Search results for: Pei-Fen Li
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Pei-Fen Li

2 Numerical Investigation of Slot Die Coating Based on VOF Method

Authors: Zhidi Lei, Xixi Cai, Jue Ding, Peifen Weng, Xiaowei Li

Abstract:

In the process of preparing thin films by chemical solution method, the uniformity of gel coating has a great influence on the subsequent film thickness. Based on a coating device, the research tracks the interface development of gas-liquid flow by volume of fluid method (VOF). The effects of fluid viscosity and wall wetting property for the shape and position of the coating window are discussed in the process of slot die coating. The result shows that downstream contact lines gets closer to the corner with the increase of fluid viscosity. When the viscosity increases from 0.2Pa∙s to 0.3Pa∙s, 18.2% of the vortex region area will be reduced. With the static contact angle of upper die head surface (θ_sd) increasing, X_u decreased gradually which cause the instability changes of upstream surface. Also, θ_sd increasing brings the reduction of vortex region.

Keywords: film growth, vortex, VOF, slot die coating

Procedia PDF Downloads 337
1 Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology

Authors: Ding Jue, Li Jiahua, Lei Zhidi, Weng Peifen, Li Xiaowei

Abstract:

With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30μm of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle.

Keywords: water droplet, aerosol particle, collision and coagulation, multi-monte carlo method

Procedia PDF Downloads 273