math comprehension of children with ASD Children with ASD in the primary grades (K-1, 2) participated in math interventions to enhance their math comprehension and cognitive ability. The Bracken basic concept scale was used to evaluate subjects’ language skills, cognitive development, and school readiness. The study found that our systemic interventions of Project MIND significantly improved the mathematical and cognitive abilities in children with autism. The results of this study may lead to a major change in effective and adequate health care services for children with ASD and their families. All statistical analyses were performed with the IBM SPSS Statistics Version 25 for Windows. The significant level was set at 0.05 P-value.Keywords: autism, mathematics, technology, family
Procedia PDF Downloads 1051676 Extraction of the Volatile Oils of Dictyopteris Membranacea by Focused Microwave Assisted Hydrodistillation and Supercritical Carbon Dioxide: Chemical Composition and Kinetic Data
Authors: Mohamed El Hattab
Abstract:
The Supercritical carbon dioxide (SFE) and the focused microwave-assisted hydrodistillation (FMAHD) were employed to isolate the volatile fraction of the brown alga Dictyopteris membranacea from the crude extract. The volatiles fractions obtained were analyzed by GC/MS. The major compounds in this case: dictyopterene A, 6-butylcyclohepta-1,4-diene, Undec-1-en-3-one, Undeca-1,4-dien-3-one, (3-oxoundec-4-enyl) sulphur, tetradecanoic acid, hexadecanoic acid, 3-hexyl-4,5-dithia-cycloheptanone and albicanol (this later is present only in the FMAHD oil) are identified by comparing their mass spectra with those reported on the commercial MS data base and also on our previously work. A kinetic study realized on both extraction processes and followed by an external standard quantification has allowed the study of the mass percent evolution of the major compounds in the two oils, an empirical mathematical modelling was used to describe their kinetic extraction.Keywords: dictyopteris membranacea, extraction techniques, mathematical modeling, volatile oils
Procedia PDF Downloads 4281675 The Numerical Model of the Onset of Acoustic Oscillation in Pulse Tube Engine
Authors: Alexander I. Dovgyallo, Evgeniy A. Zinoviev, Svetlana O. Nekrasova
Abstract:
The most of works applied for the pulse tube converters contain the workflow description implemented through the use of mathematical models on stationary modes. However, the study of the thermoacoustic systems unsteady behavior in the start, stop, and acoustic load changes modes is in the particular interest. The aim of the present study was to develop a mathematical thermal excitation model of acoustic oscillations in pulse tube engine (PTE) as a small-scale scheme of pulse tube engine operating at atmospheric air. Unlike some previous works this standing wave configuration is a fully closed system. The improvements over previous mathematical models are the following: the model allows specifying any values of porosity for regenerator, takes into account the piston weight and the friction in the cylinder and piston unit, and determines the operating frequency. The numerical method is based on the relation equations between the pressure and volume velocity variables at the ends of each element of PTE which is recorded through the appropriate transformation matrix. A solution demonstrates that the PTE operation frequency is the complex value, and it depends on the piston mass and the dynamic friction due to its movement in the cylinder. On the basis of the determined frequency thermoacoustically induced heat transport and generation of acoustic power equations were solved for channel with temperature gradient on its ends. The results of numerical simulation demonstrate the features of the initialization process of oscillation and show that that generated acoustic power more than power on the steady mode in a factor of 3…4. But doesn`t mean the possibility of its further continuous utilizing due to its existence only in transient mode which lasts only for a 30-40 sec. The experiments were carried out on small-scale PTE. The results shows that the value of acoustic power is in the range of 0.7..1.05 W for the defined frequency range f = 13..18 Hz and pressure amplitudes 11..12 kPa. These experimental data are satisfactorily correlated with the numerical modeling results. The mathematical model can be straightforwardly applied for the thermoacoustic devices with variable temperatures of thermal reservoirs and variable transduction loads which are expected to occur in practical implementations of portable thermoacoustic engines.Keywords: nonlinear processes, pulse tube engine, thermal excitation, standing wave
Procedia PDF Downloads 3761674 Some Conjectures and Programs about Computing the Detour Index of Molecular Graphs of Nanotubes
Authors: Shokofeh Ebrtahimi
Abstract:
Let G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G.Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena.[1] The pioneers of the chemical graph theory are Alexandru Balaban, Ante Graovac, Ivan Gutman, Haruo Hosoya, Milan Randić and Nenad TrinajstićLet G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G. In this paper, a new program for computing the detour index of molecular graphs of nanotubes by heptagons is determineded. Some Conjectures about detour index of Molecular graphs of nanotubes is included.Keywords: chemical graph, detour matrix, Detour index, carbon nanotube
Procedia PDF Downloads 2921673 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann
Abstract:
Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)
Procedia PDF Downloads 3621672 The Weights of Distinguished sl2-Subalgebras in Dn
Authors: Yassir I. Dinar
Abstract:
We computed the weights of the adjoint action of distinguished sl2-triples in Lie algebra of type Dn using mathematical induction.Keywords: lie algebra, root systems, representation theory, nilpotent orbits
Procedia PDF Downloads 2941671 Conceptual Perimeter Model for Estimating Building Envelope Quantities
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Building girth is important in building economics and mostly used in quantities take-off of various cost items. Literature suggests that the use of conceptual quantities can improve the accuracy of cost models. Girth or perimeter of a building can be used to estimate conceptual quantities. Hence, the current paper aims to model the perimeter-area function of buildings shapes for use at the conceptual design stage. A detailed literature review on existing building shape indexes was carried out. An empirical approach was used to study the relationship between area and the shortest length of a four-sided orthogonal polygon. Finally, a mathematical approach was used to establish the observed relationships. The empirical results obtained were in agreement with the mathematical model developed. A new equation termed “conceptual perimeter equation” is proposed. The equation can be used to estimate building envelope quantities such as external wall area, external finishing area and scaffolding area before sketch or detailed drawings are prepared.Keywords: building envelope, building shape index, conceptual quantities, cost modelling, girth
Procedia PDF Downloads 3421670 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications
Authors: Arpan Dwivedi, Yogesh Pahariya
Abstract:
In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.Keywords: SAPS, DG, PMWTG, rural area, off-grid, PV module
Procedia PDF Downloads 2491669 An Analytical View to the Habitat Strategies of the Butterfly-Like Insects (Neuroptera: Ascalaphidae)
Authors: Hakan Bozdoğan
Abstract:
The goal of this paper is to evaluate the species richness, diversity and structure of in different habitats in the Kahramanmaraş Province in Turkey by using a mathematical program called as Geo-Gebra Software. The Ascalaphidae family comprises the most visually remarkable members of the order Neuroptera due to large dimensions, aerial predatory behaviour and dragonfly-like (or even butterfly-like) habits, allowing an immediate recognition also for occasional observers. Otherwise, they are one of the more poorly known families of the order in respect to biology, ecology and especially larval morphology. This discrepancy appears particularly noteworthy considering that it is a fairly large family (ca. 430 species) widely distributed in tropical and temperate areas of the World. The use of Dynamic Geometry, Analytical Softwares provides researchers a great way of visualising mathematical objects and encourage them to carry out tasks to interact with such objects and add to support of their researching. In this study we implemented; Circle with Center Through Point, Perpendicular Line, Vectors and Rays, Segments and Locus to elucidate the ecological and habitat behaviours of Butterfly-like lacewings in an analytical plane by using Geo-Gebra.Keywords: neuroptera, Ascalaphidae, geo-gebra software, habitat selectivity
Procedia PDF Downloads 2791668 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor
Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh
Abstract:
Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.Keywords: cantilever beam, electrical current measurement, forced excitation, piezoelectric
Procedia PDF Downloads 2321667 Stability and Sensitivity Analysis of Cholera Model with Treatment Class
Authors: Yunusa Aliyu Hadejia
Abstract:
Cholera is a gastrointestinal disease caused by a bacterium called Vibrio Cholerae which spread as a result of eating food or drinking water contaminated with feaces from an infected person. In this work we proposed and analyzed the impact of isolating infected people and give them therapeutic treatment, the specific objectives of the research was to formulate a mathematical model of cholera transmission incorporating treatment class, to make analysis on stability of equilibrium points of the model, positivity and boundedness was shown to ensure that the model has a biological meaning, the basic reproduction number was derived by next generation matrix approach. The result of stability analysis show that the Disease free equilibrium was both locally and globally asymptotically stable when R_0< 1 while endemic equilibrium has locally asymptotically stable when R_0> 1. Sensitivity analysis was perform to determine the contribution of each parameter to the basic reproduction number. Numerical simulation was carried out to show the impact of the model parameters using MAT Lab Software.Keywords: mathematical model, treatment, stability, sensitivity
Procedia PDF Downloads 1021666 Economical Analysis of Optimum Insulation Thickness for HVAC Duct
Authors: D. Kumar, S. Kumar, A. G. Memon, R. A. Memon, K. Harijan
Abstract:
A considerable amount of energy is usually lost due to compression of insulation in Heating, ventilation, and air conditioning (HVAC) duct. In this paper, the economic impact of compression of insulation is estimated. Relevant mathematical models were used to estimate the optimal thickness at the points of compression. Furthermore, the payback period is calculated for the optimal thickness at the critical parts of supply air duct (SAD) and return air duct (RAD) considering natural gas (NG) and liquefied petroleum gas (LPG) as fuels for chillier operation. The mathematical model is developed using preliminary data obtained for an HVAC system of a pharmaceutical company. The higher heat gain and cooling loss, due to compression of thermal insulation, is estimated using relevant heat transfer equations. The results reveal that maximum energy savings (ES) in SAD is 34.5 and 40%, while in RAD is 22.9% and 29% for NG and LPG, respectively. Moreover, the minimum payback period (PP) for SAD is 2 and 1.6years, while in RAD is 4.3 and 2.7years for NG and LPG, respectively. The optimum insulation thickness (OIT) corresponding to maximum ES and minimum PP is estimated to be 35 and 42mm for SAD, while 30 and 38mm for RAD in case of NG and LPG, respectively.Keywords: optimum insulation thickness, life cycle cost analysis, payback period, HVAC system
Procedia PDF Downloads 2161665 Architecture Performance-Related Design Based on Graphic Parameterization
Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding
Abstract:
Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.Keywords: graphic parameterization, green building design, mathematical model, plane form
Procedia PDF Downloads 1531664 Optimization of the Measure of Compromise as a Version of Sorites Paradox
Authors: Aleksandar Hatzivelkos
Abstract:
The term ”compromise” is mostly used casually within the social choice theory. It is usually used as a mere result of the social choice function, and this omits its deeper meaning and ramifications. This paper is based on a mathematical model for the description of a compromise as a version of the Sorites paradox. It introduces a formal definition of d-measure of divergence from a compromise and models a notion of compromise that is often used only colloquially. Such a model for vagueness phenomenon, which lies at the core of the notion of compromise enables the introduction of new mathematical structures. In order to maximize compromise, different methods can be used. In this paper, we explore properties of a social welfare function TdM (from Total d-Measure), which is defined as a function which minimizes the total sum of d-measures of divergence over all possible linear orderings. We prove that TdM satisfy strict Pareto principle and behaves well asymptotically. Furthermore, we show that for certain domain restrictions, TdM satisfy positive responsiveness and IIIA (intense independence of irrelevant alternatives) thus being equivalent to Borda count on such domain restriction. This result gives new opportunities in social choice, especially when there is an emphasis on compromise in the decision-making process.Keywords: borda count, compromise, measure of divergence, minimization
Procedia PDF Downloads 1331663 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study
Authors: Thomas Arink, Isam Janajreh
Abstract:
The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires
Procedia PDF Downloads 5201662 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning
Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar
Abstract:
Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.Keywords: augmented reality sandbox, constructivism, deep learning, geoscience
Procedia PDF Downloads 402